
David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology
david.keyes@kaust.edu.sa

Algorithmic Adaptations to
Extreme Scale Computing

ATPESC Numerical Software Track
6 August 2018

Tie-ins to other ATPESC’18 presentations
n Numerous!

◆ architecture, applications, algorithms, programming models &
systems software, etc., form an interconnected ecosystem

◆ algorithms/software are in the middle – spanning diverging
requirements in architectures (which “want” more uniformity)
and applications (which “want” more irregularity)

n To other presentations in this numerical software track:
◆ Demmel, Dongarra, FASTMath team, CEED team

n To programming models presentations:
◆ MPI, OpenMP, kokkos, RAJA, Legion, etc.

n To Phil Colella’s dinner talk on exascale Poisson solvers
◆ Method of Local Corrections mehrstellen
◆ “Changing the math can have a large lever arm.”

Two universes of Numerical Linear Algebra

c/o Instageeked.com
* Global indices *
do i {

do j {
for (i,j) in S do op

}
}

Flat Hierarchical
* Local indices *
for matrix blocks (k,l)

do i {
do j {

for (i,j) in Sk,l do op
}

}

H-
Matrix

Some open
source

software
@ github

released by
KAUST’s
ECRC*

dense tiles
Cholesky: O(n3)

tile low rank
Cholesky: O(kn2)

TILE LOW-RANK ALGORITHMS CHOLESKY FACTORIZATION SOFTWARE STACK

A collaboration of With support from Sponsored by

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

HIERARCHICAL	COMPUTATIONS	ON	MANYCORE	ARCHITECTURES	

The Hierarchical Computations on Manycore Architectures (HiCMA) library aims to redesign existing dense linear algebra
libraries to exploit the data sparsity of the matrix operator. Data sparse matrices arise in many scientific problems (e.g.,
in statistics-based weather forecasting, seismic imaging, and materials science applications) and are characterized by
low-rank off-diagonal tile structure. Numerical low-rank approximations have demonstrated attractive theoretical bounds,
both in memory footprint and arithmetic complexity. The core idea of HiCMA is to develop fast linear algebra
computations operating on the underlying tile low-rank data format, while satisfying a specified numerical accuracy and
leveraging performance from massively parallel hardware architectures.

HiCMA 0.1.0
•  Matrix-Matrix Multiplication
•  Cholesky Factorization/Solve
•  Double Precision
•  Task-based Programming Models
•  Shared and Distributed-Memory

Environments
•  Support for StarPU Dynamic

Runtime Systems
•  Testing Suite and Examples

CURRENT RESEARCH
•  LU Factorization/Solve
•  Schur Complements
•  Preconditioners
•  Hardware Accelerators
•  Support for Multiple Precisions
•  Autotuning: Tile Size, Fixed Accuracy and

Fixed Ranks
•  Support for OpenMP, PaRSEC and Kokkos
•  Support for HODLR, H, HSS and H2

GEOSPATIAL STATISTICS
N = 20000, NB = 500, acc=109, 2D problem sq. exp.

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/hicma

PERFORMANCE RESULTS CHOLESKY FACTORIZATION – DOUBLE PRECISION – CRAY XC40 WITH TWO-SOCKET, 16-CORE HSW

Performance Results

State-of-the-Art

A collaboration of With support from Sponsored by

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

A	QDWH-Based	SVD	So=ware	Framework	on	Distributed-Memory	Manycore	Systems		

The KAUST SVD (KSVD) is a high performance software framework for computing a dense SVD on distributed-memory
manycore systems. The KSVD solver relies on the polar decomposition using the QR Dynamically-Weighted Halley
algorithm (QDWH), introduced by Nakatsukasa and Higham (SIAM Journal on Scientific Computing, 2013). The
computational challenge resides in the significant amount of extra floating-point operations required by the QDWH-based
SVD algorithm, compared to the traditional one-stage bidiagonal SVD. However, the inherent high level of concurrency
associated with Level 3 BLAS compute-bound kernels ultimately compensates the arithmetic complexity overhead and
makes KSVD a competitive SVD solver on large-scale supercomputers.

The Polar Decomposition
Ø  A = UpH, A in Rmxn (m≥n) , where Up is

orthogonal Matrix, and H is symmetric
positive semidefinite matrix

Application to SVD
Ø  A = UpH
 = Up(VΣVT) = (UpV)ΣVT

 = UΣVT

QDWH Algorithm
Ø  Backward stable algorithm for computing the

QDWH-based SVD
Ø  Based on conventional computational kernels,

i.e., Cholesky/QR factorizations (≤ 6 iterations
for double precision) and GEMM

Ø  The total flop count for QDWH depends on
the condition number�of the matrix	

KSVD 1.0
Ø  QDWH-based Polar Decomposition
Ø  Singular Value Decomposition
Ø  Double Precision
Ø  Support to ELPA Symmetric Eigensolver
Ø  Support to ScaLAPACK D&C and MR3

 Symmetric Eigensolvers
Ø  ScaLAPACK Interface / Native Interface
Ø  ScaLAPACK-Compliant Error Handling
Ø  ScaLAPACK-Derived Testing Suite
Ø  ScaLAPACK-Compliant Accuracy

Current Research
Ø  Asynchronous, Task-Based QDWH
Ø  Dynamic Scheduling
Ø  Hardware Accelerators
Ø  Distributed Memory Machines
Ø  Asynchronous, Task-Based
 QDWH-SVD
Ø  QDWH-based Eigensolver
 (QDWH-EIG)
Ø  Integration into PLASMA/

MAGMA

Advantages
Ø  Performs extra flops but nice flops
Ø  Relies on compute intensive kernels
Ø  Exposes high concurrency
Ø  Maps well to GPU architectures
Ø  Minimizes data movement
Ø  Weakens resource synchronizations

Download the software at http://github.com/ecrc/ksvd

Chameleon 1.9

A collaboration of With support from Sponsored by

A HIGH PERFORMANCE STENCIL FRAMEWORK USING
WAFEFRONT DIAMOND TILING

.".". 1 1 .".". 2 2 .".". N ! 1 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 1 2 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 2

.".". 1 .".". 2 .".". N N 1 ! 1 1 .".". 2 2 .".". L L

.".". 2 .".". N N 1 1 ! 1 1 .".". 2 2 .".". L L

.".". 2 .".". N N 1 1 .".". ! 1 1 .".". 2 2 .".". L L

.".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". ! 1 1 .".". 2 2 .".". L L

.".". N N 1 1 .".". 2 .".". ! 1 1 .".". 2 2 .".". L L

.".". N 1 1 .".". 2 .".". N ! 1 1 .".". 2 2 .".". L L

.".". 1 1 .".". 2 .".". N N ! 1 1 .".". 2 2 .".". L L

a)"Threads'"block"decomposition"per"time"step b)"Cache"block

d)"Diamond"viewc)"Regular"wavefront"blocking

"""f)"Block"decomposition"along"Xe)"FixedFexecutionFtoFdata"wavefront"blocking

1""""""""""""2"""""""""""""3"""""…""""L

1
""
""2
"""
3
"…
"N

Z

YT

X

YZ

Z

T

Z

T

X

T

Y

T

The Girih framework implements a generalized multi-dimensional intra-tile parallelization scheme for shared-cache
multicore processors that results in a significant reduction of cache size requirements for temporally blocked stencil
codes.. It ensures data access patterns that allow efficient hardware prefetching and TLB utilization across a wide range
of architectures. Girih is built on a multicore wavefront diamond tiling approach to reduce horizontal data traffic in favor of
locally cached data reuse. The Girih library reduces cache and memory bandwidth pressure, which makes it amenable to
current and future cache and bandwidth-starved architectures, while enhancing performance for many applications.

