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® Numerous!

¢ architecture, applications, algorithms, programming models &
systems software, etc., form an interconnected ecosystem

¢ algorithms/software are in the middle — spanning diverging
requirements in architectures (which ‘“want” more uniformity)
and applications (which “want” more irregularity)

® To other presentations in this numerical software track:
¢ Demmel, Dongarra, FASTMath team, CEED team

® To programming models presentations:
¢ MPI, OpenMP, kokkos, RAJA, Legion, etc.

® To Phil Colella’s dinner talk on exascale Poisson solvers

¢ Method of Local Corrections mehrstellen

¢ ‘““Changing the math can have a large lever arm.”




Two universes of Numerlcal Llnear Algebra
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Some open
source
software
@ github
released by
KAUST’
ECRC*

urther dev @ Intel

AHIGH PERFORMANCE STENCIL FRAMEWORK USING
WAFEFRONT DI D TILING

Extreme Computing
Research Center

The Ginih framework implements a generalzed multidimensional intra-tie parallelization scheme for shared-cache
multicore processors that results in a significant reduction of cache size requirements for temporally blocked stencil
codes. and wide range

ocally cached data reuse. The Giih ibrary reduces cache and memory bandwidth pressure, which makes it amenable to

STENCIL COMPUTATIONS.

MULTIDIMENSIONAL INTRA-TILE PARALLELIZATION
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the i : .
in statistics-based weather forecasting, seismic imaging, and materials science applications) and are characterized by

both in memory footprint and arithmetic. complexity. The core idea of

TILE LOW-RANK ALGORITHMS CHOLESKY FACTORZATION

computations operating on the underling tle low-rank data format, while satisfying a specified numerical
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Software for Testing Accura
bility of Hierarch

STARS-H
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+ Data formats: Tie LowsFarik (TLR)
+ Operations: _approximation, _matrix-
ctor mutiplcation, Krylow OG sohe.
+ Synthetic appications in a matrxfree
form: random TLA matrix. Gauchy
matrix

+ Real appications in s matrixiree
rm electrodynamics,
‘Spetil statistics
+ Programming models: OpenMP, MPI
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+ Approximation techniques: SV,

Spatial statstics problem for a quasi

(20) or cube [3D) wih exponential  shersdmemor el Haset archescire
kernel

ay=eh =
where = 0.1 fs a correlation length

parameter and 1 5 @ distance
e i and }h paseporte

uniform  ciStribUTON 1 3 UL SQUAre  TLA Approsimaton o 20 bl on asasscchet

"ARGR, Randomized SVD.

Roadmap of STARSH
+ Estend t other problems n a mtri-

ree form.
* Suport HODUR, 155, 9 an 5
data form:

i ——
 schemes (eg. ACA)

and_programming  modls [eg
PARSE).

momeeyine 155 archnocres o

W

RN

Acollaboration of

With support from

(e Ao, CSFRANY"

Sponsored by

& OSR

NRIA D Son. SRASY

OSR

NVIDIA cuBLA\

KAUST BASIC LINE#

PACKage LAPACK] routines on NVIDIA batch ai

KAUST BLAS (KBLAS) is a high performance CUDA fiborary implementing a subset of BLAS as wel as Linear Algebra
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BATCH ALGORITHMS: Recursive Cholesky POTRF

KBLAS HIGHLIGHTS

 KBLAS Lovel2 (o) SYMV & HEMV.
+ KBLAS Loveld (o] TAMM & TRSM

PERFORMANCE RESULTS .
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PERFORMANCE UNIFIEDFRAMEWORK FOR GEOSTATISTICS ON MANY-GORE SYSTEMS
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The KAUST SVD (KSVD) is a high performance software framework for computing a dense SVD on distributed-memor
manycore systems. The KSVD solver relies on the polar decomposition usin micallyWeightad Halley
algorithm_(@DWH), by Nakatsukasa and Higham (SIAM Journal on Scientific Computing, 2013). The

SVD sigoretm,compared t the trctionl nestage bidagonel SVD. However, the nheret igh el of corcurency
associated with Level 3 BLAS compute-bound kernels ultimately compensates the arithmetic complexity overhead a
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AHIGH PEFORMANCE MULTI-OBJ \E T ADAPTIVE OPTICS FRAMEWORK
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MOAO 02, | Extreme Computing
| Research Center

The Mulsi-Object Adsptive Optics (MOAD) framework provides a_comprehensive testbed for high performance
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““A good player plays where the puck is, while a great

player skates to Wher- 1. puck'i is going to be.”

*n \ n




Aspiration for this talk

To paraphrase Gretzsky:

‘“Algorithms for where

architectures are going to be”



Outline

o Architectural and applications trends

+ limitations of our current software infrastructure for
numerical simulation at exascale

e Four algorithmic imperatives

+ for extreme scale, tomorrow and today

e Four sets of ““bad news, good news”

e Four widely applicable strategies

e Four sample ‘“‘points of light”

+ contributions to a new algorithmic infrastructure




Architectural trends

Clock rates cease to increase while arithmetic
capability continues to increase through
concurrency (flooding of cores)

Memory storage capacity increases, but fails to
keep up with arithmetic capability per core

Transmission capability — memory BW and
network BW — increases, but fails to keep up
with arithmetic capability per core

Mean time between hardware errors shortens




= Billions of

$LE€Y

of scientific software worldwide hangs in the
balance until our algorithmic infrastructure
evolves to span the architecture-applications

8ap




Architectural background
www.exascale.orgliesp

EXASCALE ROADMAPI1.0

SOFTWARE PROJECT

The International Exascale
Software Roadmap

J. Dongarra, P. Beckman, et
al., International Journal of
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Uptake from IESP meetings

® While obtaining the next order of magnitude of performance,
we need another order of performance efficiency

o target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W
® Processor clocks may be slowed and speeded

+ may be scheduled, based on phases with different requirements,
or may be dynamic, from power capping or thermal monitoring

+ makes per-node performance rate unreliable
® Required reduction in power per flop and per byte may make
computing and moving data less reliable

¢ circuit elements will be smaller and subject to greater physical
noise per signal, with less space redundancy and/or time
redundancy for resilience in the hardware

+ more errors may need to be caught and corrected in software
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Power Efficiencies
from June 2018 Top 500 list

About half of the systems report GF/s/W

Most efficient > 18 GFs/W

[ffieticient < 0.18 GFs/w
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Top 10 supercomputer trends, 2010-2018

Evolution relative to 2010
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Top 10 supercomputer trends, 2010-2018

