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Finite elements are a good foundation for large-scale
simulations on current and future architectures

= Backed by well-developed theory.
= Naturally support unstructured and curvilinear grids.

= High-order finite elements on high-order meshes
 Increased accuracy for smooth problems
 Sub-element modeling for problems with shocks

« Bridge unstructured/structured grids
Non-conforming mesh refinement

« Bridge sparse/dense linear algebra on high-order curved meshes
« FLOPs/bytes increase with the order

= Demonstrated match for compressible shock
hydrodynamics (BLAST).

= Applicable to variety of physics (DeRham complex).

H (grad) | == H (curl)| 5| H(div)| ~{ L s
“nodes” “edges” “faces” “20nes” B -.

High-order High-order High-order High-order 8th order Lagrangian hydro simulation
kinematics MHD rad. diff. thermodynamics of a shock triple-point interaction
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Modular Finite Element Methods (MFEM)

MFEM is an open-source C++ library for scalable FE research
and fast application prototyping D
= Triangular, quadrilateral, tetrahedral and hexahedral; .

volume and surface meshes

= Arbitrary order curvilinear mesh elements

= Arbitrary-order H1, H(curl), H(div)- and L2 elements Linear, quadratic and cubic finite
element spaces on curved meshes

= Local conforming and non-conforming refinement
= NURBS geometries and discretizations

= Bilinear/linear forms for variety of methods (Galerkin,
DG, DPG, Isogeometric, ... )

= [Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU,
PUMI, Vislt, Spack, xSDK, OpenHPC, and more ...

= Parallel and highly performant mfem.org
(v3.4, May/2018)

= Main component of ECP’s co-design Center for Efficient

Exascale Discretizations (CEED) /P e

= Native “in-situ” visualization: GLVis, glvis.org S ARSRETEATRE

‘xSDK
"

-
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Example 1 — Laplace equation
= Mesh

63 i/l 1. Bead the mseah from the gives mesh file. We can hasdle trissqular
(1) 4 quadrilateral, tetradedral, dexahedral, surface and volume meshes with
65 /" the same code.

“" Mash *meah)

67 Listreanm Lnnh(-nh file);

(1] i (limesh)

5 (

70 cerr << *\nCan not opes meah file: * << mesd file << "\n' << eadl;
7 "t 2

72 }

” posh =~ zew Moshiimesh, 1, 1))

T4 isosh.close();

75 int dim = meeh->Dimansion()y

76

77 // 3. Retine the meeh to izcroase the resolutiocn. In this example we do
T ’ ref_levels” of uniform cefisesent. We choose ‘ref_levels' 1o be the
T i largost nesber that gives & fizal mesh with no more than 32,000
80 " elemonts.

L {

82 iot ref_levels ~

[ 3} (int)floor(log (50000, /moah-»CetNu () )}/ log(2. ) /din);

1) (int 1 = O L < rof_levels; i++)

s seak->Un raliof inesest();

L] }

= Finite element space

88 // 4. Define a finite element space on the mesh. Here we use continuous
89 /1 Lagrange finite elements of the specified order. If order < 1, we
90 1/ instead use an isoparametric/isogeometric space.
91 FiniteElementCollection *fec;
92 if (order > 0)
93 fec = new H1_FECollection(order, dim);
94 e if (mesh->CetNodes())
95 fec = mesh->GetNodes()->OwnFEC();
96 else
97 fec = new H1_FECollection(order = 1, dim);
98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
99 cout << " b of unk : " << fesp GetVSize() << endl;
o 0 . oy
= |nitial guess, linear/bilinear forms
101 // S. Set up the liboar fors b{.) which corresponds to the right-hasd side of
102 I’ tho FEN licear system, which in this case is (i,phi_i1) wvhore phi_i are
103 /" the bas functioms (n the finite element fespace,
104 LinearToam *b = zow LinecarTora{fespace);
108 ficlent onetl.0);
106 rator{sew Doma cogrator(one));
107 le():
108
10% /7 6, Define the solution veoror x as & finlte oleseat grid funosion
110 corresponding to fespaco. Initialize x with izitial goess of zerc,
i wvirloh satisfies tae boundary conditions,
112 anctlon x(feapace);
11 l - 0. LT
114
115 // T. Sot up the Bilinear form a(.,.) on te finite element space
116 1 cozresponding to the Laplacian operator -Delta, by eddiag the Diffusion
117 " domain integrator and imposing homogeszeous Dirichlet boundary
11% /" conditions. The boundary ccaditions are isplemented Ly marking all the
11% i boundary attribates from the moah as easantial (Dirichlet). After
120 I assenbly and finalizing we extract the correspoading sparse satrix A,
121 pllincarfocrs = now DLl arForn(fospace);
122 a=>M0800ma LnTntegrator{nev Diffesioolntegrator (one)):
123 a-®Assenbla();
124 Array<int> ons_bar(mosh~>bhdr_attributas . Max() )y
125 r = 1;
1326 an> minatelssentinliC(ens_bdr, x, *b))
127 a->risalize();
128 const SparsedMatrix N = a->GpMat())
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Linear solve

130 | #ifndef MFEM USE_SUITESPARSE

131 8. Define a simple symmetric Causs-Seidel preconditioner and use it to
132 /7 solve the system Ax=b with PCG.