STENCIL COMPUTATIONS
•  Hot spot in many scientific codes
•  Appear in finite difference, element, and volume

discretizations of PDEs
•  E.g., 3D wave acoustic wave equation:

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/girih

PERFORMANCE RESULTS 8TH ORDER IN SPACE AND 2ND ORDER IN TIME – DOUBLE PRECISION

MULTI-DIMENSIONAL INTRA-TILE PARALLELIZATION

Thread assignment in space-time dimensions

i

k

j

7-point stencil 25-point stencil

Auto%tuning)

MPI)comm.)
wrappers)

Parameterized)
8ling)

Run8me)system)

Stencil)
Kernels)

+)
Specs.)

SOFTWARE INFRASTRUCTURE

Girih system components

GIRIH 1.0.0
•  MPI + OpenMP
•  Single and double precision
•  Autotuning
•  Short and long stencil ranges in

space and time
•  Constant/variable coefficients
•  LIKWID support for profiling

CURRENT RESEARCH
•  Matrix power kernels
•  Overlapping domain decomposition
•  GPU hardware accelerators:

•  OpenACC / CUDA
•  Out-of-core algorithms
•  Dynamic runtime systems
•  Extension to CFD applications

Diamond tiling versus Spatial Blocking on SKL Diamond tiling performance across Intel x86 generations •  Domain size: 512 x 512 x 512
•  # of time steps: 500
•  25-point star stencil
•  Dirichlet boundary conditions
•  Two-socket systems (Mem./L3):
- 8-core Intel SNB (64GB/20MB)
- 16-core Intel HSW (128GB/40MB)
- 28-core Intel SKL (256GB/38MB)
•  Intel compiler suite v17 with

AVX512 flag enabled
•  Memory affinity with numatcl

command
•  Thread binding to cores with

sched_affinity command

A collaboration of With support from Sponsored by

Centre	de	recherche	
BORDEAUX	– SUD-OUEST

PARALLEL HIGH PERFORMANCE UNIFIED FRAMEWORK FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The Exascale GeoStatistics project (ExaGeoStat) is a parallel high performance unified framework for computational
geostatistics on many-core systems. The project aims at optimizing the likelihood function for a given spatial data to provide an
efficient way to predict missing observations in the context of climate/weather forecasting applications. This machine learning
framework proposes a unified simulation code structure to target various hardware architectures, from commodity x86 to GPU
accelerator-based shared and distributed-memory systems. ExaGeoStat enables statisticians to tackle computationally
challenging scientific problems at large-scale, while abstracting the hardware complexity, through state-of-the-art high
performance linear algebra software libraries.

ExaGeoStat 0.1.0
• Large-scale synthetic geo-

spatial datasets generator

• Maximum Likelihood
Estimation (MLE)
- Synthetic and real datasets

• A large-scale prediction tool
for unknown measurements
on known locations

Current Research
• ExaGeoStat R-wrapper

package

• Tile Low Rank (TLR)
approximation

• NetCDF format support

• PaRSEC runtime system

• In-situ processing

ExaGeoStat Dataset Generator
• Generate 2D spatial Locations using uniform

distribution.
• Matérn covariance function:

! "; $ = 	 $'
(($*+')-($*)

	 "
$(

$*
.$*

"
$(

• Cholesky factorization of the covariance matrix:
∑ $ = 0	. 02�
�

• Measurement vector generation (Z):
4 = 	0	. 5, 				 57	~9(:, ')

ExaGeoStat Maximum Likelihood Estimator
• Maximum Likelihood Estimation (MLE) learning function:

ℓ $ = −=
(
>?@ (A −	'

(
	>?@	 ∑ $�� − 	'

(
	42 	∑ $ B'4�

�

Where C $ 	is a covariance matrix with entries
C7D = ! E7 − ED; $, 7, D = ',… , =

• MLE prediction problem
4'
4(

~	9GH=	(
I'
I(

	 ,
J'' J'(
J(' J((

)

With J'' ∈ 	LG×G, J'(LG×=, J(' ∈ 	L=×G,
and J((∈ 	L=×=

• The associated conditional distribution
where 4'	represents a set of unknown
measurements :
4'|4(~	9G(I' + J'(J((

B'	 4(− 	I(, J'' 	− J'(J((
B'J(')

Performance Results (MLE)
Two-socket shared memory Intel x86 architectures

Figure: An example of 400
points irregularly distributed in
space, with 362 points (ο) for
maximum likelihood estimation
and 38 points (×) for prediction
validation.

Figure: Mean square error for predicting
large scale synthetic dataset.

Figure: Two different examples of real datasets (wind speed dataset in the middle east region
and soil moisture dataset coming from Mississippi region, USA).

Intel two-socket Haswell + NVIDIA K80 Cray XC40 with two-socket, 16 cores Haswell

DOWNLOAD THE LIBRARY AT http://github.com/ecrc/exageostat

ExaGeoStat Predictor
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y

20K 40K 60K 80K 100K

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Spatial Locations (n)

M
ea

n
S

qu
ar

e
E

rr
or

 (M
S

E
)

Soil Moisture (SM) in the Mississippi region, USA

����	
��
 ����	
��

����	
��

���	
��

0

200

400

600

800

1000

1200

Ti
m

e
(s

ec
s)

Spatial Locations (n)

����	

 ���	

����	

����	

�����	

0

50

100

150

200

250

300

350

400

450

500

Ti
m

e
(s

ec
s)

Spatial Locations (n)

���������(�)������	�
�(��
��

���()�
��

���(�

������)�

(�)�����)�

0

200

400

600

800

1000

1200

Ti
m

e
(s

ec
s)

Spatial Locations (n)

A collaboration of With support from Sponsored by

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

Place your text here A HIGH PEFORMANCE MULTI-OBJECT ADAPTIVE OPTICS FRAMEWORK
FOR GROUND-BASED ASTRONOMY

The Multi-Object Adaptive Optics (MOAO) framework provides a comprehensive testbed for high performance
computational astronomy. In particular, the European Extremely Large Telescope (E-ELT) is one of today’s most challenging
projects in ground-based astronomy and will make use of a MOAO instrument based on turbulence tomography. The
MOAO framework uses a novel compute-intensive pseudo-analytical approach to achieve close to real-time data processing
on manycore architectures. The scientific goal of the MOAO simulation package is to dimension future E-ELT instruments
and to assess the qualitative performance of tomographic reconstruction of the atmospheric turbulence on real datasets.