100 — —a— Node compute power (W!s) -
- —o— Node bandwidth (Gbit/s)
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Sunway TaihuLight (Nov 2017) B/F = 0.004;
Summit HPC (June 2018) B/F = 0.0005

c/o Keren Bergman (Columbia, ISC’'18)

8x deterioration in
last 6 months




It’s not just bandwidth; it’s energy

e Access SRAM (registers, cache) ~ 10 £]/bit
e Access DRAM on chip ~ 1 plJ/bit
e Access HBM/MCDRAM (few mm) ~ 10 pJ/bit
e Access DDR3 (few cm) ~ 100 pJ/bit

~ 10* advantage in energy for staying in cache!

similar ratios for latency as for bandwidth and
energy



Power costs in perspective

A pico (10-1%) of something done exa (101%)
times per second is a mega (10°)-somethings
per second

+ 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)

o 1 MW-year costs about $1M ($0.12/KW-hr x 8760
hr/yr)

" We “use” 1.4 KW continuously, so 100MW is
71,000 people




Why exa- is different

Dennard’s MOSFET scaling (1972) ends
before Moore’s Law (1965) ends

Table 1
Scaling Results for Circuit Performance

Device or Circuit Parameter Scaling Factor
Device dimension t,x, L, W 1/x
Doping concentration N, K
Voltage V 1/x
Current 1 1/«
Capacitance €4/t 1/x
Delay time/circuit VC/I
Power dissipation/circuit VI
Power density VI/A : A
T Robert Dennard, IBM
Scaling Results for Interconnection Lines (inventor of DRAM, 1966)
Parameter Pl Tantor Eventually processing is
Line resistance, R;, = pL/Wt K e e .« e
Normalized voltage drop IR, /V Ilm ItEd by transm ISSIOﬂ,
Line response time R, C
Line current density I/A4 as known for 4.5 decades




Our heterogeneous future

\

(Low Capacity, High Bandwidth)

4 B
3D Stacked (High Capacity,
Memory Low Bandwidth)

— W — e )
Thin Cores / Accelerators

Neuromorphic

accelerator
HEMOM SENESENERELEN

Quantum
accelerator

ML/DL
accelerator

Integrated NIC
for Off-Chip
Communication

Core Coherence Domain

after J. Ang et al. (2014), Abstract Machine Models and Proxy Architectures for Exascale Computing



Architectural resources to balance

e Processing cores

+ heterogeneous (CPUs, MICs, GPUs, FPGA:s....)

e Memory

+ hierarchical (registers, caches, DRAM, flash,

stacked, ...)
+ partially reconfigurable
e Intra-node network
+ nonuniform bandwidth and latency
e Inter-node network

+ nonuniform bandwidth and latency

For performance
tuning:

Which resource
is limiting, as a
function of
time?




e Communication-avoiding algorithms

+ exploit extra memory to achieve theoretical
lower bound on communication volume

e Synchronization-avoiding algorithms

+ perform extra flops between global reductions
or exchanges to require fewer global operations

o High-order discretizations

+ perform more flops per degree of freedom
(DOF) to store and manipulate fewer DOFs




Node-based ““weak scaling” is routine;
thread-based “‘strong scaling” is the game

e An exascale configuration: 1 million 1000-way 1GHz nodes

e Expanding the number of nodes (processor-memory units)
beyond 10° would rnot be a serious threat to algorithms that
lend themselves to well-amortized precise load balancing

+ provided that the nodes are performance reliable

e Real challenge is usefully expanding the number of cores
sharing memory on a node to 103

+ must be done while memory and memory bandwidth per node expand
by (at best) ten-fold less (basically ‘“‘strong” scaling)

+ don’t need to wait for full exascale systems to experiment in this
regime — the contest is being waged on individual shared-memory
nodes today
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The challenge
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Centric 2400

« gy Ry r“a ' peony yuay ghey 38 AR i TITT T Ll
[T
Intel

Power8 Knights Landing



Don’t need to wait for full exascale
systems to experiment in this regime...

Schematic of Intel
Xeon Phi KNL by
M. Farhan, KAUST

The main contest is already being waged on individual
shared-memory nodes




Two decades of evolution
1997 2017

ASCI Red at Sandia Cavium ThunderX2
1.3 TF/s, 850 KW ~ 1.1 TF/s,~0.2 KW

3.5 orders of




Supercomputer in a node

System Peak DP Peak Power Power Eff.
TFIOP/ S GFlop/s/Watt

ASCI Red 0.0015
US DOE
Thonder X2 1.1 0.20 5.5%

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL



Supercomputer in a node

System Peak DP Peak Power Power Eff.
TFlop/s KW GFlop/s/Watt

ASCI Red 0.0015
US DOE
Caviom 11 020 >
Knigh;s L‘;lnding 3.5 0.26 14
nte
P100 Pascal 53 0.30 18
NVIDIA
Taihu Light 125,436 15,371 6.1
CAS
Summit 187,659 3,806 139
US DOE
Exascale System 1 ,000 ,()00 20 ,()()O 50
(~2021)

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL



How are most scientific simulations
implemented at the petascale today?

o Iterative methods based on data decomposition and
message-passing
+ data structures are distributed
+ each individual processor works on a subdomain of the original

+ exchanges information with other processors that own data with
which it interacts causally, to evolve in time or to establish
equilibrium

+ computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

e The programming model is BSP/SPMD/CSP

+ Bulk Synchronous Programming Three decades of
+ Single Program, Multiple Data stability in
+ Communicating Sequential Processes programming model




Bulk Synchronous
Parallelism

Co%putatio

The success of the von Neumann model of
sequential computation is attributable to the
fact that it is an cfficicnt bridge between software and hardware: high-level languages
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
introduces the bulk-synchronous parallel (BSP) model as a candidate for this role, and
gives results quantifying its efficiency both in implementing high-level language

° ° ‘ - features and algorithms, as well as in being implemented in hardware.
Leslie Valiant, F.R.S., N.A.S. - s

ARRETA
Leslie G. Valiant

2010 Turing Award Winner Comm. of the ACM, 1990




BSP parallelism w/ domain decomposition

rows assigned
to proc ‘“2” < A2 |

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)




BSP has an impressive legacy

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved

more than a million times in two decades. Simulation cost per

performance has improved by nearly a million times.

s Gigaflop/s
Performance dJ@livered to
Year applications
1988 1
1998 1,020
2008 1,350,000

be s COStper
Performance delive red
Year  Gigaflop/s
1989 $2,500,000
1999 $6,900
2009 58




Riding exponentials

o Proceeded steadily for decades from giga- (1988)
to tera- (1998) to peta- (2008) with

+ same BSP programming model

+ same assumptions about who (hardware, systems
software, applications software, etc.) is responsible for
what (resilience, performance, processor mapping,
etc.)