133 GSSmoother M(A);

134 PCG(A, M, *b, x, 1, 200, le-12, 0.0);

135 | #else

136 // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
137 UMFPackSolver umf_solver;

138 umf_solver. Control(UKPPACK ORDERING] = UMFPACK_ORDERING_METIS;

139 umf_solver.SetOperator(A);

140 \m!_solver.uulc(’b, x);

141 | #endif

Visualization

// 10. Send the solution by socket to a GLVis server.
if (visualization)

char vishost[] = "localhost";

int wvisport = 19916;

socketstream sol_sock(vishost, visport);
sol_sock.precision(8);

sol_sock << "solution\n" << *mesh << x << flush;

ane L NGabesarda) — —

= works for any mesh & any H1 order

builds without external dependencies




Example 1 — Laplace equation

= Mesh
63 /1 2. Bead the seah from the given meah file. We can handle triassqgular,
(1] i’ quadrilateral, tetradedral, dexahedral, surface and volume meshes with
65 i/ the same code,
ce Mash *meal)

67 Listream inosh(meah file);
(1] ( f {1imesh)

(3]

70 cerr << *\nCan not opon meah file: “ << mealk file << "\n' «< eandl;
7 yatarmn 23

72 }

e posh ~ sew Moshiimesh, 1, i)
74 Isosh.cloae();
75 int dim = soeh->Dimansionl )y

76

7 /7 3. Refine the meah to izcroame the resolution. In this example wo do
T / ‘refl _levels” of unifors refisesent. %o choose "ref_levels” 10 be the
) i/ largost mnesber that gives & fizal mesh with no mcxe than %0,000

:: / elemants.

82 iot ref_levels ~

{3 ] (ht)!loot(lozl&ﬂb”.lmh-wl 1} logi2. ) /dim);

L) for (imh 1 = 0) | < reof_lovels; i++)

.': ) seak->Uniforalof inesent();
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Example 1 — Laplace equation

= Finite element space

88
89
90
91
92
93
94
95
96
97
98
99

// 4. Define a finite element space on the mesh. Here we use continuous
/7 Lagrange finite elements of the specified order. If order < 1, we
// instead use an isoparametric/isogeometric space.
FiniteElementCollection *fec;
if (order > 0)

fec = new H1_FECollection(order, dim);
else if (mesh->CetNodes())

fec = mesh->GetNodes()->OwnFEC();
else

fec = new H1 FECollection(order = 1, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
cout << "Number of unknowns: " << fespace->CetVSize() << endl;
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Example 1 — Laplace equation

= Initial guess, linear/bilinear forms

101 I/ S. Set up the livoar fors b{.) which corresponds to the right-hand slide of
102 / tho FEN lizear system, which in this case is (i,phi_1) wvhore phi_i are
103 /1 the basis functioms In the finite element fespace,

104 LinearTorm *b = zoew LinearTora{fespace);

108 ConstastCoafficient one(l.0);

106 b-sAddlomainintegrator{sew Domainllintogrator(one));

107 be>Ansenble();

108
10% /s, hum the solution veoror x as » finlte elemeat grid funaotrion
110 /1 to fespaco. Initialize x with izitial gueas of zerc,

i1 i sMoh uuongu Lae boundary conditions,
112 CridPasction x({feapace);
ll’ e ’o..

11% /7 7. Sot up the Bilinear form al.,..) on the finite element apace
116 i corresponding to the Laplacian operatoer -Delta, edding the Diffusion

117 /H domain istegrator and imposing homogezeous Dirichlet boundary

11% i/ conditions. The boundary tions are isplesesnted by marki ou the
11% 1 boundary attribaotes from the moah as easential (Dirichlet).