DOWNLOAD THE SOFTWARE AT h6p://github.com/ecrc/moao	

THE MULTI-OBJECT ADAPTIVE OPTICS TECHNIQUE

Single conjugate AO concept Open-Loop tomography concept Observing the GOODS South
cosmological field with MOAO

MOAO 0.1.0
•  Tomographic Reconstructor Computation
•  Dimensioning of Future Instruments
•  Real Datasets
•  Single and Double Precisions
•  Shared-Memory Systems
•  Task-based Programming Models
•  Dynamic Runtime Systems
•  Hardware Accelerators

CURRENT RESEARCH
•  Distributed-Memory Systems
•  Hierarchical Matrix Compression
•  Machine Learning for Atmospheric Turbulence
•  High Resolution Galaxy Map Generation
•  Extend to other ground-based telescope projects

PERFORMANCE RESULTS TOMOGRAPHIC RECONSTRUCTOR COMPUTATION – DOUBLE PRECISION

High res. map of the quality of
turbulence compensation obtained
with MOAO on a cosmological field

THE PSEUDO-ANALYTICAL APPROACH

System
Parameters

Turbulence
Parameters

matcov Cmm Ctm ToR

matcov Cmm Ctm

Ctt

Cee CvvBLAS BLAS

Inter-
sample

R

ToR computation

Observing sequence

•  Compute the tomographic error:
 Cee = Ctt - Ctm RT – R Ctm

T + R Cmm RT
•  Compute the equivalent phase map:

 Cvv = D Cee DT
•  Generate the point spread function image

Two-socket 18-core Intel HSW – 64-core Intel KNL – 8 NVIDIA GPU P100s (DGX-1)

•  Solve for the
tomographic
reconstructor R:
R x Cmm = Ctm

This is one tomographic
reconstructor every 25

seconds!

0

5

10

15

20

25

30

35

40

45

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000110000

TF
lo

ps
/s

matrix size

DGX-1 peak
DGX-1 perf

KNL perf
Haswell perf

0

100

200

300

400

500

600

700

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000110000

tim
e(

s)

matrix size

DGX-1
KNL

Haswell

4 8 16 32
Number of physical cores

8

16

32

64

128

256

512

T
im

e,
se

co
nd

s

SVD

RRQR

RSVD

125 343 1000 2744
Matrix size, thousands

-2

-1

0

1

2

3

4

5

6

T
im

e
in

se
co

nd
s,

lo
g 2

⌧ = 10�3

⌧ = 10�6

⌧ = 10�12

of nodes

64

256

1024

729 1331 2197 4096 9261
Matrix size, thousands

1

2

3

4

5

6

T
im

e
in

se
co

nd
s,

lo
g 2

⌧ = 10�9

of nodes

1024

4096

6084

With support from Sponsored by

Centre	de	recherche	
BORDEAUX	– SUD-OUEST

Software for Testing Accuracy, Reliability and
Scalability of Hierarchical computations

STARS-H is a high performance parallel open-source package of Software for Testing Accuracy, Reliability and Scalability
of Hierarchical computations. It provides a hierarchical matrix market in order to benchmark performance of various libraries
for hierarchical matrix compressions and computations (including itself). Why hierarchical matrices? Because such matrices
arise in many PDEs and use much fewer memory, while requiring less flops for computations. There are several hierarchical
data formats, each one with its own performance and memory footprint. STARS-H intends to provide a standard for assessing
accuracy and performance of hierarchical matrix libraries on a given hardware architecture environment. STARS-H currently
supports the tile low-rank (TLR) data format for approximation on shared and distributed-memory systems, using MPI, OpenMP
and task-based programming models. STARS-H package is available online at https://github.com/ecrc/stars-h.

Roadmap of STARS-H
• Extend to other problems in a matrix-

free form.
• Support HODLR, HSS, ℋ and ℋ"

data formats.
• Implement other approximation

schemes (e.g., ACA).
• Port to GPU accelerators.
• Apply other dynamic runtime systems

and programming models (e.g.,
PARSEC).

STARS-H 0.1.0
• Data formats: Tile Low-Rank (TLR).
• Operations: approximation, matrix-

vector multiplication, Krylov CG solve.
• Synthetic applications in a matrix-free

form: random TLR matrix, Cauchy
matrix.

• Real applications in a matrix-free
form: electrostatics, electrodynamics,
spatial statistics.

• Programming models: OpenMP, MPI
and task-based (StarPU).

• Approximation techniques: SVD,
RRQR, Randomized SVD.

TLR Approximation of 2D problem on a two-socket
shared-memory Intel Haswell architecture

3D problem on different two-socket shared-
memory Intel x86 architectures

3D problem on a different amount of nodes (from 64 up to 6084) of a distributed-memory
CRAY XC40 system for a different error threshold #

Matrix Kernels
• Electrostatics (one over distance):

$%& =
1
)%&

• Electrodynamics (cos over distance):

$%& =
cos(.)%&)	

)%&
• Spatial statistics (Matern kernel):

$%& =
2234
Γ 6 26�)%&

8
4
94 26�)%&

8
• And many other kernels …

Heatmap of ranks (2D problem)

Sample Problem Setting
Spatial statistics problem for a quasi
uniform distribution in a unit square
(2D) or cube (3D) with exponential
kernel:

$%& = :
3;<=
> ,

where 8 = 0.1 is a correlation length
parameter and)%& is a distance
between B-th and C-th spatial points.

20 40 60 80 100 120 140 160 180 200
Matrix size, thousands

100

101

102

T
im

e
in

se
co

nd
s

Sandy Bridge

Ivy Bridge

Haswell

Broadwell

Skylake

In collaboration with

*ECRC also employs two very active PETSc developers

in NVIDIA cuBLAS in Cray LibSci

further dev @ Intel

“A good player plays where the puck is, while a great
player skates to where the puck is going to be.” –

– Wayne Gretzsky

Aspiration for this talk

To paraphrase Gretzsky:

“Algorithms for where
architectures are going to be”

Outline
n Architectural and applications trends

◆ limitations of our current software infrastructure for
numerical simulation at exascale

n Four algorithmic imperatives
◆ for extreme scale, tomorrow and today

n Four sets of “bad news, good news”
n Four widely applicable strategies
n Four sample “points of light”

◆ contributions to a new algorithmic infrastructure

Architectural trends
● Clock rates cease to increase while arithmetic

capability continues to increase through
concurrency (flooding of cores)

● Memory storage capacity increases, but fails to
keep up with arithmetic capability per core

● Transmission capability – memory BW and
network BW – increases, but fails to keep up
with arithmetic capability per core

● Mean time between hardware errors shortens

èBillions of

$ £ € ¥

of scientific software worldwide hangs in the
balance until our algorithmic infrastructure
evolves to span the architecture-applications
gap

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

Architectural background
www.exascale.org/iesp

The International Exascale
Software Roadmap
J. Dongarra, P. Beckman, et
al., International Journal of
High Performance Computer
Applications 25:3-60, 2011.