+ same classes of algorithms (cf. 25 yrs. of Gordon Bell
Prizes)

e Scientific computing now at a crossroads with
respect to extreme scale




Extrapolating exponentials eventually fails

o Exa- is qualitatively different and looks more
difficult

+ but we once said that about message passing

o Core numerical analysis and scientific
computing will confront exascale to maintain
relevance

+ potentially big gains in colonizing exascale for science
and engineering

+ not a *‘distraction,”’ but an intellectual stimulus

« the journey will be as fun as the destination ©




Main challenge going forward for BSP

o Almost all ““good” algorithms in linear algebra,
differential equations, integral equations, signal
analysis, etc., like to globally synchronize — and
frequently!

+ Inner products, norms, pivots, fresh residuals are ‘‘addictive”
idioms
+ tends to hurt efficiency beyond 100,000 processors

+ can be fragile for smaller concurrency, as well, due to
algorithmic load imbalance, hardware performance variation,
etc.

e Concurrency is heading into the billions of cores

+ already 10 million on the most powerful system today







Applications background

www.exascale.org/bdec

BlG DATA AND
EXTREME-SCALE
COMPUTING

Big data and Extreme-scale
Computing: Pathways to
Convergence — Toward a Shaping
Strategy for a Future Software and
Data Ecosystem for Scientific
Inquiry, M. Asch, et al., International
Journal of High Performance
Computing Applications 32:435-479.
(downloadable at URL above)

Successor to The International
Exascale Software Roadmap, by
many of the same authors and
new authors from big data




Challenge for applications:
merging software for 3’4 and 4t paradigms

Figure 1. Data analytics and computing ecosystem compared.

1
Application Level Mahout, R, and Applications : Applications and Community Codes
|
______ 1
1
: Hive Pig Sqoop Elume : FORTRAN, C, C++, and IDEs
i i
i g 1
3 g Map-Reduce Storm : Domain-specific Libraries
Application Level i 1
b = 1
| I8 2|
2! |8 Hbase BigTable 2ol B e e Numerical and e
Middlewareand S | |2 (key-value store) : Tools Libraries ‘glgpmlg
Management | Szé‘ - 1
g HDFS (Hadoop File System) { [Lustre Paratiel | Batch Schectr Menitonng
s | ARREERESY | | File System) (such as SLURM) Toole
s !
e B
= ——— : :
g” 5 B e e R e e ey 1
P Virtual Machines and Cloud Services i
. (optional) | 1
System Software P ’ i
: 1
§ :
i |
""" |
T
l -
Ethernet Local Node Commodity X86 Infiniband + Loca X86 Racks +
Cluster Hardware Switches Storage Rack 'tsy : a‘ﬁg"]eeg Nscfdrg gtoragtg A c%eplli,;?a%r :
1
1
Data Analytics Ecosystem Computational Science Ecosystem

c/o Reed & Dongarra, Comm. ACM, July 2015



Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

Simulation
3T d provides —

4th Analytics
provides —
(a)

Learning
4th provides

(b)



Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

Simulation
3T d provides —

h Ana]ytics Steering in high

4t provides dimensional -
(a) parameter space;
In situ processing
Learning Smart data
4th provides compression;
Replacement of —
(b) models with learned

X functions



Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

Simulation Data for
31‘ d provides _ Physics-based training,

“regularization” augmenting
real-world data

th Analytics Steering in high
4 provides dimensional .
(a) parameter space;

In situ processing

Learning Smart data

4th provides compression;
Replacement of

(b) models with learned
— functions



Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining
=» Convergence is ripe

- To Simulation | To Analytics

Simulation Data for
3rd provides _ Physics-based training,
“regularization” augmenting
real-world data

4 th Analytics Steering in high

provides dimensional . Feature vectors

(a) parameter space; for training
In situ processing
1 Smart data .

Ath Learl.nllg compression; Imputation of

provides Replacement :)f missing data; e
(b) models with learned Detec.tmn z.md

classification

— functions



w Four algorithmic imperatives

e Reduce synchrony (in frequency and/or span)
e Reside ‘‘high” on the memory hierarchy
+ as close as possible to the processing elements

e Increase SIMT/SIMD-style shared-memory
concurrency

e Build in resilience (‘‘algorithm-based fault
tolerance” or ABFT) to arithmetic/memory
faults or lost/delayed messages




w Bad news/good news i/

e Must explicitly control more of the data
motion

+ carries the highest energy and time cost in the exascale
computational environment

e More opportunities to control the vertical
data motion

o horizontal data motion under control of users already

+ but vertical replication into caches and registers was
(until recently) mainly scheduled and laid out by
hardware and runtime systems, mostly invisibly to users




Bad news/good news i/

e Use of uniform high precision in nodal bases on aense grias
may decrease, to save storage and bandwidth

+ representation of a smooth function in a hierarchical basis or on
sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

e We may compute and communicate ‘“deltas’ between states
rather than the full state quantities

+ as when double precision was once expensive (e.g., iterative correction
in linear algebra)

+ a generalized ‘““combining network’ node or a smart memory
controller may remember the last address and the last value, and
forward just the delta

e Equidistributing errors properly to minimize resource use

will lead to innovative error analyses in numerical analysis




w Bad news/good news i/

e Fully deterministic algorithms may be regarded as too
synchronization-vulnerable

+ rather than wait for missing data, we may predict it using various
means and continue

+ we do this with increasing success in problems without models
(“‘big data’)
¢ should be fruitful in problems coming from continuous models

¢ ‘‘apply machine learning to the simulation machine”
e A rich numerical analysis of algorithms that make use of
statistically inferred ‘‘missing” quantities may emerge

+ future sensitivity to poor predictions can often be estimated

+ numerical analysts will use statistics, signal processing, ML, etc.




