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Tie-ins to other ATPESC’18 presentations
n Numerous!

◆ architecture, applications, algorithms, programming models & 
systems software, etc., form an interconnected ecosystem

◆ algorithms/software are in the middle – spanning diverging 
requirements in architectures (which “want” more uniformity) 
and applications (which “want” more irregularity)

n To other presentations in this numerical software track:
◆ Demmel, Dongarra, FASTMath team, CEED team

n To programming models presentations:
◆ MPI, OpenMP, kokkos, RAJA, Legion, etc.

n To Phil Colella’s dinner talk on exascale Poisson solvers
◆ Method of Local Corrections mehrstellen
◆ “Changing the math can have a large lever arm.”



Two universes of Numerical Linear Algebra

c/o Instageeked.com
* Global indices *
do i  {

do j  {
for (i,j)  in S do op

}
}

Flat Hierarchical
* Local indices *
for matrix blocks  (k,l)

do i  {
do j  {

for (i,j)  in Sk,l do op
}

}

H-
Matrix



Some open 
source 

software
@ github

released by 
KAUST’s 
ECRC*

dense tiles 
Cholesky: O(n3)

tile low rank 
Cholesky: O(kn2)

TILE LOW-RANK ALGORITHMS CHOLESKY FACTORIZATION SOFTWARE STACK 
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HIERARCHICAL	COMPUTATIONS	ON	MANYCORE	ARCHITECTURES	

The Hierarchical Computations on Manycore Architectures (HiCMA) library aims to redesign existing dense linear algebra 
libraries to exploit the data sparsity of the matrix operator. Data sparse matrices arise in many scientific problems (e.g., 
in statistics-based weather forecasting, seismic imaging, and materials science applications) and are characterized by 
low-rank off-diagonal tile structure. Numerical low-rank approximations have demonstrated attractive theoretical bounds, 
both in memory footprint and arithmetic complexity. The core idea of HiCMA is to develop fast linear algebra 
computations operating on the underlying tile low-rank data format, while satisfying a specified numerical accuracy and 
leveraging performance from massively parallel hardware architectures.  

HiCMA 0.1.0 
•  Matrix-Matrix Multiplication 
•  Cholesky Factorization/Solve 
•  Double Precision 
•  Task-based Programming Models 
•  Shared and Distributed-Memory 

Environments 
•  Support for StarPU Dynamic 

Runtime Systems 
•  Testing Suite and Examples 

CURRENT RESEARCH 
•  LU Factorization/Solve 
•  Schur Complements 
•  Preconditioners 
•  Hardware Accelerators 
•  Support for Multiple Precisions 
•  Autotuning: Tile Size, Fixed Accuracy and 

Fixed Ranks 
•  Support for OpenMP, PaRSEC and Kokkos 
•  Support for HODLR, H, HSS and H2  

GEOSPATIAL STATISTICS 
N = 20000, NB = 500, acc=109, 2D problem sq. exp. 

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/hicma 

PERFORMANCE RESULTS CHOLESKY FACTORIZATION – DOUBLE PRECISION – CRAY XC40 WITH TWO-SOCKET, 16-CORE HSW 

Performance Results 

State-of-the-Art 

A collaboration of With support from Sponsored by 
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A	QDWH-Based	SVD	So=ware	Framework	on	Distributed-Memory	Manycore	Systems		

The KAUST SVD (KSVD) is a high performance software framework for computing a dense SVD on distributed-memory 
manycore systems. The KSVD solver relies on the polar decomposition using the QR Dynamically-Weighted Halley 
algorithm (QDWH), introduced by Nakatsukasa and Higham (SIAM Journal on Scientific Computing, 2013). The 
computational challenge resides in the significant amount of extra floating-point operations required by the QDWH-based 
SVD algorithm, compared to the traditional one-stage bidiagonal SVD. However, the inherent high level of concurrency 
associated with Level 3 BLAS compute-bound kernels ultimately compensates the arithmetic complexity overhead and 
makes KSVD a competitive SVD solver on large-scale supercomputers.  

The Polar Decomposition 
Ø  A = UpH, A in Rmxn (m≥n) , where Up is 

orthogonal Matrix, and H is symmetric 
positive semidefinite matrix 

Application to SVD 
Ø  A = UpH 
         = Up(VΣVT) = (UpV)ΣVT

 = UΣVT 

QDWH Algorithm  
Ø  Backward stable algorithm for computing the 

QDWH-based SVD 
Ø  Based on conventional computational kernels, 

i.e., Cholesky/QR factorizations (≤ 6 iterations 
for double precision) and GEMM 

Ø  The total flop count for QDWH depends on 
the condition number�of the matrix	

KSVD 1.0  
Ø  QDWH-based Polar Decomposition 
Ø  Singular Value Decomposition 
Ø  Double Precision 
Ø  Support to ELPA Symmetric Eigensolver 
Ø  Support to ScaLAPACK D&C and MR3  

       Symmetric Eigensolvers 
Ø  ScaLAPACK Interface / Native Interface 
Ø  ScaLAPACK-Compliant Error Handling 
Ø  ScaLAPACK-Derived Testing Suite 
Ø  ScaLAPACK-Compliant Accuracy  

Current Research 
Ø  Asynchronous, Task-Based QDWH  
Ø  Dynamic Scheduling 
Ø  Hardware Accelerators  
Ø  Distributed Memory Machines  
Ø  Asynchronous, Task-Based  
       QDWH-SVD  
Ø  QDWH-based Eigensolver  
       (QDWH-EIG)  
Ø  Integration into PLASMA/

MAGMA 

Advantages 
Ø  Performs extra flops but nice flops  
Ø  Relies on compute intensive kernels  
Ø  Exposes high concurrency  
Ø  Maps well to GPU architectures  
Ø  Minimizes data movement  
Ø  Weakens resource synchronizations  

Download the software at http://github.com/ecrc/ksvd 

Chameleon 1.9 
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A HIGH PERFORMANCE STENCIL FRAMEWORK USING 
WAFEFRONT DIAMOND TILING 
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The Girih framework implements a generalized multi-dimensional intra-tile parallelization  scheme for shared-cache 
multicore processors that results in a significant reduction  of cache size requirements for temporally blocked stencil 
codes.. It ensures data access patterns that allow efficient hardware prefetching and TLB utilization across a wide range 
of architectures. Girih is built on a multicore wavefront diamond tiling approach to reduce horizontal data traffic in favor of 
locally cached data reuse. The Girih library reduces cache and memory bandwidth pressure, which makes it amenable to 
current and future cache and bandwidth-starved architectures, while enhancing performance for many applications. 