Uptake from IESP meetings
n While obtaining the next order of magnitude of performance,

we need another order of performance efficiency
◆ target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W

n Processor clocks may be slowed and speeded
◆ may be scheduled, based on phases with different requirements,

or may be dynamic, from power capping or thermal monitoring
◆ makes per-node performance rate unreliable

n Required reduction in power per flop and per byte may make
computing and moving data less reliable
◆ circuit elements will be smaller and subject to greater physical

noise per signal, with less space redundancy and/or time
redundancy for resilience in the hardware

◆ more errors may need to be caught and corrected in software

Power Efficiencies
from June 2018 Top 500 list

0

2

4

6

8

10

12

14

16

18

20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

21
7

22
1

22
5

22
9

23
3

23
7

24
1

24
5

24
9

25
3

25
7

26
1

About half of the systems report GF/s/W

5 GF/s/W

Most efficient > 18 GFs/W

Least efficient < 0.18 GFs/W

QEERI, 14 Apr 2015

Top 10 supercomputer trends, 2010-2018

c/o Keren Bergman (Columbia, ISC’18)

QEERI, 14 Apr 2015

Top 10 supercomputer trends, 2010-2018

Sunway TaihuLight (Nov 2017) B/F = 0.004;
Summit HPC (June 2018) B/F = 0.0005

8x deterioration in
last 6 months

c/o Keren Bergman (Columbia, ISC’18)

QEERI, 14 Apr 2015

It’s not just bandwidth; it’s energy

● Access SRAM (registers, cache) ~ 10 fJ/bit
● Access DRAM on chip ~ 1 pJ/bit
● Access HBM/MCDRAM (few mm) ~ 10 pJ/bit
● Access DDR3 (few cm) ~ 100 pJ/bit

similar ratios for latency as for bandwidth and
energy

~ 104 advantage in energy for staying in cache!

QEERI, 14 Apr 2015

Power costs in perspective
A pico (10-12) of something done exa (1018)
times per second is a mega (106)-somethings
per second

u 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
u 1 MW-year costs about $1M ($0.12/KW-hr × 8760

hr/yr)
§ We “use” 1.4 KW continuously, so 100MW is

71,000 people

QEERI, 14 Apr 2015

Why exa- is different
Dennard’s MOSFET scaling (1972) ends
before Moore’s Law (1965) ends

Eventually processing is
limited by transmission,

as known for 4.5 decades

Robert Dennard, IBM
(inventor of DRAM, 1966)

Our heterogeneous future

after J. Ang et al. (2014), Abstract Machine Models and Proxy Architectures for Exascale Computing

Quantum
accelerator

ML/DL
accelerator

Neuromorphic
accelerator

Architectural resources to balance
n Processing cores

◆ heterogeneous (CPUs, MICs, GPUs, FPGAs,…)
n Memory

◆ hierarchical (registers, caches, DRAM, flash,
stacked, …)

◆ partially reconfigurable
n Intra-node network

◆ nonuniform bandwidth and latency
n Inter-node network

◆ nonuniform bandwidth and latency

For performance
tuning:

Which resource
is limiting, as a

function of
time?

Well established resource trade-offs
n Communication-avoiding algorithms

◆ exploit extra memory to achieve theoretical
lower bound on communication volume

n Synchronization-avoiding algorithms
◆ perform extra flops between global reductions

or exchanges to require fewer global operations
n High-order discretizations

◆ perform more flops per degree of freedom
(DOF) to store and manipulate fewer DOFs

Node-based “weak scaling” is routine;
thread-based “strong scaling” is the game

n An exascale configuration: 1 million 1000-way 1GHz nodes
n Expanding the number of nodes (processor-memory units)

beyond 106 would not be a serious threat to algorithms that
lend themselves to well-amortized precise load balancing
◆ provided that the nodes are performance reliable

n Real challenge is usefully expanding the number of cores
sharing memory on a node to 103

◆ must be done while memory and memory bandwidth per node expand
by (at best) ten-fold less (basically “strong” scaling)

◆ don’t need to wait for full exascale systems to experiment in this
regime – the contest is being waged on individual shared-memory
nodes today

The familiar

Blue Waters

Sequoia K

ShaheenTaihu Light

ARMv8
QualComm
Centric 2400

Intel
Knights Landing

NVIDIA
P100

IBM
Power8

The challenge

Don’t need to wait for full exascale
systems to experiment in this regime…

The main contest is already being waged on individual
shared-memory nodes

Schematic of Intel
Xeon Phi KNL by

M. Farhan, KAUST

Two decades of evolution

ASCI Red at Sandia
1.3 TF/s, 850 KW

1997

Cavium ThunderX2
~ 1.1 TF/s, ~ 0.2 KW

2017

3.5 orders of
magnitude

Supercomputer in a node
System Peak DP

TFlop/s
Peak Power

KW
Power Eff.

GFlop/s/Watt
ASCI Red
US DOE

1.3 850 0.0015
ThunderX2

Cavium
1.1 0.20 5.5*

Knights Landing
Intel

3.5 0.26 14
P100 Pascal

NVIDIA
5.3 0.30 18

Taihu Light
CAS

125,436 15,371 6.1
Summit
US DOE

187,659 8,806 13.9
Exascale System

(~2021)
1,000,000 20,000 50

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL

Supercomputer in a node
System Peak DP

TFlop/s
Peak Power

KW
Power Eff.

GFlop/s/Watt
ASCI Red
US DOE

1.3 850 0.0015
ThunderX2

Cavium
1.1 0.20 5.5*

Knights Landing
Intel

3.5 0.26 14
P100 Pascal

NVIDIA
5.3 0.30 18

Taihu Light
CAS

125,436 15,371 6.1
Summit
US DOE

187,659 8,806 13.9
Exascale System

(~2021)
1,000,000 20,000 50

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL

How are most scientific simulations
implemented at the petascale today?

n Iterative methods based on data decomposition and
message-passing
◆ data structures are distributed
◆ each individual processor works on a subdomain of the original
◆ exchanges information with other processors that own data with

which it interacts causally, to evolve in time or to establish
equilibrium

◆ computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is BSP/SPMD/CSP
◆ Bulk Synchronous Programming
◆ Single Program, Multiple Data
◆ Communicating Sequential Processes

Three decades of
stability in

programming model

Bulk Synchronous
Parallelism

Leslie Valiant, F.R.S., N.A.S.
2010 Turing Award Winner Comm. of the ACM, 1990

BSP parallelism w/ domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

W1

W2

W3

A23A21 A22
rows assigned

to proc “2”

BSP has an impressive legacy

Year

Cost per
delivered
Gigaflop/s

1989 $2,500,000
1999 $6,900
2009 $8

Year

Gigaflop/s
delivered to
applications

1988 1
1998 1,020
2008 1,350,000

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved
more than a million times in two decades. Simulation cost per
performance has improved by nearly a million times.

Gordon Bell
Prize: Peak

Performance

Gordon Bell
Prize: Price

Performance

Riding exponentials
n Proceeded steadily for decades from giga- (1988)

to tera- (1998) to peta- (2008) with
◆ same BSP programming model
◆ same assumptions about who (hardware, systems

software, applications software, etc.) is responsible for
what (resilience, performance, processor mapping,
etc.)