120 / assenbly and finalizing we extract Lhe correspoading sparse nuu A
121 Bllinearfore *a = now DilizcarTorm(fospace);

122 a->AodDomainintegraroc{nev Diffesicolntegrator(one));
12) a-»Assenbla();
g: Arra uvlm _Bdr (mosh->bdr_attriburtas . Maxi) )
aae -
126 u-»!u-suu»muuccm bdr. =, *b)}
127 a->risalizel);

128 const SparseMatrix GA = a->GpMat())
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Example 1 — Laplace equation

= Linearsolve

130
131
132
133
134
135
136
137
138
139
140
141

#ifndef MFEM USE_SUITESPARSE
// 8. Define a simple symmetric Causs-Seidel preconditioner and use it to
/7 solve the system Ax=b with PCG.
GSSmoother M(A);
PCG(A, M, *b, x, 1, 200, le-12, 0.0);
#felse
// B. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_solver.Control [UMFPACK_ORDERING] = UMFPACK ORDERING_METIS;
umsf colver.SotOPcrator(A),
um! solver.Mult(*b, x);
#endif

= Visualization

152
153
154
155
156
157
158
159
160

// 10. Send the solution by socket to a GLVis server.
if (visualization)

{
char vishost[] = "localhost";
int wvisport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x << flush;
}
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Example 1 — parallel Laplace equation

Parallel mesh

// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
/1 this mesh further in parallel to increase the resolution. Once the
/7 parallel mesh is defined, the serial mesh can be deleted.

ParMesh *pmesh = new ParMesh(MPI_COMM WORLD, *mesh);

delete mesh;

int par_ref_levels = 2;
for (int 1 = 0; 1 < par_ref levels; 1l++)
pmesh->UniformRefinement();
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Parallel finite element space

122

130
158 ]
147

ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);

C )

(1) . . . rz)}

®
P :true_dof — dof

Parallel initial guess, linear/bilinear forms

soarfors *b = now ParlincarForm(fospace);
ary x(fespace);
ParfiliscarPora *a = nov Parbilisearfocra(|fespace);

Parallel assembly

155
156
157
158
159

A

// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
/7 b(.) and the finite element approximation.

HypreParMatrix *A = a->ParallelAssemble();

HypreParVector *B = b->ParallelAssemble();

HypreParVector *X = x.ParallelAverage();

=pP'«P B=P'b z=PX
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Parallel linear solve with AMG

164 // 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
165 /7 preconditioner from hypre.

166 HypreSolver *amg = new HypreBoomerAMG(*A);

167 HyprePCG *pcg = new HyprePCG(*A);

168 pcg->SetTol(le-12);

169 pcg->SetMaxIter(200);

170 pcg->SetPrintLevel(2);

171 pcg->SetPreconditioner(*amg);

172 pcg->Mult(*B, *X);

Visualization

// 14. Send the solution by socket to a GLVis server.

195 £ (visualization)

196 {

197 char vishost[] = "localhost”;

198 int visport = 19916;

199 socketstream sol_sock(vishost, visport);

200 sol_sock << "parallel " << num procs << " " << myid << "\n";
201 sol_sock.precision(8);

202 sol_sock << "solution\n" << *pmesh << x << flush;

203 }

ann

N GAViS [scalar data]

highly scalable with minimal changes
build depends on hypre and METIS




Example 1 — parallel Laplace equation

101
102
103
104
105
106
107
108
109

119

122
1301
138
147

155
156
157
158
159

164
165
166
167
168
169
170
171
172

200
201

202

// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
/7 this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.

ParMesh *pmesh = new ParMesh(MPI_COMM WORLD, *mesh);

delete mesh;

{
int par_ref_levels = 2;
for (int 1 = 0; 1 < par ref_ levels; l++)
pmesh->UniformRefinement();
}

ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
Parliscarfors *b = now Parlincarform(fospace); :
Pardridfuncrion x(fespate); i

ParfilincarPfora *a » nev FarbilisearTora|fespace);

// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
&7 b(.) and the finite element approximation.

HypreParMatrix *A = a->ParallelAssemble();

BypreParVector #*B = b->ParallelAssemble();

HypreParVector *X = x.ParallelAverage();

// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
/7 preconditioner from hypre.

HypreSolver *amg = new HypreBoomerAMG(*A);

HyprePCG *pcg = new HyprePCG(*A);

pcg->SetTol(le-12);

pcg->SetMaxIter(200);

pcg->SetPrintLevel(2);

pcg->SetPreconditioner(*amg);

pcg->Mult(*B, #*X);

sol_sock << "parallel " << num procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;
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MFEM example codes — mfem.org/examples

MFEM .10

Example Codes
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Discretization Demo & Lesson

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/mfem convergence/
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Application to high-order ALE shock hydrodynamics

hypre: Scalable linear MFEM: Modular finite BLAST: High-order ALE shock
solvers library element methods library hydrodynamics research code

www.lInl.gov/casc/hypre mfem.org www.lInl.gov/casc/blast

= hypre provides scalable algebraic multigrid solvers

= MFEM provides finite element discretization abstractions
« uses hypre’s parallel data structures, provides finite element info to solvers

= BLAST solves the Euler equations using a high-order ALE framework
« combines and extends MFEM'’s objects
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BLAST models shock hydrodynamics using high-order FEM
in both Lagrangian and Remap phases of ALE