STENCIL COMPUTATIONS 
•  Hot spot in many scientific codes 
•  Appear in finite difference, element, and volume 

discretizations of PDEs 
•  E.g., 3D wave acoustic wave equation: 

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/girih 

PERFORMANCE RESULTS 8TH ORDER IN SPACE AND 2ND ORDER IN TIME – DOUBLE PRECISION 

MULTI-DIMENSIONAL INTRA-TILE PARALLELIZATION 

Thread assignment in space-time dimensions 
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SOFTWARE INFRASTRUCTURE 

Girih system components 

GIRIH 1.0.0 
•  MPI + OpenMP 
•  Single and double precision 
•  Autotuning 
•  Short and long stencil ranges in 

space and time 
•  Constant/variable coefficients 
•  LIKWID support for profiling 

CURRENT RESEARCH 
•  Matrix power kernels 
•  Overlapping domain decomposition 
•  GPU hardware accelerators: 

•  OpenACC / CUDA 
•  Out-of-core algorithms 
•  Dynamic runtime systems 
•  Extension to CFD applications 

Diamond tiling versus Spatial Blocking on SKL Diamond tiling performance across Intel x86 generations •  Domain size: 512 x 512 x 512 
•  # of time steps: 500 
•  25-point star stencil 
•  Dirichlet boundary conditions 
•  Two-socket systems (Mem./L3):  
- 8-core Intel SNB (64GB/20MB) 
- 16-core Intel HSW (128GB/40MB) 
- 28-core Intel SKL (256GB/38MB) 
•  Intel compiler suite v17 with 

AVX512 flag enabled 
•  Memory affinity with numatcl 

command 
•  Thread binding to cores with 

sched_affinity command 

A collaboration of With support from Sponsored by
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PARALLEL HIGH PERFORMANCE UNIFIED FRAMEWORK FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The Exascale GeoStatistics project (ExaGeoStat) is a parallel high performance unified framework for computational
geostatistics on many-core systems. The project aims at optimizing the likelihood function for a given spatial data to provide an
efficient way to predict missing observations in the context of climate/weather forecasting applications. This machine learning
framework proposes a unified simulation code structure to target various hardware architectures, from commodity x86 to GPU
accelerator-based shared and distributed-memory systems. ExaGeoStat enables statisticians to tackle computationally
challenging scientific problems at large-scale, while abstracting the hardware complexity, through state-of-the-art high
performance linear algebra software libraries.

ExaGeoStat 0.1.0
• Large-scale synthetic geo-

spatial datasets generator

• Maximum Likelihood 
Estimation (MLE)
- Synthetic and real datasets

• A large-scale prediction tool 
for unknown measurements 
on known locations

Current Research
• ExaGeoStat R-wrapper 

package

• Tile Low Rank (TLR) 
approximation

• NetCDF format support

• PaRSEC runtime system

• In-situ processing

ExaGeoStat Dataset Generator
• Generate 2D spatial Locations using uniform 

distribution. 
• Matérn covariance function:
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• Cholesky factorization of the covariance matrix:
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• Measurement vector generation (Z):
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ExaGeoStat Maximum Likelihood Estimator
• Maximum Likelihood Estimation (MLE)  learning function:
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Where C $ 	is a covariance matrix with entries
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• MLE prediction problem
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• The associated conditional distribution
where 4'	represents a set of unknown
measurements :
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Performance Results (MLE)
Two-socket shared memory Intel x86 architectures

Figure: An example of 400
points irregularly distributed in
space, with 362 points (ο) for
maximum likelihood estimation
and 38 points (×) for prediction
validation.

Figure: Mean square error for predicting 
large scale synthetic dataset.

Figure: Two different examples of real datasets (wind speed dataset in the middle east region
and soil moisture dataset coming from Mississippi region, USA).

Intel two-socket Haswell + NVIDIA K80 Cray XC40 with two-socket, 16 cores Haswell

DOWNLOAD THE LIBRARY AT http://github.com/ecrc/exageostat

ExaGeoStat Predictor
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Soil Moisture (SM)  in the Mississippi region, USA
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Place your text here A HIGH PEFORMANCE MULTI-OBJECT ADAPTIVE OPTICS FRAMEWORK 
FOR GROUND-BASED ASTRONOMY 

The Multi-Object Adaptive Optics (MOAO) framework provides a comprehensive testbed for high performance 
computational astronomy. In particular, the European Extremely Large Telescope (E-ELT) is one of today’s most challenging 
projects in ground-based astronomy and will make use of a MOAO instrument based on turbulence tomography. The 
MOAO framework uses a novel compute-intensive pseudo-analytical approach to achieve close to real-time data processing 
on manycore architectures. The scientific goal of the MOAO simulation package is to dimension future E-ELT instruments 
and to assess the qualitative performance of tomographic reconstruction of the atmospheric turbulence on real datasets. 