◆ same classes of algorithms (cf. 25 yrs. of Gordon Bell
Prizes)

n Scientific computing now at a crossroads with
respect to extreme scale

Extrapolating exponentials eventually fails
n Exa- is qualitatively different and looks more

difficult
◆ but we once said that about message passing

n Core numerical analysis and scientific
computing will confront exascale to maintain
relevance
◆ potentially big gains in colonizing exascale for science

and engineering
◆ not a “distraction,” but an intellectual stimulus
◆ the journey will be as fun as the destination J

Main challenge going forward for BSP
n Almost all “good” algorithms in linear algebra,

differential equations, integral equations, signal
analysis, etc., like to globally synchronize – and
frequently!
◆ inner products, norms, pivots, fresh residuals are “addictive”

idioms
◆ tends to hurt efficiency beyond 100,000 processors
◆ can be fragile for smaller concurrency, as well, due to

algorithmic load imbalance, hardware performance variation,
etc.

n Concurrency is heading into the billions of cores
◆ already 10 million on the most powerful system today

BSP
generation

Energy-aware
generation

Applications background
www.exascale.org/bdec

Big data and Extreme-scale
Computing: Pathways to
Convergence – Toward a Shaping
Strategy for a Future Software and
Data Ecosystem for Scientific
Inquiry, M. Asch, et al., International
Journal of High Performance
Computing Applications 32:435-479.
(downloadable at URL above)

Successor to The International
Exascale Software Roadmap, by
many of the same authors and

new authors from big data

Challenge for applications:
merging software for 3rd and 4th paradigms

c/o Reed & Dongarra, Comm. ACM, July 2015

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides −

Analytics
provides −

Learning
provides −

3rd

4th
(a)

4th
(b)

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides −

Analytics
provides

Steering in high
dimensional

parameter space;
In situ processing

−

Learning
provides

Smart data
compression;

Replacement of
models with learned

functions

−

3rd

4th
(a)

4th
(b)

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides − Physics-based

“regularization”

Data for
training,

augmenting
real-world data

Analytics
provides

Steering in high
dimensional

parameter space;
In situ processing

−

Learning
provides

Smart data
compression;

Replacement of
models with learned

functions

−

3rd

4th
(a)

4th
(b)

Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides − Physics-based

“regularization”

Data for
training,

augmenting
real-world data

Analytics
provides

Steering in high
dimensional

parameter space;
In situ processing

− Feature vectors
for training

Learning
provides

Smart data
compression;

Replacement of
models with learned

functions

Imputation of
missing data;
Detection and
classification

−

3rd

4th
(a)

4th
(b)

Four algorithmic imperatives
n Reduce synchrony (in frequency and/or span)
n Reside “high” on the memory hierarchy

◆ as close as possible to the processing elements
n Increase SIMT/SIMD-style shared-memory

concurrency
n Build in resilience (“algorithm-based fault

tolerance” or ABFT) to arithmetic/memory
faults or lost/delayed messages

Bad news/good news
● Must explicitly control more of the data

motion
u carries the highest energy and time cost in the exascale

computational environment

● More opportunities to control the vertical
data motion

u horizontal data motion under control of users already
u but vertical replication into caches and registers was

(until recently) mainly scheduled and laid out by
hardware and runtime systems, mostly invisibly to users

1

● Use of uniform high precision in nodal bases on dense grids
may decrease, to save storage and bandwidth

u representation of a smooth function in a hierarchical basis or on
sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

● We may compute and communicate “deltas” between states
rather than the full state quantities
u as when double precision was once expensive (e.g., iterative correction

in linear algebra)
u a generalized “combining network” node or a smart memory

controller may remember the last address and the last value, and
forward just the delta

● Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

Bad news/good news2

● Fully deterministic algorithms may be regarded as too
synchronization-vulnerable
u rather than wait for missing data, we may predict it using various

means and continue
u we do this with increasing success in problems without models

(“big data”)
u should be fruitful in problems coming from continuous models
u “apply machine learning to the simulation machine”

● A rich numerical analysis of algorithms that make use of
statistically inferred “missing” quantities may emerge
u future sensitivity to poor predictions can often be estimated
u numerical analysts will use statistics, signal processing, ML, etc.

Bad news/good news3

● Fully hardware-reliable executions may be regarded as too
costly

● Algorithmic-based fault tolerance (ABFT) will be cheaper
than hardware and OS-mediated reliability
u developers will partition their data and their program units into

two sets
§ a small set that must be done reliably (with today’s standards for

memory checking and IEEE ECC)
§ a large set that can be done fast and unreliably, knowing the

errors can be either detected, or their effects rigorously bounded

● Many examples in direct and iterative linear algebra
● Anticipated by Von Neumann, 1956 (“Synthesis of reliable

organisms from unreliable components”)

Bad news/good news4

Algorithmic philosophy
Algorithms must span a widening gulf …

A full employment program
for algorithm developers J

ambitious
applications

austere
architectures

adaptive
algorithms

What will exascale algorithms look like?
n For weak scaling, must start with algorithms with

optimal asymptotic order, O(N logp N)
n Some optimal hierarchical algorithms

◆ Fast Fourier Transform (1960’s)
◆ Multigrid (1970’s)
◆ Fast Multipole (1980’s)
◆ Sparse Grids (1990’s)
◆ H matrices (2000’s)
◆ Randomized algorithms (2010’s)

“With great computational power comes great
algorithmic responsibility.” – Longfei Gao

Required software
Model-related
◆ Geometric modelers
◆ Meshers
◆ Discretizers
◆ Partitioners
◆ Solvers / integrators
◆ Adaptivity systems
◆ Random no. generators
◆ Subgridscale physics
◆ Uncertainty

quantification
◆ Dynamic load balancing
◆ Graphs and

combinatorial algs.
◆ Compression

Development-related
u Configuration systems
u Source-to-source

translators
u Compilers
u Simulators
u Messaging systems
u Debuggers
u Profilers

Production-related
u Dynamic resource

management
u Dynamic performance

optimization
u Authenticators
u I/O systems
u Visualization systems
u Workflow controllers
u Frameworks
u Data miners
u Fault monitoring,

reporting, and recovery

High-end computers come
with little of this. Most is
contributed by the user

community.

Midpoint: recap of algorithmic agenda
n New formulations with

◆ reduced synchronization and communication
■ less frequent and/or less global

◆ reside high on the memory hierarchy
■ greater arithmetic intensity (flops per byte moved into and out of

registers and upper cache)
◆ greater SIMT/SIMD-style thread concurrency for

accelerators
◆ algorithmic resilience to various types of faults

n Quantification of trades between limited resources
n Plus all of the exciting analytical agendas that exascale is

meant to exploit
◆ “post-forward” problems: optimization, data assimilation,

parameter inversion, uncertainty quantification, etc.