Lagrange phase

Remap phase

Physical time evolution
Based on physical motion

Pseudo-time evolution
Based on mesh motion

Lagrangian phase (¢ = 0) Advection phase (¢ = —Vp)
/ N

. Al o7
Momentum Conservation: vl v Momentum Conservation: (dpv) = Vm - V(pV)
T
M . dp - 7. 4 . . dp _
ass Conservation: K —pV - v s+ Discont. Galerkin Mass Conservation: ar =Vm-Vp
T
1 . de — . v H d(pe) =
Energy Conservation: pa =o0:Vv Energy Conservation: — = Vm - V(pe)
T
o = </
Az ' “’0’\ X
Equation of Motion: Xy — Mesh velocity: Vm = dx
dt Bernstein basis dr




High-order finite elements lead to more accurate, robust
and reliable hydrodynamic simulations

Symmetry in
3D implosion

Symmetry in
Sedov blast

Robustness in
Parallel ALE for Q4 Rayleigh- Lagrangian shock-3pt
Taylor instability (256 cores) axisymm. interaction
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High-order finite elements have excellent strong scalability

Strong scaling, p-refinement

BLAST Strong Scaling on Vulcan
2D Lagrangian Sedov Problem on 131,072 zones

10000
--SGH Code
oo~ ~600 dofs/zone Q2 FEM (inline)
e Q4 FEM (Inline)
i --Q8 FEM (Inline)
100 -~ S
- B o G 8 “Q16 FEM (Inline)
§ \ ‘\‘\ \
& 10 2y N o
o " T P .
£ i . . 1 zone/core
- \ o -
1 %
Y

01

0.01

0.001

~ v L @ o . S o Q) ] o N > o v
¥ PSP PP FET PP
AV Al e L I 3\‘ ‘,:,‘ a

Number of cores

Finite element partial assembly
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Runtime (s)

Strong scaling, fixed #dofs

8.00 =g
| 2D

4.00 N 256K DOFs ++Q1Q0_SU

| \ Q201U

2.00 ~=Q4Q3_SUI

1.00 \ 256 cores

0.50

0.25 more FLOPs, /7

same runtime

1 2 4 8 16 32 64
Nodes

FLOPs increase faster than runtime




High-order discretizations pose unique challenges

Shock triple-point interaction (4 elements) Smooth RT instability (2 elements)
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Unstructured Mesh R&D: Mesh optimization and high-
quality interpolation between meshes

We target high-order curved elements + unstructured meshes + moving meshes

High-order mesh relaxation by neo-Hookean DG advection-based interpolation (ALE
evolution (Example 10, ALE remesh) remap, Example 9, radiation transport)
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Unstructured Mesh R&D: Accurate and flexible finite
element visualization

Two visualization options for high-order functions on high-order meshes

GLVis: native MFEM lightweight OpenGL Vislt: general data analysis tool, MFEM
visualization tool support since version 2.9

Peeuaocoor

Vor: eps

- 4000
00310

' 07870
1274

. 621

BLAST computation on 2"
order tet mesh

glvis.org visit.linl.gov
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MFEM'’s unstructured AMR infrastructure

Adaptive mesh refinement on library level:
— Conforming local refinement on simplex meshes
— Non-conforming refinement for quad/hex meshes

— h-refinement with fixed p

General approach:

— any high-order finite element space, H1, H(curl),
H(div), ..., on any high-order curved mesh

Example 15
— 2D and 3D

— arbitrary order hanging nodes

— anisotropic refinement

— derefinement

— serial and parallel, including parallel load balancing

— independent of the physics (easy to incorporate in
applications)

Shaper miniapp
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Conforming & Nonconforming Mesh Refinement

m Conforming refinement

m Nonconforming refinement

m Natural for quadrilaterals and hexahedra
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General nonconforming constraints

H(curl) elements

High-order elements
€

d

Constraint: e=f=d/2

! ]
Indirect constraints
s e Py (K)

> m € Py(K)

Constraint: local interpolation matrix

> s=Q -m, Q¢cR»™

More complicated in 3D...
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Nonconforming variational restriction

m General constraint:
— Px P = /
y=r "=1"wl

x — conforming space DOFs,
y —nonconforming space DOFs (unconstrained + slave),

dim(x) < dim(y)
W — interpolation for slave DOFs
m Constrained problem:
P'APx = P'b,

y = Px.
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Nonconforming variational restriction
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Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh
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Nonconforming variational restriction

A"
- N
A

N2 i e

s 212y

B\,

H

—
£=.

3

'
N

i

.