% Bad news/good news i/

e Fully hardware-reliable executions may be regarded as too
costly

e Algorithmic-based fault tolerance (ABFT) will be cheaper
than hardware and OS-mediated reliability

¢ developers will partition their data and their program units into
two sets

= asmall set that must be done reliably (with today’s standards for
memory checking and IEEE ECC)

= alarge set that can be done fast and unreliably, knowing the
errors can be either detected, or their effects rigorously bounded

e Many examples in direct and iterative linear algebra

e Anticipated by Von Neumann, 1956 (‘“‘Synthesis of reliable
organisms from unreliable components”)




Algorithmic philosophy

Algorithms must span a widening gulf ...

adaptive
algorithms

@4 aqustere
architectures

ambitious g ¢
applications

A full employment program
for algorithm developers ©




What will exascale algorithms look like?

o For weak scaling, must start with algorithms with
optimal asymptotic order, O(N log? N)
e Some optimal hierarchical algorithms
+ Fast Fourier Transform (1960°s)
+ Multigrid (1970’s)
+ Fast Multipole (1980°s)
+ Sparse Grids (1990°s)
+ ‘H matrices (2000’s)
+ Randomized algorithms (2010°s)

“With great computational power comes great
algorithmic responsibility.” — Longfe1 Gao




Required software

Model-related Development-related Production-related
+ Geometric modelers  ,  Configuration systems ¢ Dynamic resource
* M.esher.s + Source-to-source management
* DlSC.I'.e’[IZGI'S translators ¢ Dynamic performance
+ Partitioners o Compilers optimization
(SOIVGIS / integra@ Authenticators
: u
» Adaptivity systems ¢ Simulators *
+ Random no. generators ¢ Messaging systems + VO systems
+ Subgridscale physics & Debuggers ¢ Visualization systems
o Uncertainty « Profilers o Workflow controllers
quantification
, . o Frameworks
¢ Dynamic load balancing | High-end computers come Data mi
¢ Graphs and with little of this. Mostis | * ata Minets
combinatorial algs. contributed by the user + Fault monitoring,
+ Compression community. reporting, and recovery




Midpoint: recap of algorithmic agenda

e New formulations with
+ reduced synchronization and communication
m less frequent and/or less global

+ reside high on the memory hierarchy

s greater arithmetic intensity (flops per byte moved into and out of
registers and upper cache)

+ greater SIMT/SIMD-style thread concurrency for
accelerators

+ algorithmic resilience to various types of faults
o (Quantification of trades between limited resources

o Plus all of the exciting analytical agendas that exascale is
meant to exploit

+ ‘‘post-forward” problems: optimization, data assimilation,
parameter inversion, uncertainty quantification, etc.




Four widely applicable strategies

e Employ dynamic runtime systems based on

directed acyclic task graphs (DAGS)

+ e.g.,ADLB, Argo, Charm++, HPX, kokkos, Legion,
OmpSs, Quark, STAPL, StarPU, OpenMP

o Kxploit data sparsity of hierarchical low-
rank type

+ meet the *“curse of dimensionality’’ with the “blessing of
low rank”

e Employ high-order discretizations

e Code to the architecture, but present an
abstract API




o Advantages

+ remove artifactual synchronizations in the form
of subroutine boundaries

+ remove artifactual orderings in the form of pre-
scheduled loops

+ €Xpose more concurrency
o Disadvantages
+ pay overhead of managing task graph

+ potentially lose some memory locality




Reducing over-ordering and synchronization
through dataflow, ex.: generalized eigensolver

Ax = ABx
Operation Explanation LAPACK routine name
@ B=LxL" Cholesky factorization POTRF
Q@ C=L"1xAxLT application of triangular factors SYGST
or HEGST
© T=QT xCxQ tridiagonal reduction SYEVD or HEEVD
& Tx=Ax QR iteration STERF
D)
@
@ g @
© o D
@ & ® ¢
g © ®
© = =
o D
©
D D) &
(D )
@ D




Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

e Diagram shows a
dataflow ordering of the
steps of a 4x4 symmetric
generalized eigensolver

e Nodes are tasks, color-
coded by type, and edges
are data dependencies

e Time is vertically
downward

e Wide is good; short is
good
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DAG-based safe out-of-order execution

Tasks from 3 loops of optical
“reconstructor’ pipeline are
executed together

8- c/o H. Ltaief (KAUST) & D. Gratadour (OdP)



Hierarchically low-rank operators

o Advantages

+ shrink memory footprints to live higher on the
memory hierarchy

= higher means quick access
+ reduce operation counts
+ tune work to accuracy requirements
= e.g., preconditioner versus solver
e Disadvantages
+ pay cost of compression

+ not all operators compress well




* [Hackbusch, 1999] : off-diagonal blocks of typical
differential and integral operators have low effective rank

* By exploiting low rank, £ , memory requirements and
operation counts approach optimal in matrix dimension 7:
— polynomial in £
— lin-log in n
— constants carry the day

* Such hierarchical representations navigate a compromise
— fewer blocks of larger rank (‘““‘weak admissibility”’) or

— more blocks of smaller rank (*‘strong admissibility’’)




Example: 1D Laplacian
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Recursive construction of an H-matrix

O

 |c/lo W. Boukaram & G. Turkiyyah (KAUST)



“Standard (strong)” vs. “weak’ admissibility

i ]

iE

|

strong admissibility weak admissibility

After Hackbusch, et al., 2003




o Advantages

+ shrink memory footprints to live higher on the
memory hierarchy

= higher means shorter latency
+ increase arithmetic intensity
+ reduce operation counts
o Disadvantages

+ high-order operators less suited to some solvers

= e.g., algebraic multigrid, H-matrices*

* but see Gatto & Hesthaven, Dec 2016, on H for hp FEM



Performance effects of order in CFD

Helmholtz solve in spectral element code for
incompressible Navier-Stokes

B Intel MKL - GFLOPS mm Nek/mxm - GFLOPS B LIBXSMM - GFLOPS I LIBXSMM (NTS) - GFLOPS

e Intel MKL - GB/s s Nk /mxm - GB/s ws LIBXSMM - GB/s s L IBXSMM (NTS) - GB/s
Q00 ===m=m== === e e e e e e e e e e eeeeeeeeeeeeememesemeeeeeee—————— - 120
300 -

(72]

(=%

§ 200

L)

6 8 10 12 14 16 18 20 22 24 26 28 30
element size

fourth order thirty-second
e For all element sizes, LIBXSMM offer the best performance order

e for order <= 16, the difference is small because the computation are memory
bandwidth bound

e for for order <= 16, a boost is possible with the non-temporal stores (101.6 GiB/s)
e for order > 16, LIBXSMM ~ 2x is faster then Nek’s mxm_std and up to 40% faster
than Intel MKL

c/o Hutchinson et al. (2016) ISC’16



Runtime effects of order in CFD

Accuracy versus execution time as a function of order
Single-mode Raylelgh Taylor mstablllty

22 ;
4 32‘

Il - Al

524 : i i i i i
22 23 24 23 28 27 28 29
Cost (core hr)

c/o Hutchinson et al. (2016) ISC’16



e Advantages

« tiling and recursive subdivision create large
numbers of small problems suitable for batched
operations on GPUs and MICs

= reduce call overheads

= polyalgorithmic approach based on block size

+ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

o Disadvantages

+ code is more complex

+ code is architecture-specific at the bottom




Amdahl asks: where do the cycles go?