Four widely applicable strategies
n Employ dynamic runtime systems based on

directed acyclic task graphs (DAGs)
◆ e.g., ADLB, Argo, Charm++, HPX, kokkos, Legion,

OmpSs, Quark, STAPL, StarPU, OpenMP

n Exploit data sparsity of hierarchical low-
rank type
◆ meet the “curse of dimensionality” with the “blessing of

low rank”

n Employ high-order discretizations
n Code to the architecture, but present an

abstract API

Taskification based on DAGs
n Advantages

◆ remove artifactual synchronizations in the form
of subroutine boundaries

◆ remove artifactual orderings in the form of pre-
scheduled loops

◆ expose more concurrency
n Disadvantages

◆ pay overhead of managing task graph
◆ potentially lose some memory locality

Reducing over-ordering and synchronization
through dataflow, ex.: generalized eigensolver

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

● Diagram shows a
dataflow ordering of the
steps of a 4×4 symmetric
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges
are data dependencies

● Time is vertically
downward

● Wide is good; short is
good

1:1

 2:4

3:9

4:4

5:11

6:8

 7:6

8:5

9:7

10:4

11:4

12:2

13:2

14:3

15:3

16:1

 17:2

18:1

19:1

20:1

21:1

22:1

23:1

24:1

Zooming-in…

Loops can be
overlapped
in time
Green, blue and magenta
symbols represent tasks in
separate loop bodies with
dependences from an
adaptive optics
computation

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)

Tasks from 3 loops of optical
“reconstructor” pipeline are

executed together

DAG-based safe out-of-order execution

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)

Hierarchically low-rank operators
n Advantages

◆ shrink memory footprints to live higher on the
memory hierarchy
■ higher means quick access

◆ reduce operation counts
◆ tune work to accuracy requirements

■ e.g., preconditioner versus solver

n Disadvantages
◆ pay cost of compression
◆ not all operators compress well

Key tool: hierarchical matrices
• [Hackbusch, 1999] : off-diagonal blocks of typical

differential and integral operators have low effective rank
• By exploiting low rank, k , memory requirements and

operation counts approach optimal in matrix dimension n:
– polynomial in k
– lin-log in n
– constants carry the day

• Such hierarchical representations navigate a compromise
– fewer blocks of larger rank (“weak admissibility”) or
– more blocks of smaller rank (“strong admissibility”)

Example: 1D Laplacian

Recursive construction of an H-matrix

c/o W. Boukaram & G. Turkiyyah (KAUST)

“Standard (strong)” vs. “weak” admissibility

weak admissibilitystrong admissibility

After Hackbusch, et al., 2003

High-order discretizations
n Advantages

◆ shrink memory footprints to live higher on the
memory hierarchy
■ higher means shorter latency

◆ increase arithmetic intensity
◆ reduce operation counts

n Disadvantages
◆ high-order operators less suited to some solvers

■ e.g., algebraic multigrid, H-matrices*

* but see Gatto & Hesthaven, Dec 2016, on H for hp FEM

Performance effects of order in CFD

c/o Hutchinson et al. (2016) ISC’16

Helmholtz solve in spectral element code for
incompressible Navier-Stokes

fourth order thirty-second
order

Runtime effects of order in CFD

c/o Hutchinson et al. (2016) ISC’16

Accuracy versus execution time as a function of order
Single-mode Rayleigh-Taylor instability

Coding to the architecture
n Advantages

◆ tiling and recursive subdivision create large
numbers of small problems suitable for batched
operations on GPUs and MICs
■ reduce call overheads
■ polyalgorithmic approach based on block size

◆ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

n Disadvantages
◆ code is more complex
◆ code is architecture-specific at the bottom

Amdahl asks: where do the cycles go?
n Dominant consumers in applications that occupy

major supercomputer centers are:
◆ Linear algebra on dense symmetric/Hermitian matrices

■ Hamiltonians (Schroedinger) in chemistry/materials
■ Hessians in optimization
■ Schur complements in linear elasticity, Stokes & saddle points
■ covariance matrices in statistics

◆ Poisson solves
■ highest order operator in many PDEs in fluid and solid

mechanics, E&M, DFT, MD, etc.
■ diffusion, gravitation, electrostatics, incompressibility,

equilibrium, Helmholtz, image processing – even analysis of
graphs

PhD thesis topics in the Extreme Computing Research Center at
KAUST must address at least one of the four algorithmic drivers

Mapping algorithms to drivers

Examples being developed at KAUST’s
Extreme Computing Research Center

n QDWH-SVD, a 4-year-old SVD algorithm that performs more flops but
beats state-of-the-art on MICs and GPUs and distributed memory systems

n KBLAS, a library that improves upon or fills holes in L2/L3 BLAS for
GPUs and MICs, including batched and hierarchically low-rank routines

n BDDC, a linear preconditioner that performs extra local flops on interfaces
for low condition number guarantee in high-contrast elliptic problems

n FMM(ε), a 31-year-old O(N) solver for potential problems, used in low
accuracy as a FEM preconditioner and scaled out on MICs and GPUs

n ACR(ε), a new spin on 52-year-old cyclic reduction that recursively uses H
matrices on Schur complements to reduce O(N2) complexity to O(N log2N)

n M/ASPIN, nonlinear preconditioners that replace most of the globally
synchronized steps of Newton iteration with asynchronous local problems

n NekBox, a MIC-optimized version of CFD code Nek5000 that uses
extremely high-order schemes to minimize runtime to a given accuracy

QDWH*-EVD/SVD
² DAG-based dataflow tile algorithms for

(eigen- and) singular value decomposition
² Reduces synchrony
² Increases SIMT-style concurrency through

recursion
² Employs Chameleon tile library and StarPU

dynamic runtime system
*QR-based Dynamically Weighted Halley iteration from

Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric
Eigenvalue Decomposition and the SVD,
Y. Nakatsukasa & N. Higham, SISC (2013)

Asynchronous Task-Based Polar Decomposition on Massively Parallel Systems,
D. Sukkari, H. Ltaief, M. Faverge & D. Keyes, IEEE TPDS (2017)

QDWH-SVD
n Obtain SVD from a polar decomposition:

A = Up H H = V Σ V*

è A = UpV Σ V* = U Σ V*

n QDWH iteration is a recursive divide-and-conquer
method, backward stable

n Based on vendor-optimized kernels, i.e., Cholesky/QR
factorizations and GEMM

n Complexity:
(10+2/3) n3 for well-conditioned system, 43n3 for ill

polar sym eigen

QDWH-SVD

c/o D. Sukkari & H. Ltaief (KAUST)

 1

 10

 100

 1000

 10000

 8
19

20

 9
21

60

 1
02

40
0

 1
12

64
0

 1
22

88
0

T
im

e
 (

s)

Matrix size

ScaLAPACK PDGESVD, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Ill conditioned matrix

ScaLAPACK QDWH + ELPA EIG DC, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Well conditioned matrix

ScaLAPACK PDGESVD, Well conditioned matrix
ScaLAPACK QDWH + ELPA EIG DC, Well conditioned matrix

x8

x4

Sukkari et al., Best papers, Europar’16
available: https://github.com/ecrc/qdwh.git

576 nodes of 64-core Intel KNL (cache/quadrant mode)

fastest dense SVD

 1

 10

 100

 1000

 10000

 8
19

20

 9
21

60

 1
02

40
0

 1
12

64
0

 1
22

88
0

T
im

e
 (

s)

Matrix size

ScaLAPACK PDGESVD, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Ill conditioned matrix

ScaLAPACK QDWH + ELPA EIG DC, Ill conditioned matrix
ScaLAPACK QDWH + ScaLAPACK EIG DC, Well conditioned matrix