DOWNLOAD THE SOFTWARE AT h6p://github.com/ecrc/moao	

THE MULTI-OBJECT ADAPTIVE OPTICS TECHNIQUE 

Single conjugate AO concept Open-Loop tomography concept Observing the GOODS South 
cosmological field with MOAO 

MOAO 0.1.0 
•  Tomographic Reconstructor Computation 
•  Dimensioning of Future Instruments 
•  Real Datasets 
•  Single and Double Precisions 
•  Shared-Memory Systems 
•  Task-based Programming Models 
•  Dynamic Runtime Systems 
•  Hardware Accelerators 

CURRENT RESEARCH 
•  Distributed-Memory Systems 
•  Hierarchical Matrix Compression 
•  Machine Learning for Atmospheric Turbulence 
•  High Resolution Galaxy Map Generation 
•  Extend to other ground-based telescope projects 

PERFORMANCE RESULTS TOMOGRAPHIC RECONSTRUCTOR COMPUTATION – DOUBLE PRECISION  

High res. map of the quality of 
turbulence compensation obtained 
with MOAO on a cosmological field 

THE PSEUDO-ANALYTICAL APPROACH 

System
Parameters

Turbulence
Parameters

matcov Cmm Ctm ToR

matcov Cmm Ctm

Ctt

Cee CvvBLAS BLAS

Inter-
sample

R

ToR computation

Observing sequence

•  Compute the tomographic error:  
 Cee = Ctt - Ctm RT – R Ctm

T + R Cmm RT 
•  Compute the equivalent phase map:  

 Cvv = D Cee DT 
•  Generate the point spread function image  

Two-socket 18-core Intel HSW – 64-core Intel KNL – 8 NVIDIA GPU P100s (DGX-1) 

•  Solve for the 
tomographic 
reconstructor R: 
R x Cmm = Ctm 

This is one tomographic 
reconstructor every 25 

seconds! 

0

5

10

15

20

25

30

35

40

45

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000110000

TF
lo

ps
/s

matrix size

DGX-1 peak
DGX-1 perf

KNL perf
Haswell perf

0

100

200

300

400

500

600

700

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000110000

tim
e(

s)

matrix size

DGX-1
KNL

Haswell

4 8 16 32
Number of physical cores

8

16

32

64

128

256

512

T
im

e,
se

co
nd

s

SVD

RRQR

RSVD

125 343 1000 2744
Matrix size, thousands

-2

-1

0

1

2

3

4

5

6

T
im

e
in

se
co

nd
s,

lo
g 2

⌧ = 10�3

⌧ = 10�6

⌧ = 10�12

# of nodes

64

256

1024

729 1331 2197 4096 9261
Matrix size, thousands

1

2

3

4

5

6

T
im

e
in

se
co

nd
s,

lo
g 2

⌧ = 10�9

# of nodes

1024

4096

6084

With support from Sponsored by

Centre	de	recherche	
BORDEAUX	– SUD-OUEST

Software for Testing Accuracy, Reliability and
Scalability of Hierarchical computations

STARS-H is a high performance parallel open-source package of Software for Testing Accuracy, Reliability and Scalability
of Hierarchical computations. It provides a hierarchical matrix market in order to benchmark performance of various libraries
for hierarchical matrix compressions and computations (including itself). Why hierarchical matrices? Because such matrices
arise in many PDEs and use much fewer memory, while requiring less flops for computations. There are several hierarchical
data formats, each one with its own performance and memory footprint. STARS-H intends to provide a standard for assessing
accuracy and performance of hierarchical matrix libraries on a given hardware architecture environment. STARS-H currently
supports the tile low-rank (TLR) data format for approximation on shared and distributed-memory systems, using MPI, OpenMP
and task-based programming models. STARS-H package is available online at https://github.com/ecrc/stars-h.

Roadmap of STARS-H
• Extend to other problems in a matrix-

free form.
• Support HODLR, HSS, ℋ and ℋ"

data formats.
• Implement other approximation

schemes (e.g., ACA).
• Port to GPU accelerators.
• Apply other dynamic runtime systems

and programming models (e.g.,
PARSEC).

STARS-H 0.1.0
• Data formats: Tile Low-Rank (TLR).
• Operations: approximation, matrix-

vector multiplication, Krylov CG solve.
• Synthetic applications in a matrix-free

form: random TLR matrix, Cauchy
matrix.

• Real applications in a matrix-free
form: electrostatics, electrodynamics,
spatial statistics.

• Programming models: OpenMP, MPI
and task-based (StarPU).

• Approximation techniques: SVD,
RRQR, Randomized SVD.

TLR Approximation of 2D problem on a two-socket 
shared-memory Intel Haswell architecture

3D problem on different two-socket shared-
memory Intel x86 architectures

3D problem on a different amount of nodes (from 64 up to 6084) of a distributed-memory 
CRAY XC40 system for a different error threshold #

Matrix Kernels
• Electrostatics (one over distance):

$%& =
1
)%&

• Electrodynamics (cos over distance):

$%& =
cos(.)%&)	

)%&
• Spatial statistics (Matern kernel):

$%& =
2234
Γ 6 26� )%&

8
4
94 26� )%&

8
• And many other kernels …

Heatmap of ranks (2D problem)

Sample Problem Setting
Spatial statistics problem for a quasi
uniform distribution in a unit square
(2D) or cube (3D) with exponential
kernel:

$%& = :
3;<=
> ,

where 8 = 0.1 is a correlation length
parameter and )%& is a distance
between B-th and C-th spatial points.
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In collaboration with

*ECRC also employs two very active  PETSc developers

in NVIDIA cuBLAS in Cray LibSci

further dev @ Intel



“A good player plays where the puck is, while a great 
player skates to where the puck is going to be.” –

– Wayne Gretzsky



Aspiration for this talk

To paraphrase Gretzsky:

“Algorithms for where 
architectures are going to be”



Outline
n Architectural and applications trends

◆ limitations of  our current software infrastructure for 
numerical simulation at exascale

n Four algorithmic imperatives
◆ for extreme scale, tomorrow and today

n Four sets of “bad news, good news”
n Four widely applicable strategies
n Four sample “points of light”

◆ contributions to a new algorithmic infrastructure



Architectural trends
● Clock rates cease to increase while arithmetic 

capability continues to increase through 
concurrency (flooding of cores)

● Memory storage capacity increases, but fails to 
keep up with arithmetic capability per core

● Transmission capability – memory BW and 
network BW – increases, but fails to keep up 
with arithmetic capability per core

● Mean time between hardware errors shortens



èBillions of 

$ £ € ¥ 

of scientific software worldwide hangs in the 
balance until our algorithmic infrastructure 
evolves to span the architecture-applications 
gap
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Uptake from IESP meetings
n While obtaining the next order of magnitude of performance, 

we need another order of performance efficiency
◆ target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W

n Processor clocks may be slowed and speeded 
◆ may be scheduled, based on phases with different requirements, 

or may be dynamic, from power capping or thermal monitoring
◆ makes per-node performance rate unreliable

n Required reduction in power per flop and per byte may make 
computing and moving data less reliable
◆ circuit elements will be smaller and subject to greater physical 

noise per signal, with less space redundancy and/or time 
redundancy for resilience in the hardware