¢ Dominant consumers in applications that occupy
major supercomputer centers are:

¢ Linear algebra on dense symmetric/Hermitian matrices
m Hamiltonians (Schroedinger) in chemistry/materials
m Hessians in optimization
m Schur complements in linear elasticity, Stokes & saddle points

B covariance matrices in statistics

¢ Poisson solves

m highest order operator in many PDEs in fluid and solid
mechanics, E&M, DFT, MD, etc.

m diffusion, gravitation, electrostatics, incompressibility,
equilibrium, Helmholtz, image processing — even analysis of
graphs




Mapping algorithms to drivers

PhD thesis topics in the Extreme Computing Research Center at
KAUST must address at least one of the four algorithmic drivers

< Reduce Increase Increase Algorithmic New
Student Algorithm/Kernel || Synchronization | Intensity Concurrency | Resilience Capabilities
Abdelfattah BLAS2 \ﬁ_x __gx—-’//
Abduljabbar FMM X X X
AlFarhan Unstruct. PDEs X X
AlHarthi BEM X X X
AlOnazi Multigrid X X X
Boukaram H-BLAS X X
Charara BLAS2/3 X X
Chavez H-Schur X X
Ibeid FMM precond. X X X
Liu Nonlinear precond. X X X
Malas Stencil eval. X X
Peng Non-neg. mat. fact. X X
Sukkari Eigen/SVD X X




Examples being developed at KAUST’s

Extreme Computing Research Center

QDWH-SVD, a 4-year-old SVD algorithm that performs more flops but
beats state-of-the-art on MICs and GPUs and distributed memory systems

KBLAS, a library that improves upon or fills holes in L2/L.3 BLAS for
GPUs and MICs, including batched and hierarchically low-rank routines

BDDC, a linear preconditioner that performs extra local flops on interfaces
for low condition number guarantee in high-contrast elliptic problems

FMM(¢), a 31-year-old O(N) solver for potential problems, used in low
accuracy as a FEM preconditioner and scaled out on MICs and GPUs

ACR(¢), a new spin on 52-year-old cyclic reduction that recursively uses H
matrices on Schur complements to reduce O(N?) complexity to O(V log2N)

M/ASPIN, nonlinear preconditioners that replace most of the globally
synchronized steps of Newton iteration with asynchronous local problems

NekBox, a MIC-optimized version of CFD code Nek5000 that uses
extremely high-order schemes to minimize runtime to a given accuracy




QDWH*-EVD/SVD

+ DAG-based dataflow tile algorithms for
(eigen- and) singular value decomposition

¢ Reduces synchrony "

+ Increases SIMT-style C(’nc-urr.ency through
* recursion g

4" _Employs.(‘ihameleon.'tile library and StarPU
dynanric runtime system

>l<QR—based Pynamically Weighted Halley iteration from *

Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric
Eigenvalue Decomposition and the SVD, ,
Y. Nakatsukasa & N. Higham, Sisc (2013) -

Asynms Task-Bdsed Polar Decompositior; on Massively Parallel Systemes,
kkari, H. Ltaief, M. Faverge & D. Keyes, I[EEE TPDS (2017)




Obtain SVD from a polar decomposition:

polar sym eigen

A=UH H=VZX Vs
> A=UVIV¥=UZV*

QDWH iteration is a recursive divide-and-conquer
method, backward stable
Based on vendor-optimized kernels, i.e., Cholesky/QR
factorizations and GEMM
Complexity:

(10+2/3) n3 for well-conditioned system, 43r° for ill




QDWH-SVD

576 nodes of 64-core Intel KNL (cache/quadrant mode)

10000 ¢ .
A a4
1000 | 5 3 |
Y oSN S~ g 3

100 |

Time (s)

ScalLAPACK PDGESVD, Il conditioned matrix =)= |

10 | ScalLAPACK QDWH + ScaLAPACK EIG DC, Iil conditioned matrix =2 =
: ScalLAPACK QDWH + ELPA EIG DC, Il conditioned matrix f ]

ScaLAPACK QDWH + ScalLAPACK EIG DC, Well conditioned matrix

ScalLAPACK PDGESVD, Well conditioned matrix = %
| ScalLAPACK QDWH + ELPA EIG DC, Well conditioned matrix
%\Q&Q qq:\bg \&b‘g \"q"bb‘ \‘793)%
Matrix size

fastest dense SVD

c/o D. Sukkari & H. Ltaief (KAUST) Sukkari et al., Best papers, Europar’16

available: https://github.com/ecrc/qdwh.git




QDWH-SVD

1152 nodes of 32-core Intel Haswell

10000 | , ,

d

| %L%ﬁ 45 e R V2

Time (s)

ScalLAPACK PDGESVD, Il conditioned matrix =€
10 ¢ ScaLAPACK QDWH + ScaLAPACK EIG DC, Il conditioned matrix
: ScalLAPACK QDWH + ELPA EIG DC, lll conditioned matrix T
ScaLAPACK QDWH + ScalLAPACK EIG DC, Well conditioned matrix
ScalLAPACK PDGESVD, Well conditioned matrix » %
ScaLAPACKIQDWH + ELPA EIG DC Well conditioned matrix o
\‘ﬁ:b%

v ‘b W ©
K o & R

Matrix size

Integrated into Cray’s LibSci w/A. Esposito (Cray)
Extensions underway to Zolotarev’s method w/Y. Nakatsukasa (Oxford)

c/o D. Sukkari & H. Ltaief (KAUST) Sukkari et al., Best papers, Europar’16

available: https://github.com/ecrc/qdwh.git




QDWH-SVD, taskified

> 15t QR iteration
> 2nd QR iteration
> 31 QR iteration

> 1%t Cholesky iteration
> 2" Cholesky iteration
> 34 Cholesky iteration

> Three QR iterations

> Three Cholesky iterations

Sukkari et al., IEEE TDPS’17

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)




QDWH-SVD, taskified
on hybrid architecture

32-cores Intel Intel Haswell + 8 NVIDIA K80s

10000 A N S R R R R
= x10
0]
— ? ? ?
'MKL-QDWH ——
Elemental-SVD+GEMM —H—
1 Elemental-QDWH —¥—
MKL-SVD+GEMM —X—
| Chameleon-QDWH —&—
0 1 ; ; ; ; ; ; ; ; ; ; ; ; Chameleon'QDWH'8XK80 _e_
: 0 F @ 0 O F P I PSSR TOS
\qu ‘?9@ ‘bé\(b b‘&b 689 b\b‘b‘ '\"ng %\& q‘i\b \&b‘ \"q’b \‘iﬁ) \'gb\ \gp‘b \‘55% \Q’(b% <\b‘0 \Q’&b \Q@ ‘?9@ (7:\@0 ‘ﬁﬁ;b ‘igg) i ‘f’bg ‘ﬁ’&

Matrix Size

é ﬁg c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)




Tile Low-rank Cholesky

+ Alow-rank, but flat (not hierarchical) first step,
towards expanding capability for large dense
symmetric problems, e.g., covarianee matrices

.