ScaLAPACK PDGESVD, Well conditioned matrix
ScaLAPACK QDWH + ELPA EIG DC, Well conditioned matrix

QDWH-SVD

c/o D. Sukkari & H. Ltaief (KAUST)

x2

Sukkari et al., Best papers, Europar’16
available: https://github.com/ecrc/qdwh.git

1152 nodes of 32-core Intel Haswell

Integrated into Cray’s LibSci w/A. Esposito (Cray)
Extensions underway to Zolotarev’s method w/Y. Nakatsukasa (Oxford)

x4

QDWH-SVD, taskified

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

1st QR iteration
2nd QR iteration
3rd QR iteration

Three QR iterations

1st Cholesky iteration
2nd Cholesky iteration
3rd Cholesky iteration

Three Cholesky iterations

Sukkari et al., IEEE TDPS’17

QDWH-SVD, taskified
on hybrid architecture

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

 0.1

 1

 10

 100

 1000

 10000

 10
24

 20
48

 30
72

 40
96

 51
20

 61
44

 71
68

 81
92

 92
16

 10
24

0

 11
26

4

 12
28

8

 13
31

2

 14
33

6

 15
36

0

 16
38

4

 17
40

8

 18
43

2

 19
45

6

 20
48

0

 21
50

4

 22
52

8

 23
55

2

 24
57

6

 25
60

0

 26
62

4

Ti
m

e
(s

)

Matrix Size

MKL-QDWH
Elemental-SVD+GEMM

Elemental-QDWH
MKL-SVD+GEMM

Chameleon-QDWH
Chameleon-QDWH-8xK80

x10

32-cores Intel Intel Haswell + 8 NVIDIA K80s

Tile Low-rank Cholesky
² A low-rank, but flat (not hierarchical) first step

towards expanding capability for large dense
symmetric problems, e.g., covariance matrices

² Reduces synchrony
² Increases SIMT-style concurrency
² Employs OpenMP taskification pragmas and

HLibPro on individual tiles

ExaGeoStat: A High Performance Unified Framework for
Geostatistics on Manycore Systems

S. Abdulah, H. Ltaief, Y. Sun, M. Genton & D. Keyes
IEEE TDPS (2018)

Large dense symmetric systems arise as
covariance matrices in spatial statistics

• Climate and weather applications have many
measurements located regularly or irregularly in a
region; prediction is needed at other locations
• Modeled as realization of Gaussian or Matérn spatial

random field, with parameters to be fit
• Leads to evaluating the log-likelihood function

involving a large dense (but data sparse) covariance

Synthetic and practical examples

Global temperature
data on sphere

362 measured points and
38 target points irregularly
distributed in unit square

LAPACK DPOTRF

• Classical algorithm (1990s) involves BLAS L2 panel
updates and BLAS L3 trailing matrix updates

PLASMA/CHAMELEON DPOTRF
• Tile algorithm (PLASMA, FLAME, 2010s) involves

mostly BLAS L3 operations within tiles scheduled
with a DAG

Tile operations
for TLR version of Cholesky

Data-sparse operations for Cholesky variants

(block low-rank without hierarchy)

Compressibility of four typical blocks, for
Frobenius accuracy of 10-9

Covariance Matrix of
dimension 16384 in 16✕16
blocks of 1024✕1024 each

Even “brute force” tilings pay off

c/o H. Ltaief & K. Akbudak (KAUST)

Tile low-rank Cholesky, time per backsolve

On 2-socket 18-core Intel Haswell @ 2.3GHz
OpenMP pragmas for taskification and accuracy of 10-9

c/o H. Ltaief & K. Akbudak (KAUST)

> order of
magnitude

Distributed memory TLR Cholesky
(preliminary implementation)

On 16 nodes of 2-socket 16-core Intel Haswell @ 2.3GHz
c/o H. Ltaief & K. Akbudak (KAUST)

6X
improvement
over
ScaLAPACK

KBLAS
² Subset of L2/L3 BLAS targeting GPU and Intel

MIC
² GEMV, SYMV, TRSM, TRMM

² Reduces communication and increases concurrency
in these memory BW bound operations

² Batched BLAS for small sizes on GPUs
² TRSM, TRMM, SYRK, POTRF, POTRS, POSV,

TRTRI, LAUUM, POTRI, POTI
² Recursive formulation
² Employs vendor-optimized L3 BLAS underneath

ACM TOMS (2016), CCPE (2016, 2017)

Recursively defined
KBLAS operations

for symmetric systems

c/o A. Charara & H. Ltaief (KAUST)

KBLAS DTRMM

Charara et al., Best papers, Europar’16
available: https://github.com/ecrc/kblas

c/o A. Charara & H. Ltaief (KAUST)

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!

1000!
1100!
1200!
1300!
1400!
1500!

51
2!
10
24
!
15
36
!
20
48
!
25
60
!
30
72
!
35
84
!
40
96
!
46
08
!
51
20
!
56
32
!
61
44
!
66
56
!
71
68
!
76
80
!
81
92
!
87
04
!
92
16
!
97
28
!

10
24
0!

10
75
2!

11
26
4!

11
77
6!

12
28
8!

12
80
0!

13
31
2!

13
82
4!

14
33
6!

14
84
8!

15
36
0!

Pe
rfo

rm
an

ce
 (G

Fl
op

 /
s)
!

Matrix Dimension!

 Theo-Peak!
 cuBLAS_DGEMM!
 cuBLAS (OOP)!
 KBLAS (IP)!
 cuBLAS (IP)!

5.5X

KBLAS DTRSM

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!

1000!
1100!
1200!
1300!
1400!
1500!

51
2!
10

24
!
15

36
!
20

48
!
25

60
!
30

72
!
35

84
!
40

96
!
46

08
!
51

20
!
56

32
!
61

44
!
66

56
!
71

68
!
76

80
!
81

92
!
87

04
!
92

16
!
97

28
!

10
24

0!

10
75

2!

11
26

4!

11
77

6!

12
28

8!

12
80

0!

13
31

2!

13
82

4!

14
33

6!

14
84

8!

15
36

0!

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)!

Matrix Dimension!

 Theo-Peak! cuBLAS_DGEMM!
 KBLAS (Square)! cuBLAS (Square)!
 KBLAS (rows x 512)! cuBLAS (rows x 512)!