◆ more errors may need to be caught and corrected in software



Power Efficiencies 
from June 2018 Top 500 list
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About half of the systems report GF/s/W

5 GF/s/W

Most efficient > 18 GFs/W

Least efficient <  0.18 GFs/W



QEERI, 14 Apr 2015

Top 10 supercomputer trends, 2010-2018

c/o Keren Bergman (Columbia, ISC’18)



QEERI, 14 Apr 2015

Top 10 supercomputer trends, 2010-2018

Sunway TaihuLight (Nov 2017) B/F = 0.004; 
Summit HPC (June 2018) B/F = 0.0005

8x deterioration in  
last 6 months

c/o Keren Bergman (Columbia, ISC’18)



QEERI, 14 Apr 2015

It’s not just bandwidth; it’s energy

● Access SRAM (registers, cache) ~   10 fJ/bit
● Access DRAM on chip ~    1 pJ/bit
● Access HBM/MCDRAM (few mm) ~   10 pJ/bit
● Access DDR3 (few cm) ~ 100 pJ/bit

similar ratios for latency  as for bandwidth and 
energy

~ 104 advantage in energy for staying in cache!



QEERI, 14 Apr 2015

Power costs in perspective
A pico (10-12) of something done exa (1018) 
times per second is a mega (106)-somethings 
per second

u 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
u 1 MW-year costs about $1M ($0.12/KW-hr × 8760 

hr/yr)
§ We “use” 1.4 KW continuously, so 100MW is 

71,000 people



QEERI, 14 Apr 2015

Why exa- is different
Dennard’s MOSFET scaling (1972) ends
before Moore’s Law (1965) ends

Eventually processing is 
limited by transmission, 

as known for 4.5 decades

Robert Dennard, IBM 
(inventor of DRAM, 1966)



Our heterogeneous future

after J. Ang et al. (2014), Abstract Machine Models and Proxy Architectures for Exascale Computing

Quantum 
accelerator

ML/DL 
accelerator

Neuromorphic 
accelerator



Architectural resources to balance
n Processing cores 

◆ heterogeneous (CPUs, MICs, GPUs, FPGAs,…)
n Memory 

◆ hierarchical (registers, caches, DRAM, flash, 
stacked, …)

◆ partially reconfigurable
n Intra-node network

◆ nonuniform bandwidth and latency
n Inter-node network

◆ nonuniform bandwidth and latency

For performance 
tuning: 

Which resource 
is limiting, as a 

function of 
time?



Well established resource trade-offs
n Communication-avoiding algorithms

◆ exploit extra memory to achieve theoretical 
lower bound on communication volume

n Synchronization-avoiding algorithms 
◆ perform extra flops between global reductions 

or exchanges to require fewer global operations
n High-order discretizations

◆ perform more flops per degree of freedom 
(DOF) to store and manipulate fewer DOFs



Node-based “weak scaling” is routine;
thread-based “strong scaling” is the game

n An exascale configuration: 1 million 1000-way 1GHz nodes
n Expanding the number of nodes (processor-memory units)  

beyond 106 would not be a serious threat to algorithms that 
lend themselves to well-amortized precise load balancing 
◆ provided that the nodes are performance reliable

n Real challenge is usefully expanding the number of cores 
sharing memory on a node to 103

◆ must be done while memory and memory bandwidth per node expand 
by (at best) ten-fold less (basically “strong” scaling)

◆ don’t need to wait for full exascale systems to experiment in this 
regime – the contest is being waged on individual shared-memory 
nodes today



The familiar

Blue Waters

Sequoia K

ShaheenTaihu Light



ARMv8
QualComm
Centric 2400

Intel
Knights Landing

NVIDIA 
P100

IBM 
Power8

The challenge



Don’t need to wait for full exascale 
systems to experiment in this regime…

The main contest is already being waged on individual 
shared-memory nodes

Schematic of Intel 
Xeon Phi KNL by 

M. Farhan, KAUST



Two decades of evolution

ASCI Red at Sandia 
1.3 TF/s, 850 KW

1997

Cavium ThunderX2
~ 1.1 TF/s, ~ 0.2 KW

2017

3.5 orders of 
magnitude



Supercomputer in a node
System Peak DP 

TFlop/s
Peak Power

KW
Power Eff.

GFlop/s/Watt
ASCI Red
US DOE

1.3 850 0.0015
ThunderX2

Cavium 
1.1 0.20 5.5*

Knights Landing
Intel

3.5 0.26 14
P100 Pascal 

NVIDIA 
5.3 0.30 18

Taihu Light
CAS

125,436 15,371 6.1
Summit
US DOE

187,659 8,806 13.9
Exascale System 

(~2021)
1,000,000 20,000 50

* 8 memory channels in Cavium ARM vs. 6 for Intel KNL
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How are most scientific simulations 
implemented at the petascale today?

n Iterative methods based on data decomposition and 
message-passing
◆ data structures are distributed
◆ each individual processor works on a subdomain of the original
◆ exchanges information with other processors that own data with 

which it interacts causally, to evolve in time or to establish 
equilibrium

◆ computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling

n The programming model is BSP/SPMD/CSP
◆ Bulk Synchronous Programming 
◆ Single Program, Multiple Data
◆ Communicating Sequential Processes

Three decades of 
stability in 

programming model



Bulk Synchronous
Parallelism

Leslie Valiant, F.R.S., N.A.S. 
2010 Turing Award Winner Comm. of the ACM, 1990



BSP parallelism w/ domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

W1

W2

W3

A23A21 A22
rows assigned 

to proc “2”



BSP has an impressive legacy

Year

Cost per
delivered 
Gigaflop/s

1989 $2,500,000       
1999 $6,900
2009 $8

Year

Gigaflop/s
delivered to
applications

1988 1
1998 1,020
2008 1,350,000

By the Gordon Bell Prize, performance on real applications (e.g., 
mechanics, materials, petroleum reservoirs, etc.) has improved 
more than a million times in two decades.  Simulation cost per 
performance has improved by nearly a million times. 