‘. Reduces synchrony * e
< Increases S.IMT-style,.C(;ncurrency

" .Employs OpenMP taskification pragmas and
HLibPro on individual tiles’

.

ExaGeoStat: A High Performance Unified Frameworkfor
Geostatistics on Manycoré@ Systems

S. Abdulah, H. Ltaief, Y. Sun, M. Gentop & D. Keyes
“ IEEE TDPS (2018)




Large dense symmetric systems arise as
covariance matrices in spatial statistics

* Climate and weather applications have many
measurements located regularly or irregularly in a
region; prediction is needed at other locations

* Modeled as realization of Gaussian or Matérn spatial
random field, with parameters to be fit

* Leads to evaluating the log-likelihood function
involving a large dense (but data sparse) covariance

((0) = —%sz—l(o)z _ %log\Z(B)\
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Synthetic and practical examples

362 measured points and
38 target points irregularly
distributed in unit square

Global temperature
data on sphere




LAPACK DPOTRF

* Classical algorithm (1990s) involves BLLAS L2 panel
updates and BLAS L3 trailing matrix updates

UPDATE

(a) First step. (b) Second step. (c) Third step.




PLASMA/CHAMELEON DPOTRF

* Tile algorithm (PLASMA, FLAME, 2010s) involves
mostly BLAS L3 operations within tiles scheduled
with a DAG

POBEOOEOEO06O




Tile operations
for TLR version of Cholesky

DPOTRF: The kernel performs the Cholesky factorization of a diagonal (lower
triangular) tile. It is similar to DPOTREF since the diagonal tiles are dense.

DTRSM: The operation applies an update to an off-diagonal low-rank tile of the input
matrix, resulting from factorization of the diagonal tile above it and overrides
it with the final elements of the output matrix: V(; ) = V(; x) X D(;lk). The
operation is a triangular solve.

DSYRK: The kernel applies updates to a diagonal (lower triangular) tile of the input
matrix, resulting from factorization of the low-rank tiles to the left of it:

- miw o s T . 7 ArF - -
Dijy = .D(N) (Ui i X V(i,k)) X (U(j k) X V(i,k)) . The operation is a
symmetric rank-k update.

DGEMM: The operation applies updates to an off-diagonal low-rank tile of the input
matrix, resulting from factorization of the low-rank tiles to the left of it. The
operation involves two QR factorizations, one reduced SVD (depending on the
rank and/or the accuracy parameter) and two matrix-matrix multiplications.




Data-sparse operations for Cholesky variants
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Fixed ranks Fixed accuracy

Preconditioners Variable ranks

Performance oriented Dense/Sparse Direct Solvers




Even ‘“brute force” tilings pay off
(block low-rank without hierarchy)

1024 175 174 77 42 28 37 28 42 37 28 28 30 26 26 17 10° ' 1 l '

1751024 78 174 174 42 76 38 37 42 28 29 37 31 28 25 10t

174 78 1024 173 37 27 42 27 173 76 42 37 37 28 30 24

77 174 1731024 77 37 173 42 77 174 37 42 76 38 37 31 0t

42 174 37 77 1024174 173 77 30 37 26 27 42 37 28 28 10° |

28 42 27 37 1741024 78 175 25 30 23 26 37 42 28 29

37 76 42 173 173 78 1024174 37 77 30 37 174 77 42 38 10% ¢ — (I212) |

28 38 27 42 77 175 1741024 24 38 24 30 78 175 38 43 3 — (3/8,5/8)
10 i

42 37 173 77 30 25 37 24 174 174 77 42 28 37 28 | — (1/4;3/4)

37 42 76 174 37 30 77 38 174 1024 77 175 174 42 76 38 10° — (0:1)

28 28 42 37 26 2324 174 77 1024 174 37 28 42 29 it ]|

28 29 37 42 27 26 37 30 77 175 174 1024 77 37 173 42 ‘f

30 37 37 7637 174 78 42 174 37 77 1024 175 174 76 108} |

26 31 28 38 37 42 77 175 28 42 28 37 175 1024 77 174 | ]

26 28 30 37 28 28 42 38 37 76 42 173 174 77 1024 174 T

17 25 24 31 28 29 38 43 28 38 29 42 76 174 174 1024 107 ! L l l !

0 200 400 600 800 1000

Covariance Matrix of
dimension 16384 in 16X16
blocks of 1024X1024 each

Compressibility of four typical blocks, for
Frobenius accuracy of 10~

c/o H. Ltaief & K. Akbudak (KAUST)




Tile low-rank Cholesky, time per backsolve

e T 7N ST S— AN ST ——
8 Fullrank-MKL R : S S S .

w = Fullrank - PLASMA : i AT e
L e e T e o /e

100'15 ot '.'."'..."

Time (s)

: A : :
: 3 3 :

10.::. A SN S ——"
Shesatgl

Matrix size

On 2-socket 18-core Intel Haswell @ 2.3GHz

OpenMP pragmas for taskification and accuracy of 10~
ﬁ ef‘ c/o H. Ltaief & K. Akbudak (KAUST)




Distributed memory TLR Cholesky

(preliminary implementation)

| —a— ScalAPACK - 16 nodes

| —@— HICMA - 16 nodes
' ' | ' 6X

improvement
over
107 4 ScaLAPACK
g
(=
101 1 4

60000 80000 100000 120000 140000 160000 180000 200000 220000
Matrix size

On 16 nodes of 2-socket 16-core Intel Haswell @ 2.3GHz

ﬁ e‘ c/o H. Ltaief & K. Akbudak (KAUST)
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KBLAS

Subset of L2/L3 BLAS targeting GPU and Intel
MIC g ®
< GEMY, SYMV, TRSM, TRMM

Reduces communicatioh and increases concurrency
in these memory BW hound operations °

. Batched BLAS for small sizes on GPUs

<+~ TRSM, TRMM, SYRK, POTRF, POTRS, POSV
TRTRI, LAUUM, POTRI, POTI ;