Regular assembly of A on the elements of the (cut) mesh
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Nonconforming variational restriction

Conforming solutiony = P x
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AMR = smaller error for same number of unknowns

2D Shock-like Problem AMR Benchmark (Quad Mesh, Anisotropic Refinements)

100 : Y T ' v uniform refinement ' )
. 1 St’ 2nd’ 4th’ 8th Order |
10 3
-------------- Orevesones - N——
T . SN MTORITRS TS - o ;_ Y e
15t order AMR
o' Kb -
r
0.01 2nd orderAMR. [

e

WEEEEL N

Approximation error (H1 seminorm)

; order 1 uniform ---e--- J
0.0001 order 2 uniform  « 4" order AMR
) i g:;ler g ungorm . 3
er 8 uniform  »
" order 1 aniso AMR ——e— \ 3
1e-05  order 2 aniso AMR —+ B -.
rorder 4 aniso AMR —— 8" order AMR \\‘ 1
| order 8 aniso AMR —— o
1e-06 1 1 1 1 1 1
0 50 100 150 200 250 300 Anisotropic adaptation to

Square root of the number of unknowns shock-like fields in 2D & 3D
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Static parallel refinement, Lagrangian Sedov problem

8 cores, random non-conforming ref. 4096 cores, random non-conforming ref.

B s i

‘3//’1‘

ﬁ’:‘:;-:;-a:: S _‘ 18 9wl

-‘—=, e .

I
|
\

e ? 7

o

T

e

>

Shock propagates through non-conforming zones without imprinting
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Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and Parallel load balancing based on space-
derefinement. 2" order Lagrangian Sedov filling curve partitioning, 16 cores
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ParaIIeI AMR scallng to "‘400K MPI tasks

|deal strong scallng —_—

weak scaling - |

size 0.6M —<— |

size 1M —— |
size 2M ——

size 4M ——~— 1
size 8BM ———

size 16M 1

size 32M ——~—

size 64M

100 —

] 1 e i

e

10 | .
: -

Parallel decomposition
(2048 domains shown)

Time of AMR iteration [seconds]

Parallel partitioning via
Hilbert curve

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 384K
CPU cores

* weak+strong scaling up to ~400K MPI tasks on BG/Q

* measure AMR only components: interpolation matrix, assembly, marking,

refinement & rebalancing (no linear solves, no “physics”)
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CEED'# ™=

EXASCALE DISCRETIZATIONS

ceed.exascaleproject.org

* PDE-based simulations on unstructured grids
* high-order and spectral finite elements

v any order space on any order mesh v curved meshes,
v unstructured AMR  optimized low-order support

Fischer 10% order basis function non-conforming AMR, 2" order mesh

+ state-of-the art CEED discretization libraries
v better exploit the hardware to deliver significant performance

gain over conventional methods
v based on MFEM/Nek, low & high-level APIs

Brown  Shephard

H a & 0 =

2 Labs, 5 Universities, 30+ researchers

nek5000.mcs.anl.gov mfem.org
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CEED Bake-off Problem 1 on CPU

NFEM (312 modes, 32 taakwinode), xic, BP1 V1
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(c) BPI dealll

« All runs done on BG/Q (for repeatability), 8192 cores in C32 mode.
Order p =1, ...,16; quad. points g = p + 2.
e BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and

deal.ii + gcc (right) on BG/Q.

* Preliminary results — paper in preparation

« Cooperation/collaboration is what makes the bake-offs rewarding.

33 ATPESC 2018, July 29 — August 10, 2018



CEED Bake-off Kernel 5 on GPU

OCCA BKS Summit: Kernel Influence, E=4096 OCCA BKS Performance on Summit
o Kw) , | o= N
(‘.) ,'1' 200 ~.’
{ ~® Ke3 o N«)
91 o xad T} |t
0= e - N=$
L A l:’o‘ B Ned
i) N«)
S C126{ + net
m’ B e &‘ @ Ned
S e K=10 & 1.004 - Neil
Poe | lo - lm‘(“ fooiire : -: Ne})
M 109 Nel2
o = 0.7% 1 = Ne1)
N34
0.504 ~o~ NneiS
0%
0.2%1
Q00 -0 . -

- —w v —y v - .

2 4 6 8 10 12 4 0 100 1¢° 10 10 10 10t 10
Polynomial order, N Number of gridpoints

» BKS5 - BPS kernel, just local (unassembled) matvec with E-vectors
* OCCA-based kernels with a lot of sophisticated tuning
« > 2 TFLOPS on single V100 GPU
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High-order methods show promise for high-quality &
performance simulations on exascale platforms

= More information and publications
* MFEM - mfem.org

« BLAST - computation.lInl.gov/projects/blast

« CEED - ceed.exascaleproject.org

= Open-source software

s (CEEL

‘ EXASCALE DISCRETIZATIONS

= Ongoing R&D

+ Porting to GPUs: Summit and Sierra

+ Efficient high-order methods on simplices

Q4 Rayleigh-Taylor single-
material ALE on 256 processors

« Matrix-free scalable preconditioners
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Unstructured Mesh Technologies — To Be Covered
- 0000000/