Gordon Bell 
Prize: Peak 

Performance

Gordon Bell 
Prize: Price 

Performance



Riding exponentials
n Proceeded steadily for decades from giga- (1988) 

to tera- (1998) to peta- (2008) with 
◆ same BSP programming model
◆ same assumptions about who (hardware, systems 

software, applications software, etc.) is responsible for 
what (resilience, performance, processor mapping, 
etc.)

◆ same classes of algorithms (cf. 25 yrs. of Gordon Bell 
Prizes)

n Scientific computing now at a crossroads with 
respect to extreme scale



Extrapolating exponentials eventually fails
n Exa- is qualitatively different and looks more 

difficult
◆ but we once said that about message passing

n Core numerical analysis and scientific 
computing will confront exascale to maintain 
relevance
◆ potentially big gains in colonizing exascale for science 

and engineering
◆ not a “distraction,” but an intellectual stimulus
◆ the journey will be as fun as the destination J



Main challenge going forward for BSP
n Almost all “good” algorithms in linear algebra, 

differential equations, integral equations, signal 
analysis, etc., like to globally synchronize – and 
frequently!
◆ inner products, norms, pivots, fresh residuals are “addictive” 

idioms
◆ tends to hurt efficiency beyond 100,000 processors
◆ can be fragile for smaller concurrency, as well, due to 

algorithmic load imbalance, hardware performance variation, 
etc.

n Concurrency is heading into the billions of cores
◆ already 10 million on the most powerful system today



BSP 
generation

Energy-aware
generation



Applications background 
www.exascale.org/bdec

Big data and Extreme-scale 
Computing: Pathways to 
Convergence – Toward a Shaping 
Strategy for a Future Software and 
Data Ecosystem for Scientific 
Inquiry, M. Asch, et al., International 
Journal of High Performance 
Computing Applications 32:435-479.
(downloadable at URL above)

Successor to The International 
Exascale Software Roadmap, by 
many of the same authors and 

new authors from big data



Challenge for applications: 
merging software for 3rd and 4th paradigms

c/o Reed & Dongarra, Comm. ACM, July 2015



Interactions between application archetypes 
Increasingly, there is scientific opportunity in pipelining 

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides −

Analytics
provides −

Learning
provides −

3rd

4th
(a)

4th
(b)



Interactions between application archetypes 
Increasingly, there is scientific opportunity in pipelining 

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides −

Analytics
provides

Steering in high 
dimensional 

parameter space;
In situ processing

−

Learning
provides

Smart data
compression;

Replacement of 
models with learned 

functions

−

3rd

4th
(a)

4th
(b)



Interactions between application archetypes 
Increasingly, there is scientific opportunity in pipelining 

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides − Physics-based 

“regularization”

Data for 
training, 

augmenting 
real-world data

Analytics
provides

Steering in high 
dimensional  

parameter space;
In situ processing

−

Learning
provides

Smart data
compression;

Replacement of 
models with learned 

functions

−

3rd

4th
(a)

4th
(b)



Interactions between application archetypes 
Increasingly, there is scientific opportunity in pipelining 

è Convergence is ripe

To Simulation To Analytics To Learning

Simulation
provides − Physics-based 

“regularization”

Data for 
training, 

augmenting 
real-world data

Analytics
provides

Steering in high 
dimensional  

parameter space;
In situ processing

− Feature vectors 
for training

Learning
provides

Smart data
compression;

Replacement of 
models with learned 

functions

Imputation of
missing data;
Detection and 
classification

−

3rd

4th
(a)

4th
(b)



Four algorithmic imperatives
n Reduce synchrony (in frequency and/or span)
n Reside “high” on the memory hierarchy

◆ as close as possible to the processing elements
n Increase SIMT/SIMD-style shared-memory 

concurrency
n Build in resilience (“algorithm-based fault 

tolerance” or ABFT) to arithmetic/memory 
faults or lost/delayed messages



Bad news/good news 
● Must explicitly control more of the data 

motion
u carries the highest energy and time cost in the exascale 

computational environment

● More opportunities to control the vertical
data motion

u horizontal data motion under control of users already 
u but vertical replication into caches and registers was 

(until recently) mainly scheduled and laid out by 
hardware and runtime systems, mostly invisibly to users

1



● Use of uniform high precision in nodal bases on dense grids 
may decrease, to save storage and bandwidth

u representation of a smooth function in a hierarchical basis or on 
sparse grids requires fewer bits than storing its nodal values, for 
equivalent accuracy

● We may compute and communicate “deltas” between states 
rather than the full state quantities
u as when double precision was once expensive (e.g., iterative correction 

in linear algebra)
u a generalized “combining network” node or a smart memory 

controller may remember the last address and the last value, and 
forward just the delta

● Equidistributing errors properly to minimize resource use 
will lead to innovative error analyses in numerical analysis

Bad news/good news2



● Fully deterministic algorithms may be regarded as too 
synchronization-vulnerable
u rather than wait for missing data, we may predict it using various 

means and continue
u we do this with increasing success in problems without models 

(“big data”)
u should be fruitful in problems coming from continuous models
u “apply machine learning to the simulation machine” 

● A rich numerical analysis of algorithms that make use of 
statistically inferred “missing” quantities may emerge
u future sensitivity to poor predictions can often be estimated
u numerical analysts will use statistics, signal processing, ML, etc.