Recursive formulation :
Employs vendor-optimized L§ BLAS underneath
y :

‘. ACM TOMS (2016), CCPE (2016, %017)



Recursively defined
KBLAS operations
for symmetric systems

(

A1 Xy = aB RecTRSM |
TRSM : AX = aB RecTRSM: { By=aBy—As By  GEMM — a
| A3 Xp = By RecTRSM =D 8
[ B=a AT B RecTRMM
TRMM:B=aATB  RecTRMM: { By=aAl By+B,  GEMM = 3
| By=a Al B RecTRMM 2 O\ E
J By = aA1AT + BBy RecSYRK
SYRK : B= aAAT + BB RecSYRK: By = aA,AT + BB, GEMM s k
| B3 = aA,A] + fiB; RecSYRK =
[y = B RecPOTRF
POTRF:A=LLT  RecPOTRF: | 1% =4 i E“M ‘
Az = —Az A, + A RecSYRK Az
| A3 =Ls L] RecPOTRF

5

c/o A. Charara & H. Ltaief (KAUST)



KBLAS DTRMM

O
L
g 800 £ = Theo-Peak
3 7 /'~ cUBLAS_DGEMM
- 700 /|
S 500 7 cuBLAS (OOP)
% 500 | I == KBLAS (IP)
S 0o =O= cuBLAS (IP)
o

300

200

100

0

O AV oM 6 ‘b "lr u ‘b ‘b ‘b 6 Q "l/ bz

Matrlx DlmenS|on

c/o A. Charara & H. Ltaief (KAU ST) Charara et al., Best papers, Europar’16
P . available: https://qgithub.com/ecrc/kblas




1.8X
for tall
skinny
case

= = Theo-Peak * < cuBLAS_DGEMM

== KBLAS (Square) == cuBLAS (Square)
- KBLAS (rows x512) == cuBLAS (rows x 512)
‘55\“"5@ =y @“’@06@“' ,\b?‘ e ,\,@‘b«@@ ,\q“',\e“q, 2 0,199 ,\@“'q@ S q?"z;b q?,&@\“'%w Rk @0‘3’&@

Matrix Dimension

c/o A. Charara & H. Ltaief (KAU ST) Charara et al., Best. papers, Europar’16
available: https://github.com/ecrc/kblas




Extending KBLAS

-

KBLAS to batched execution

e Batched BLAS workshop:

*

o Problem:
+ L2 BLAS individually of low arithmetic intensity
+ memory latency overheads

e Redesign the legacy BLAS API

launch thousands of small BLAS kernels simultaneously
increase device occupancy

remove API/kernel launch overheads

extend the recursive formulation

e Driven by scientific data-sparse applications
+ computational statistics and astronomy

+ Schur complement in sparse direct solvers and BDDC
preconditioning

L 4
L 4
L 4
L 4



http://bit.ly/Batch-BLAS-2017

Batched operations
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“a c/o Jacob Kurzak (ICL, U Tennessee)



KBLAS
-f Example: Batched POTRF

KBLAS

Nested recursion
o Convert into batch of large GEMMs

Minimize data transfer

Enhance data locality

Increase arithmetic intensity

Recursive
Batch POTRF

R

Recursive
Batch TRSM

b Recursive
Batch SYRK
' Batch POTRF

Recursive
c/o A. Charara & H. Ltaief (KAUST)




Single
K40
(MKL on
28-core
Broadwell)
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K40s
(MKL on
28-core
Broadwell)
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Batched KBLAS
performance comparisons
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K40
(MKL on
28-core
Broadwell)

Multiple
K40s
(MKL on
28-core
Broadwell)
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Batched KBLAS
performance comparisons

DPOTRF

A

a"% ———— T
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Batched KBLAS
KBLAS performance
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Z 0% aissSbostih >
a " T RKBLAS-DI1IR1RI //’.
& 60% - = S
o) [ y 7Y
'GEJ 50% - 8100 o\® Pt >§l
S = ,.h‘\);/
2 40% - & NP2
N e
~ 30% - «
g 10 P
Z 2% e
,Q r
S 10% | L

0% - 1
8 16 32 64 128 0.01 0.1 1 10 100
Matrix Size (M=N, batch=10240) Measured FLOPs / Byte (batch=10240)
Ratio of achieved to sustained bandwidth Roofline performance model of KBLAS

batched operations in double precision and
10240 batched size running on NVIDIA K40
GPU, on square matrices of size 128.

of various KBLAS batched operations in
double precision on a K40 GPU with 10240
batch size.

c/o A. Charara & H. Ltaief (KAUST)
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Hierarchical Computations on
Manycore Architectures: HICMA*

Static/Dynamic
Runtime

HCORE -
hwiocinetioc

STARS-H

B HicMA Distribution

- External Dependencies

* appearing incrementally at https://github.com/ecrc



Balancing Domain Decomposition
with Constifaints (BDDC)

+ Reduce synchrony in Krylov solution to PDE
problems by building an optlmal precondltloner

s < convergence 1ndependent of ntesh size, subdomain _
size, and alignment of subdomain with material

0
1nterfaces 3

s W

<% For SPD problems, BDDC .is built from
Cholesky and symmetric eigensolvers

< harness HICMA

+ exploit well-known low-rank propertles of Schur

complements
.. Math Comp (2017), SISC (2016, 2017)




BDDC: a very robust preconditioner

® Applied inside CG on the SPE10 benchmark
Darcy flow, using H(div) finite elements
e 20M-45M DOFs, up to 8K subdomains
+ no alignment of subdomain faces with material jumps
- ® Small, decomposition-independent number of iterations

uX

Te+0d fe+ld ‘ le403
le+ld . lesi2

s ‘,:', = b .

4

~ 1401
. le+00
L 1e.01
5 le-2
e

104

| I

Condition number and number of iterations as a function of eigenvalue threshold A and number of subdomains N.

o ol -
: L =
4] - 3
o, 1e+01

100 L= AR T N a0

RT x Pg (20M dofs) BDM; x Pg (45M dofs)

A=05

N A:A A:A

1024 | 15925\ 77717 1024 | 16, . : ;

2048 | 15q/25 | 7.7q/17 2048 | 16.7/25  7.45/16  3.53/10 1.61/6

4096 | 154/25 | s8.1q/18 4096 24 16 10 6

8192 | 165\26) 7.69\17 8192 |(sops Gz (Gsado 1.59
A\ 4

o

Zampini et al., Invited talk at DDM’24
to appear in Springer LNCSE




BDDC: a very robust preconditioner

e Maxwell equations, using H(curl) finite elements

, number of iterations, size of coarse problem (relative to I') for different
eigenvalue thresholds. 3 as in figure. 40 subdomains.