= Background
= Summary of FASTMath development efforts

= Discussion of core parallel mesh support tools (the
things other that the unstructured mesh analysis code)

e Parallel mesh infrastructure
 Mesh generation/adaptation
 Dynamic load balancing

e Unstructured mesh infrastructure
for particle-in-cell codes

= Some ongoing applications
= Hands-on demonstration

FASTMATH 38



Unstructured Mesh Methods

Unstructured mesh — a spatial domain discretization composed
of topological entities with general connectivity and shape

Advantages

Automatic mesh generation for
any level of geometric complexity

Can provide the highest accuracy
on a per degree of freedom basis

General mesh anisotropy possible

Meshes can easily be adaptively
modified

Given a complete geometry, with

analysis attributes defined on that
model, the entire simulation work
flow can be automated

Disadvantages

= More complex data structures and
increased program complexity,
particularly in parallel

= Requires careful mesh quality
control (level depend required a
function of the unstructured mesh
analysis code)

= Poorly shaped elements increase
condition number of global system
— makes matrix solves harder

39



Unstructured Mesh Methods

Goal of FASTMath unstructured mesh developments include:

= Provide component-based tools that take full advantage of
unstructured mesh methods and are easily used by
analysis code developers and users

= Develop those components to operate through multi-level
APls that increase interoperability and ease integration

= Address technical gaps by developing specific
unstructured mesh tools to address needs and
eliminate/minimize disadvantages of unstructured meshes

= Work with DOE applications on the integration of these
technologies with their tools and to address new needs
that arise

MATH 40



FASTMath Unstructured Mesh Developments

Technology development areas:

Unstructured Mesh Analysis Codes — Support application’s
PDE solution needs

Performant Mesh Adaptation — Parallel mesh adaptation to
iIntegrate into analysis codes to ensure solution accuracy

Dynamic Load Balancing and Task Management —
Technologies to ensure load balance and effectively
execute operations by optimal task placement

Unstructured Mesh for PIC — Tools to support PIC on
unstructured meshes

Unstructured Mesh for UQ — Bringing unstructured mesh
adaptation to UQ

In Situ Vis and Data Analytics — Tools to gain insight as

S simulations execute
MATH 41



Unstructured Mesh Analysis Codes

Advanced unstructured mesh analysis codes
= MFEM - High-order F.E. framework

* Arbitrary order curvilinear elements

e Applications include shock hydrodynamics,
Electromagnetic fields in fusion reactors, etc.

= ALBANY — Generic F.E. framework

e Builds on Trilinos components

e Applications include ice modeling, non-linear
solid mechanics, quantum device modeling, etc.

= PHASTA — Navier Stokes Flow Solver

* Highly scalable code including turbulence models

e Applications include nuclear reactors,
multiphase flows, etc.




Unstructured Mesh for Uncertainty Quantification

= Adaptive control of discretization a prerequisite for the

effective application of UQ operations
= Substantial potential for joint adaptivity \ o
xpectation

in the physical and stochastic domains

e Preliminary study mesh adaptivity in the g
physical space with spectral/p-adaptivity
in the stochastic space

e Target of consideration of geometric ) verance

uncertainty where unstructured meshes —_—
will be critical
= Developments
e Stochastic space error estimators
e Basis and sample reduction strategies
« UQ driven load balancing

Adapted Mesh

N
FASTMATH 43



In Situ Visualization and Data Analytics

= Solvers scaled to 3M processes producing 10TB/s need in
situ tools to gain insight to avoid the high cost involved with

saving data
e Substantial progress made to date in
live, reconfigurable, in situ visualization Ezg?db'e,
 Effort now focused on user Insight
steering and data analytics
= Target in situ operations Q

* Live, reconfigurable in —
situ data analytics )

e Live, analyst-guided grid adaptation

e Scalable data reduction techniques

e Live, reconfigurable problem definition, including geometry

e Live, parameter sensitivity analysis for immersive simulation

-
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Parallel Unstructured Mesh Infrastructure

Key unstructured mesh technology needed by applications

= Effective parallel mesh representation for adaptive mesh

control and geometry interaction provided by PUMI
= Base parallel functions i“teggz‘:@ﬁ;pa”
o Partitioned mesh control and modificationproci | Proc j
* Read only copies for application needspo

e Associated data, grouping, etc.

vﬂ—iﬂ M;
¢
‘ib "-ﬁd /
" o 7 intra-process part
Geometric model Partition model Distributed mesh boundary

-
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Mesh Generation, Adaptation and Optimization
- 0000000/

Mesh Generation

= Automatically mesh complex domains — should work |
directly from CAD, image data, etc. e