Bad news/good news3



● Fully hardware-reliable executions may be regarded as too 
costly

● Algorithmic-based fault tolerance (ABFT) will be cheaper 
than hardware and OS-mediated reliability
u developers will partition their data and their program units into 

two sets
§ a small set that must be done reliably (with today’s standards for 

memory checking and IEEE ECC)
§ a large set that can be done fast and unreliably, knowing the 

errors can be either detected, or their effects rigorously bounded

● Many examples in direct and iterative linear algebra 
● Anticipated by Von Neumann, 1956 (“Synthesis of reliable 

organisms from unreliable components”)

Bad news/good news4



Algorithmic philosophy
Algorithms must span a widening gulf …

A full employment program 
for algorithm developers J

ambitious 
applications

austere 
architectures

adaptive 
algorithms



What will exascale algorithms look like?
n For weak scaling, must start with algorithms with 

optimal asymptotic order, O(N logp N)
n Some optimal hierarchical algorithms

◆ Fast Fourier Transform (1960’s)
◆ Multigrid (1970’s)
◆ Fast Multipole (1980’s)
◆ Sparse Grids (1990’s)
◆ H matrices (2000’s)
◆ Randomized algorithms (2010’s)

“With great computational power comes great 
algorithmic responsibility.” – Longfei Gao



Required software
Model-related
◆ Geometric modelers
◆ Meshers
◆ Discretizers
◆ Partitioners
◆ Solvers / integrators
◆ Adaptivity systems
◆ Random no. generators
◆ Subgridscale physics 
◆ Uncertainty 

quantification
◆ Dynamic load balancing
◆ Graphs and 

combinatorial algs.
◆ Compression 

Development-related
u Configuration systems
u Source-to-source 

translators
u Compilers
u Simulators
u Messaging systems
u Debuggers
u Profilers

Production-related
u Dynamic resource 

management
u Dynamic performance 

optimization
u Authenticators
u I/O systems
u Visualization systems
u Workflow controllers
u Frameworks
u Data miners
u Fault monitoring, 

reporting, and recovery

High-end computers come 
with little of this. Most is 
contributed by the user  

community.



Midpoint: recap of algorithmic agenda
n New formulations with 

◆ reduced synchronization and communication
■ less frequent and/or less global

◆ reside high on the memory hierarchy
■ greater arithmetic intensity (flops per byte moved into and out of 

registers and upper cache)
◆ greater SIMT/SIMD-style thread concurrency for 

accelerators
◆ algorithmic resilience to various types of faults

n Quantification of trades between limited resources
n Plus all of the exciting analytical agendas that exascale is 

meant to exploit 
◆ “post-forward” problems: optimization, data assimilation, 

parameter inversion, uncertainty quantification, etc.



Four widely applicable strategies
n Employ dynamic runtime systems based on 

directed acyclic task graphs (DAGs)
◆ e.g., ADLB, Argo, Charm++, HPX, kokkos, Legion, 

OmpSs, Quark, STAPL, StarPU, OpenMP 

n Exploit data sparsity of hierarchical low-
rank type
◆ meet the “curse of dimensionality” with the “blessing of 

low rank”  

n Employ high-order discretizations
n Code to the architecture, but present an 

abstract API



Taskification based on DAGs
n Advantages

◆ remove artifactual synchronizations in the form 
of subroutine boundaries

◆ remove artifactual orderings in the form of pre-
scheduled loops

◆ expose more concurrency
n Disadvantages

◆ pay overhead of managing task graph
◆ potentially lose some memory locality



Reducing over-ordering and synchronization 
through dataflow, ex.: generalized eigensolver



Loop nests and subroutine calls, with their 
over-orderings, can be replaced with DAGs

● Diagram shows a 
dataflow ordering of the 
steps of a 4×4 symmetric 
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges 
are data dependencies

● Time is vertically 
downward

● Wide is good; short is 
good
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Zooming-in…

Loops can be 
overlapped 
in time
Green, blue and magenta 
symbols represent tasks in 
separate loop bodies with 
dependences from an 
adaptive optics 
computation

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)



Tasks from 3 loops of optical 
“reconstructor” pipeline are 

executed together

DAG-based safe out-of-order execution

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)



Hierarchically low-rank operators
n Advantages

◆ shrink memory footprints to live higher on the 
memory hierarchy
■ higher means quick access

◆ reduce operation counts
◆ tune work to accuracy requirements

■ e.g., preconditioner versus solver

n Disadvantages
◆ pay cost of compression
◆ not all operators compress well



Key tool: hierarchical matrices
• [Hackbusch, 1999] : off-diagonal blocks of typical 

differential and integral operators have low effective rank
• By exploiting low rank, k , memory requirements and 

operation counts approach optimal in matrix dimension n:
– polynomial in k
– lin-log in n
– constants carry the day

• Such hierarchical representations navigate a compromise
– fewer blocks of larger rank (“weak admissibility”) or 
– more blocks of smaller rank (“strong admissibility”)



Example: 1D Laplacian



Recursive construction of an H-matrix

c/o W. Boukaram & G. Turkiyyah (KAUST)



“Standard (strong)” vs. “weak” admissibility

weak admissibilitystrong admissibility

After Hackbusch, et al., 2003 



High-order discretizations
n Advantages

◆ shrink memory footprints to live higher on the 
memory hierarchy
■ higher means shorter latency

◆ increase arithmetic intensity 
◆ reduce operation counts

n Disadvantages
◆ high-order operators less suited to some solvers

■ e.g., algebraic multigrid, H-matrices*

* but see Gatto & Hesthaven, Dec 2016, on  H for hp FEM



Performance effects of order in CFD

c/o Hutchinson et al. (2016) ISC’16

Helmholtz solve in spectral element code for 
incompressible Navier-Stokes

fourth order thirty-second 
order



Runtime effects of order in CFD

c/o Hutchinson et al. (2016) ISC’16

Accuracy versus execution time as a function of order
Single-mode Rayleigh-Taylor instability



Coding to the architecture
n Advantages

◆ tiling and recursive subdivision create large 
numbers of small problems suitable for batched 
operations on GPUs and MICs
■ reduce call overheads
■ polyalgorithmic approach based on block size

◆ non-temporal stores, coalesced memory accesses, 
double-buffering, etc. reduce sensitivity to memory

n Disadvantages
◆ code is more complex
◆ code is architecture-specific at the bottom



Amdahl asks: where do the cycles go?
n Dominant consumers in applications that occupy 

major supercomputer centers are:
◆ Linear algebra on dense symmetric/Hermitian matrices

■ Hamiltonians (Schroedinger) in chemistry/materials
■ Hessians in optimization
■ Schur complements in linear elasticity, Stokes & saddle points 
■ covariance matrices in statistics

◆ Poisson solves
■ highest order operator in many PDEs in fluid and solid 

mechanics, E&M, DFT, MD, etc.
■ diffusion, gravitation, electrostatics, incompressibility, 

equilibrium, Helmholtz, image processing – even analysis of 
graphs 



PhD thesis topics in the Extreme Computing Research Center at 
KAUST must address at least one of the four algorithmic drivers