2.69e+05

Bl 20180405

1.345e+05

6.725e+04

5.432¢.05

Tetrahedral mesh
p=1 (200K dofs)

- A=10 2A=5 A=25 P -
K 150.2 5 4.6 2.2 K 413.3 59 3
it 54 15 12 8 it 113 . 12
Cc/r 0.01 0.05 0.06 0.09 c/r 0.01 0.02 0.02 0.04
Hexahedral non-conforming mesh
p=1 (330K dofs) p=2 (3.5M dofs)
E A=10 A=5 A=25 - A=10 2=b X=25
K 203.4 5.8 3.2 2.0 K 330.8 51 34 2.0
it 62 13 10 7 it 97 14 11 8
Cc/r 0.02 0.05 0.06 0.09 C/r 0.01 0.01 0.02 . 0.04.

c/o S. Zampini (KAUST) and P. Vassilevski (LLNL)




BDDC on the road to exascale

Adaptive BDDC satisfies 3 of the pillars for exascale algorithms [ bongarra, et al, Int. J.

High Perf. Comp. Appl. 6, 2011]
@ Reduces the synchronization steps and the number of MatVecs
@ Increases arithmetic intensity of the preconditioning step

@ Increases concurrency of the preconditioning step

Key features of the algorithm

@ Tunable accuracy
@ Cholesky based

@ Local and coarse problem additively combined (overlap)
o Multilevel extensions with high F/C coarsening ratios O(10%) — O(10%)

Note: BDDC is distributed in PETSc

c/o S. Zampini (KAUST)
al K




Distributed data structures

(2 subdivided in N non-overlapping open subdomains

N
Q=J, Qn@i=0, =|[]Jono.
i=1 i#j

Linear system’s matrix A never assembled explicitly; mat-vec as

.A(l) =
]:RTA"‘R, A* = :

A [Au Air
A

AT Arr

with

1 I
AII' AIT

the matrix of the FEM problem on €2;.

~ " ¢lo S. Zampini (KAUST)



Condition number results

¢ If subdomains are solved exactly, overall condition number of
the preconditioned system depends only on the Schur
preconditioning

@ Block factorization for A (/ interior, I interface)

AL i —A;Ar [Aﬁl { li
Irr —AAY |

witl Sr = Arr — AK-AEID

@ Block preconditioner

vl [III —AﬁlAlr] [Aﬁl ] [ li ]
Irr @ —AFAY I




Global Schur complement is subassembled

M = R} rS IRD s
Block Cholesky

N (i) ]
c—1 T ATl | A A 0 —1 .. T
St =R (Z o RYT] [A(HT (’5\] [Rg>]) Rra + ®5nn @
i I

® C(Cholesky is everywhere, in high concurrency for batching
during both formation and application of the preconditioner

® Also, generalized symmetric eigenproblem on each interface
where the “A, B matrices are from Schur complements

" ¢c/o S. Zampini (KAUST)




BDDC with low rank Schur approximations

We use the block low rank (BLR) format as introduced by (amestoy at al, sisc, 2015]
(others are possible).

See Gatto & Hasthaven,
Dec 2016, J Sci Comput
on compressibility of

el Schur complements for
N hp finite elements
EE

e e e

LK

At full accuracy
e memory complexity from O(n*/?) to O(nl®**1-13]) [Poisson, Helmholtz].
e flops from O(n?) to O(n*411).

¥ =‘ c/o S. Zampini (KAUST)




BDDC with low rank Schur approximations

Darcy problem, SPE10 benchmark. One representative subdomain

Heatmap of block ranks for a given subdomain for different accuracies.

XK=1 spel0

B4 L !
%12 1

%10 L ’

accuracy .|

g8 B8 8 8 B8

%08

%06 | %06

Q0001

-] 3 B 8

tile size average rank need to achieve
- c/o S. Zampini (KAUST) accuracy 10-°for tile of size 64




“Hourglass’ model for algorithms
(traditionally applied to internet protocols)

algorithmic
infrastructure

architectures




How will complex PDE codes adapt?

® Programming model will still be dominantly message-
passing (due to large legacy code base), adapted to
multicore or hybrid processors beneath a relaxed
synchronization MPI-like interface

® Load-balanced blocks, scheduled today with nested
loop structures will be separated into critical and non-
critical parts

® (Critical parts will be scheduled with directed acyclic
graphs (DAGs) through dynamic languages or
runtimes

® Noncritical parts will be made available for NUMA -
aware work-stealing in economically sized chunks




Asynchronous programming styles

o To take full advantage of such asynchronous
algorithms, we need to develop greater
expressiveness in scientific programming

+ create separate threads for logically separate tasks,
whose priority is a function of algorithmic state, not
unlike the way a time-sharing OS works

+ join priority threads in a directed acyclic graph
(DAG), a task graph showing the flow of input
dependencies; fill idleness with noncritical work or
steal work




Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

® (Can write code in styles that do not require artifactual
synchronization

e (ritical path of a nonlinear implicit PDE solve is essentially
... lin_solve, bound_step, update; ...

® However, we often insert into this path things that could be done
less synchronously, because we have limited language
expressiveness

¢ Jacobian and preconditioner refresh
¢ convergence testing

+ algorithmic parameter adaptation

¢ 1/O, compression
&

visualization, data analytics




Sources of nonuniformity

® System

¢ Already important: manufacturing, OS jitter, TLB/cache
performance variations, network contention,

¢ Newly important: dynamic power management, more soft errors,
more hard component failures, software-mediated resiliency, etc.

® Algorithmic
+ physics at gridcell/particle scale (e.g., table lookup, equation of
state, external forcing), discretization adaptivity, solver adaptivity,
precision adaptivity, etc.
e Effects of both types are similar when it comes to waiting

at synchronization points

® Possible solutions for system nonuniformity will improve
programmability for nonuniform problems, too ©




Conclusions

® Plenty of ideas exist to adapt or substitute for
favorite solvers with methods that have:

¢ reduced synchrony (in frequency and/or span)
+ higher residence on the memory hierarchy
¢ greater SIMT/SIMD-style shared-memory concurrency

¢ built-in resilience (‘‘algorithm-based fault tolerance’ or ABFT)
to arithmetic/memory faults or lost/delayed messages

® Programming models and runtimes may have to be
stretched to accommodate

e Everything should be on the table for trades,
beyond disciplinary thresholds = ‘““co-design”
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