= Use tools like Gmsh, Simmetrix, etc. |\
Mesh Adaptation must o5
= Use a posteriori information to improve mesh
= Account for curved geometry (fixed and evolving)
= Support general, and specific, anisotropic adaptatlon

Mesh Shape Optimization

= Control element shapes as needed by the various = ||
discretization methods for maintaining accuracy and efflc:lency

Parallel execution of all three functions critical on large meshes




General Mesh Modification for Mesh Adaptation

= Driven by an anisotropic mesh size field that can be set by any
combination of criteria

= Employ a “complete set” of mesh modification operations to
alter the mesh into one that matches the given mesh size field
= Advantages
e Supports general anisotropic meshes
e Can obtain level of accuracy desired
e Can deal with any level of geometric domain complexity

e Solution transfer can be applied incrementally - provides
more control to satisfy conservation constraints

&9 0-HI0 S

Edge split face split Edge collapse Double split collapse to remove sliver

-
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Mesh Adaptation Status

= Applied to very large scale models
— 92B elements on 3.1M processes
on % million cores

= |ocal solution transfer supported
through callback

= Effective storage of solution
fields on meshes

= Supports adaptation with

boundary layer meshes = == \SE\\,‘A‘\‘% —
5 & =¥ q:\ > = — '- }&E\\\‘\‘\SK§\\\\
’ﬂ‘{a ( \ \

SN
SiNvaeg

'!'L ‘L
ONVAS
I\ AR

&‘a\

N
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Mesh Adaptation Status

= Supports adaptation of curved
elements

= Adaptation based on multiple
criteria, examples

» Level sets at interfaces 5 o
e Tracking particles : B - |
* Discretization errors i L
 Controlling element : ( |

shape in evolving

1 .‘

49




Attached Parallel Fields (APF)

—
= Attached Parallel Fields (APF)

= Effective storage of solution fields on

= Supports mesh field operations
* Interrogation
e Differentiation
* Integration
 Interpolation/projection
e Mesh-to-mesh transfer
e Local solution transfer

= Example operations
e Adaptive expansion of Fields from 2D to 3D in M3D-C1
e History-dependent integration point fields

N
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Dynamic Load Balancing

-
= Purpose: to rebalance load during mesh modification and
before each key step in the parallel workflow

e Equal "work load” with minimum inter-process
communications 9500

= FASTMath load balancing tools 3000
o Zoltan/Zoltan2 libraries

_ + HYPERGRAPH

provide multiple dynamic § ¥ 5
partitioners with general control : GATN AR NS S
g . . § Wy ¥ :'v '_:.. A1 ﬂ: .’:. ."‘{'. bk
of partition objects and weights = %3] PRI A T
o EnGPar diffusive multi-criteria s . sy 8 L
g . s ¥ * 1% t8 & o .'.‘w'- 12 ¥,
partition improvement ‘
e XtraPuLP scalable graph 0 32768 6556 08304 131072
L . art number 104
partitioning Number of mesh elements in each
== of 128Ki parts

AN
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Zoltan/Zoltan2 suite of partitioners supports a wide range of

applications
.

= Geometric: parts contain physically close objects

e Fast to compute - good for dynamic load
balancing

e Applications: Particle methods, contact
detection, adaptive mesh refinement,
architecture-aware task mapping

 Recursive Coordinate/lnertial Bisection,
MultiJagged, Space Filling Curve

MultiJagged partition of a
particle simulation

= Topology-based: parts contain topologically connected objects

o Explicitly model communication costs = higher quality
partitions

e Applications: Mesh-based methods,
linear systems, circuits, social networks

e Graph (interfaces to XtraPuLP,
ParMETIS, Scotch)

 Hypergraph
= ypergrap Row-based partition of a sparse

- matrix via graph partitioning
T MATH 52




PuLP / XtraPuLP provide scalable graph partitioning for

multicore and distributed memory systems
- 0000000/

= PuLP: Shared-memory multi-objective/constraint partitioning

= XtraPuLP: Distributed implementation of PuLP for large-
scale and distributed graph processing applications

= Designedto ...
e balance both graph vertices and edges
e minimize total and maximum °£
communication g«
= Effective for irregular graphs and meshes .

containing latent ‘community’ properties;
network analysis; information graph processing

= |nterface in Zoltan2

= Library and source at:
https://github.com/HPCGraphAnalysis/PuLP




Dynamic Load Balancing for Adaptive Workflows

At >16Ki ranks, existing tools providing multi-level graph
methods consume too much memory and fail; geometric
methods have high cuts and are inefficient for analysis.

An approach that combines existing methods with ParMA
diffusive improvement accounts for multiple criteria:

B Accounts for DOF on any mesh entity
B Analysis and partitioning is quicker

Goal of current EnGPar developments is to generalize methods
B Take advantage of graph methods and new hardware

W Broaden the areas of application to new applications
(mesh based and others)



Partitioning to 1M Parts

Multiple tools needed to maintain partition quality at scale

Mesh Generation/Adaptationl

B Local and global topological and geometric methods
B ParMA quickly reduces large imbalances :
and improves part shape
Partitioning 1.6B element mesh from 128K to
1M parts (1.5k elms/part) then running ParMA.