Mapping algorithms to drivers



Examples being developed at KAUST’s
Extreme Computing Research Center

n QDWH-SVD, a 4-year-old SVD algorithm that performs more flops but 
beats state-of-the-art on MICs and GPUs and distributed memory systems

n KBLAS, a library that improves upon or fills holes in L2/L3 BLAS for 
GPUs and MICs, including batched and hierarchically low-rank routines

n BDDC, a linear preconditioner that performs extra local flops on interfaces 
for low condition number guarantee in high-contrast elliptic problems 

n FMM(ε), a 31-year-old O(N) solver for potential problems, used in low 
accuracy as a FEM preconditioner and scaled out on MICs and GPUs

n ACR(ε), a new spin on 52-year-old cyclic reduction that recursively uses H
matrices on Schur complements to reduce O(N2) complexity to O(N log2N)

n M/ASPIN, nonlinear preconditioners that replace most of the globally 
synchronized steps of Newton iteration with asynchronous local problems

n NekBox, a MIC-optimized version of CFD code Nek5000 that uses 
extremely high-order schemes to minimize runtime to a given accuracy



QDWH*-EVD/SVD
² DAG-based dataflow tile algorithms for 

(eigen- and) singular value decomposition
² Reduces synchrony
² Increases SIMT-style concurrency through 

recursion
² Employs Chameleon tile library and StarPU 

dynamic runtime system
*QR-based Dynamically Weighted Halley iteration from 

Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric 
Eigenvalue Decomposition and the SVD,
Y. Nakatsukasa & N. Higham, SISC (2013)

Asynchronous Task-Based Polar Decomposition on Massively Parallel Systems, 
D. Sukkari, H. Ltaief, M. Faverge & D. Keyes, IEEE TPDS (2017)



QDWH-SVD
n Obtain SVD from a polar decomposition:

A = Up H              H = V Σ V*  

è A = UpV Σ V* = U Σ V*

n QDWH iteration is a recursive divide-and-conquer 
method, backward stable

n Based on vendor-optimized kernels, i.e., Cholesky/QR 
factorizations and GEMM

n Complexity:
(10+2/3) n3 for well-conditioned system, 43n3 for ill

polar sym eigen



QDWH-SVD

c/o D. Sukkari & H. Ltaief (KAUST)
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x2

Sukkari et al., Best papers, Europar’16
available: https://github.com/ecrc/qdwh.git

1152 nodes of 32-core Intel Haswell

Integrated into Cray’s LibSci w/A. Esposito (Cray)
Extensions underway to Zolotarev’s method w/Y. Nakatsukasa (Oxford)

x4



QDWH-SVD, taskified

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)

1st QR iteration
2nd QR iteration
3rd QR iteration

Three QR iterations

1st Cholesky iteration
2nd Cholesky iteration
3rd Cholesky iteration

Three Cholesky iterations

Sukkari et al., IEEE TDPS’17



QDWH-SVD, taskified 
on hybrid architecture

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)
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Tile Low-rank Cholesky
² A low-rank, but flat (not hierarchical) first step 

towards expanding capability for large dense 
symmetric problems, e.g., covariance matrices

² Reduces synchrony
² Increases SIMT-style concurrency
² Employs OpenMP taskification pragmas and 

HLibPro on individual tiles

ExaGeoStat: A High Performance Unified Framework for 
Geostatistics on Manycore Systems

S. Abdulah, H. Ltaief, Y. Sun, M. Genton & D. Keyes
IEEE TDPS (2018)



Large dense symmetric systems arise as 
covariance matrices in spatial statistics

• Climate and weather applications have many 
measurements located regularly or irregularly in a 
region; prediction is needed at other locations
• Modeled as realization of Gaussian or Matérn spatial 

random field, with parameters to be fit
• Leads to evaluating the log-likelihood function 

involving a large dense (but data sparse) covariance



Synthetic and practical examples

Global temperature 
data on sphere

362 measured points and 
38 target points irregularly 
distributed in unit square



LAPACK DPOTRF

• Classical algorithm (1990s) involves BLAS L2 panel 
updates and BLAS L3 trailing matrix updates



PLASMA/CHAMELEON DPOTRF
• Tile algorithm (PLASMA, FLAME, 2010s) involves 

mostly BLAS L3 operations within tiles scheduled 
with a DAG



Tile operations 
for TLR version of Cholesky



Data-sparse operations for Cholesky variants



(block low-rank without hierarchy)

Compressibility of four typical blocks, for 
Frobenius accuracy of 10-9

Covariance Matrix of 
dimension 16384 in 16✕16 
blocks of 1024✕1024 each

Even “brute force” tilings pay off

c/o H. Ltaief & K. Akbudak (KAUST)



Tile low-rank Cholesky, time per backsolve

On 2-socket 18-core Intel Haswell @ 2.3GHz
OpenMP pragmas for taskification and accuracy of 10-9

c/o H. Ltaief & K. Akbudak (KAUST)

> order of 
magnitude



Distributed memory TLR Cholesky
(preliminary implementation)

On 16 nodes of 2-socket 16-core Intel Haswell @ 2.3GHz
c/o H. Ltaief & K. Akbudak (KAUST)

6X 
improvement 
over 
ScaLAPACK



KBLAS
² Subset of L2/L3 BLAS targeting GPU and Intel 

MIC
² GEMV, SYMV, TRSM, TRMM

² Reduces communication and increases concurrency 
in these memory BW bound operations

² Batched BLAS for small sizes on GPUs
² TRSM, TRMM, SYRK, POTRF, POTRS, POSV, 

TRTRI, LAUUM, POTRI, POTI
² Recursive formulation
² Employs vendor-optimized L3 BLAS underneath 

ACM TOMS (2016), CCPE (2016, 2017)



Recursively defined 
KBLAS operations 

for symmetric systems

c/o A. Charara & H. Ltaief (KAUST)