Charara et al., Best papers, Europar’16
available: https://github.com/ecrc/kblas

c/o A. Charara & H. Ltaief (KAUST)

1.8X
for tall
skinny
case

Extending KBLAS
to batched execution

n Batched BLAS workshop:
◆ http://bit.ly/Batch-BLAS-2017

n Problem:
◆ L2 BLAS individually of low arithmetic intensity
◆ memory latency overheads

n Redesign the legacy BLAS API
◆ launch thousands of small BLAS kernels simultaneously
◆ increase device occupancy
◆ remove API/kernel launch overheads
◆ extend the recursive formulation

n Driven by scientific data-sparse applications
◆ computational statistics and astronomy
◆ Schur complement in sparse direct solvers and BDDC

preconditioning

http://bit.ly/Batch-BLAS-2017

Batched operations

c/o Jacob Kurzak (ICL, U Tennessee)

KBLAS
Example: Batched POTRF

Recursive
Batch POTRF

n Nested recursion
n Convert into batch of large GEMMs
n Minimize data transfer
n Enhance data locality
n Increase arithmetic intensity

Recursive
Batch TRSM

Recursive
Batch SYRK

Recursive
Batch POTRF

c/o A. Charara & H. Ltaief (KAUST)

Batched KBLAS
performance comparisons

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DTRSM

cuBLAS-DTRSM

MAGMA-DTRSM

MKL-DTRSM

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DTRMM

MKL-DTRMM

MAGMA-DTRMM

1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores
1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores

DTRSM DTRMM

Single
K40

(MKL on
28-core

Broadwell)

Multiple
K40s

(MKL on
28-core

Broadwell)

Batched KBLAS
performance comparisons

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
s/

s

Matrix Size (batch=10240)

cuBLAS-DGEMM

KBLAS-DPOTRF

MAGMA-DPOTRF

MKL-DPOTRF

1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F
lo

p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DPOSV

MKL-DPOSV

MAGMA-DPOSV

1

2

4

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

 KBLAS 8-GPU

 KBLAS 4-GPU

 KBLAS 2-GPU

 KBLAS 1-GPU

 MKL-28-cores

DPOTRF DPOSV

Single
K40

(MKL on
28-core

Broadwell)

Multiple
K40s

(MKL on
28-core

Broadwell)

1

10

100

1000

10000

0.01 0.1 1 10 100

G
F
L
O

P
 /

 s

Measured FLOPs / Byte (batch=10240)

KBLAS-DSYRK
KBLAS-TRMM
KBLAS-DTRSM
KBLAS-DPOTRF
KBLAS-DLAUUM
KBLAS-DTRTRI

1200 GFLOP/s

Batched KBLAS
performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128

A
ch

ei
v
ed

 /
 S

u
st

a
in

ed
 B

a
n
d
w

id
th

 (
%

)

Matrix Size (M=N, batch=10240)

DSYRK DTRMM DLAUUM

DTRTRI DPOTRF DTRSM

Roofline performance model of KBLAS
batched operations in double precision and
10240 batched size running on NVIDIA K40

GPU, on square matrices of size 128.

Ratio of achieved to sustained bandwidth
of various KBLAS batched operations in

double precision on a K40 GPU with 10240
batch size.

c/o A. Charara & H. Ltaief (KAUST)

Hierarchical Computations on
Manycore Architectures: HiCMA*

* appearing incrementally at https://github.com/ecrc

Balancing Domain Decomposition
with Constraints (BDDC)

² Reduce synchrony in Krylov solution to PDE
problems by building an optimal preconditioner
² convergence independent of mesh size, subdomain

size, and alignment of subdomain with material
interfaces

² For SPD problems, BDDC is built from
Cholesky and symmetric eigensolvers
² harness HiCMA
² exploit well-known low-rank properties of Schur

complements
Math Comp (2017), SISC (2016, 2017)

BDDC: a very robust preconditioner
n Applied inside CG on the SPE10 benchmark
n Darcy flow, using H(div) finite elements
n 20M-45M DOFs, up to 8K subdomains

u no alignment of subdomain faces with material jumps
n Small, decomposition-independent number of iterations

c/o S. Zampini (KAUST) Zampini et al., Invited talk at DDM’24
to appear in Springer LNCSE

BDDC: a very robust preconditioner
n Maxwell equations, using H(curl) finite elements

c/o S. Zampini (KAUST) and P. Vassilevski (LLNL)

c/o S. Zampini (KAUST)

BDDC on the road to exascale

Note: BDDC is distributed in PETSc

c/o S. Zampini (KAUST)

Distributed data structures

c/o S. Zampini (KAUST)

Condition number results
n If subdomains are solved exactly, overall condition number of

the preconditioned system depends only on the Schur
preconditioning

c/o S. Zampini (KAUST)

Global Schur complement is subassembled

n Cholesky is everywhere, in high concurrency for batching
during both formation and application of the preconditioner

n Also, generalized symmetric eigenproblem on each interface
where the “A, B” matrices are from Schur complements

c/o S. Zampini (KAUST)

BDDC with low rank Schur approximations

See Gatto & Hasthaven,
Dec 2016, J Sci Comput

on compressibility of
Schur complements for
hp finite elements

BDDC with low rank Schur approximations

c/o S. Zampini (KAUST)

accuracy

tile size average rank need to achieve
accuracy 10-6 for tile of size 64

“Hourglass” model for algorithms
(traditionally applied to internet protocols)

applications

architectures

algorithmic
infrastructure

How will complex PDE codes adapt?
n Programming model will still be dominantly message-

passing (due to large legacy code base), adapted to
multicore or hybrid processors beneath a relaxed
synchronization MPI-like interface

n Load-balanced blocks, scheduled today with nested
loop structures will be separated into critical and non-
critical parts

n Critical parts will be scheduled with directed acyclic
graphs (DAGs) through dynamic languages or
runtimes

n Noncritical parts will be made available for NUMA-
aware work-stealing in economically sized chunks

Asynchronous programming styles

n To take full advantage of such asynchronous
algorithms, we need to develop greater
expressiveness in scientific programming
◆ create separate threads for logically separate tasks,

whose priority is a function of algorithmic state, not
unlike the way a time-sharing OS works

◆ join priority threads in a directed acyclic graph
(DAG), a task graph showing the flow of input
dependencies; fill idleness with noncritical work or
steal work

n Can write code in styles that do not require artifactual
synchronization

n Critical path of a nonlinear implicit PDE solve is essentially
… lin_solve, bound_step, update; …

n However, we often insert into this path things that could be done
less synchronously, because we have limited language
expressiveness
◆ Jacobian and preconditioner refresh
◆ convergence testing
◆ algorithmic parameter adaptation
◆ I/O, compression
◆ visualization, data analytics

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

Sources of nonuniformity
n System

◆ Already important: manufacturing, OS jitter, TLB/cache
performance variations, network contention,

◆ Newly important: dynamic power management, more soft errors,
more hard component failures, software-mediated resiliency, etc.

n Algorithmic
◆ physics at gridcell/particle scale (e.g., table lookup, equation of

state, external forcing), discretization adaptivity, solver adaptivity,
precision adaptivity, etc.

n Effects of both types are similar when it comes to waiting
at synchronization points

n Possible solutions for system nonuniformity will improve
programmability for nonuniform problems, too J

Conclusions
n Plenty of ideas exist to adapt or substitute for

favorite solvers with methods that have:
◆ reduced synchrony (in frequency and/or span)
◆ higher residence on the memory hierarchy
◆ greater SIMT/SIMD-style shared-memory concurrency
◆ built-in resilience (“algorithm-based fault tolerance” or ABFT)

to arithmetic/memory faults or lost/delayed messages

n Programming models and runtimes may have to be
stretched to accommodate

n Everything should be on the table for trades,
beyond disciplinary thresholds è “co-design”

Thanks to:

CENTER OF EXCELLENCE

Thank you!

اركش

david.keyes@kaust.edu.sa