KBLAS DTRMM

Charara et al., Best papers, Europar’16
available: https://github.com/ecrc/kblas

c/o A. Charara & H. Ltaief (KAUST)
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Charara et al., Best papers, Europar’16
available: https://github.com/ecrc/kblas

c/o A. Charara & H. Ltaief (KAUST)
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case



Extending KBLAS
to batched execution

n Batched BLAS workshop:
◆ http://bit.ly/Batch-BLAS-2017

n Problem:
◆ L2 BLAS individually of low arithmetic intensity
◆ memory latency overheads

n Redesign the legacy BLAS API
◆ launch thousands of small BLAS kernels simultaneously
◆ increase device occupancy
◆ remove API/kernel launch overheads
◆ extend the recursive formulation

n Driven by scientific data-sparse applications
◆ computational statistics and astronomy
◆ Schur complement in sparse direct solvers and BDDC 

preconditioning

http://bit.ly/Batch-BLAS-2017


Batched operations

c/o Jacob Kurzak (ICL, U Tennessee)



KBLAS 
Example: Batched POTRF

Recursive 
Batch POTRF

n Nested recursion
n Convert into batch of large GEMMs
n Minimize data transfer
n Enhance data locality
n Increase arithmetic intensity

Recursive 
Batch TRSM

Recursive 
Batch SYRK

Recursive 
Batch POTRF

c/o A. Charara & H. Ltaief (KAUST)



Batched KBLAS
performance comparisons
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c/o A. Charara & H. Ltaief (KAUST)



Hierarchical Computations on 
Manycore Architectures: HiCMA*

* appearing incrementally at  https://github.com/ecrc



Balancing Domain Decomposition 
with Constraints (BDDC)

² Reduce synchrony in Krylov solution to PDE 
problems by building an optimal preconditioner
² convergence independent of mesh size, subdomain 

size, and alignment of subdomain with material 
interfaces

² For SPD problems, BDDC is built from 
Cholesky and symmetric eigensolvers
² harness HiCMA
² exploit well-known low-rank properties of Schur 

complements
Math Comp (2017), SISC (2016, 2017)



BDDC: a very robust preconditioner
n Applied inside CG on the SPE10 benchmark
n Darcy flow, using H(div) finite elements
n 20M-45M DOFs, up to 8K subdomains

u no alignment of subdomain faces with material jumps
n Small, decomposition-independent number of iterations

c/o S. Zampini (KAUST) Zampini et al., Invited talk at DDM’24
to appear in Springer LNCSE



BDDC: a very robust preconditioner
n Maxwell equations, using H(curl) finite elements

c/o S. Zampini (KAUST) and P. Vassilevski (LLNL)



c/o S. Zampini (KAUST)

BDDC on the road to exascale

Note: BDDC is distributed in PETSc



c/o S. Zampini (KAUST)

Distributed data structures



c/o S. Zampini (KAUST)

Condition number results
n If subdomains are solved exactly, overall condition number of 

the preconditioned system depends only on the Schur 
preconditioning



c/o S. Zampini (KAUST)

Global Schur complement is subassembled

n Cholesky is everywhere, in high concurrency for batching 
during both formation and application of the preconditioner

n Also, generalized symmetric eigenproblem on each interface 
where the “A, B” matrices are from Schur complements



c/o S. Zampini (KAUST)

BDDC with low rank Schur approximations

See Gatto & Hasthaven, 
Dec 2016, J Sci Comput

on compressibility of 
Schur complements for 
hp finite elements



BDDC with low rank Schur approximations

c/o S. Zampini (KAUST)

accuracy

tile size average rank need to achieve
accuracy 10-6 for tile of size 64



“Hourglass” model for algorithms
(traditionally applied to internet protocols)

applications

architectures

algorithmic 
infrastructure



How will complex PDE codes adapt?
n Programming model will still be dominantly message-

passing (due to large legacy code base), adapted to 
multicore or hybrid processors beneath a relaxed 
synchronization MPI-like interface

n Load-balanced blocks, scheduled today with nested 
loop structures will be separated into critical and non-
critical parts

n Critical parts will be scheduled with directed acyclic 
graphs (DAGs) through dynamic languages or 
runtimes

n Noncritical parts will be made available for NUMA-
aware work-stealing in economically sized chunks



Asynchronous programming styles

n To take full advantage of such asynchronous 
algorithms, we need to develop greater 
expressiveness in scientific programming
◆ create separate threads for logically separate tasks, 

whose priority is a function of algorithmic state, not 
unlike the way a time-sharing OS works

◆ join priority threads in a directed acyclic graph 
(DAG), a task graph showing the flow of input 
dependencies; fill idleness with noncritical work or 
steal work



n Can write code in styles that do not require artifactual 
synchronization

n Critical path of a nonlinear implicit PDE solve is essentially
… lin_solve, bound_step, update; …

n However, we often insert into this path things that could be done 
less synchronously, because we have limited language 
expressiveness
◆ Jacobian and preconditioner refresh
◆ convergence testing
◆ algorithmic parameter adaptation
◆ I/O, compression
◆ visualization, data analytics

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold



Sources of nonuniformity
n System

◆ Already important: manufacturing, OS jitter, TLB/cache 
performance variations, network contention, 

◆ Newly important: dynamic power management, more soft errors, 
more hard component failures, software-mediated resiliency, etc.

n Algorithmic
◆ physics at gridcell/particle scale (e.g., table lookup, equation of 

state, external forcing), discretization adaptivity, solver adaptivity, 
precision adaptivity, etc.

n Effects of both types are similar when it comes to waiting 
at synchronization points

n Possible solutions for system nonuniformity will improve 
programmability for nonuniform problems, too J



Conclusions
n Plenty of ideas exist to adapt or substitute for 

favorite solvers with methods that have:
◆ reduced synchrony (in frequency and/or span)
◆ higher residence on the memory hierarchy
◆ greater SIMT/SIMD-style shared-memory concurrency
◆ built-in resilience (“algorithm-based fault tolerance” or ABFT) 

to arithmetic/memory faults or lost/delayed messages

n Programming models and runtimes may have to be 
stretched to accommodate

n Everything should be on the table for trades, 
beyond disciplinary thresholds è “co-design”



Thanks to:

CENTER OF EXCELLENCE



Thank you!

اركش

david.keyes@kaust.edu.sa