B Global RIB - 103 sec, ParMA - 20 sec:
209% vitx imb reduced to 6%, elm imb up
to 4%, 5.5% reduction in avg vix per part [ Jobal

ParMETIS RIB
B Local ParMETIS - 9.0 sec, ParMA - 9.4

F

elm

split factor \\T
>1

Ioéal
ParMETIS

sec results in: 63% vitx imb reduced to

5%, 12% elm imb reduced to 4%, F T
and 2% reduction in avg vix per part DOF holders

Partitioning 12.9B element mesh from 128K (< 7% imb)
to 1Mi parts (12k elms/part) then running ParMA.

ParMA
targetting
DOF holders

|

B Local ParMETIS - 60 sec, ParMA - 36 sec results in:

35% vitx imb to 5%, 11% elm imb to 5%, and 0.6% reduction [ot aaiysis

“me  Inavg vix per part




Operation on Accelerator Supported Systems

-
EnGPar based on more standard graph operations than ParMA

B GPU based breath first traversals

Timing comparison of OpenCL
scg_int_unroll is 5 times faster = BFS kernels on NVIDIA 1080ti

than csr on 28M graph and up
to 11 times faster than serial

push on Intel Xeon (not shown). : o g B ™
_’f-? ‘907 116
Developments: ll II

m Different layouts
(CSR, Sell-C-Sigma), - ,‘j’f‘”,’f |
support migration S

B Accelerate selection using coloring
MW Focus on pipelined kernel implementations for FPGAs

rement (higher is better)

p



EnGPar for Conforming Meshes

Tests run on billion element mesh
on Mira BlueGene/Q
B Global ParMETIS part k-way to 8Ki
B Local ParMETIS part k-way from 8Ki
to 128Ki, 256Ki, and 512Ki parts
Imbalances after running
EnGPar vtx>elm are shown

B Creating the 512Ki partition from
8Ki parts takes 147 seconds with
ParMETIS (including migration)

B EnGPar reduces a 53% vertex
imbalance to 5% in 7 seconds on
912Ki processes. ParMA requires
17 seconds.

Element Imbalance

Vertex Imbalance

1.08

1.07 |
1.06

1.05

1.04 |
1.03
1.02
1.01

1.5 |

1.4 |

1.3 |

1.2

1.1 ¢

ParMA =
EnGPar ==
Initial
Tolerance
A A A
\ W A 4

A—/

F’arMA -
EnGPar =@=
Initial
Tolerance
- - i
4 W —
128 256 512

Processes(Ki)



Parallel Unstructured Mesh PIC — PUMIpic

Current approaches have copy of entire mesh on each process

PUMIpic supports a distributed mesh
B Employ large overlaps to avoid communication during push
B All particle information accessed through the mesh

[ Particle Push (update x, v) \

dx
dt
dv

=DV

dat
/~ Field to Particle A= 1E + v X BGD %{g Charge Deposition

(mesh — particle) S (particle — mesh)
/\Q‘ Red and Blue designate
\\ / \ quantities associated with

particles and mesh, resp.

\}/_\/
k E(x) - E(x), B(x) > B(x) Field solve on mesh \ P — p (O /
with new RHS
b\ & V2 (x) = 4 mp(x)
—A C— _.i, . E(x) = —Vp(x)

58
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Parallel Unstructured Mesh PIC — PUMIpic

= Components interacting with mesh

e Mesh distribution

e Particle migration

e Adjacency search

e Charge-to-mesh mapping
e Field-to-Particle mapping
* Dynamic load balancing
e Continuum solve

= Builds on parallel unstructured

mesh infrastructure

= Developing set of components

to be integrated into applications
o XGC - Gyrokinetic Code

e GITR - Impurity Transport
TMATH « M3D-C1 — Core Plasma

milliseconds

mes in

Total Search Timings on Sampled Compute Ranks

\&y

SN \ NV

Compute Ranks

B Adjacency searc h XGC1 grid searc h

Require knowledge of
element that particle is in
after push
m Particle motion small per
time step
m Using mesh adjacencies
on distributed mesh
m Overall >4 times

improvement 5



Construction of Distributed Mesh
-
= Steps to construct PICparts:

e Define non-overlapping mesh partition considering the needs of
the physics/numerics of the PIC code

e Add overlap to safely ensure particles remain on PICpart during
a push

e Evaluate PICpart safe zone: Defined as elements for which
particles are “safe” for next push (no communication) — must be
at least original core, preferably larger

= After a Push particles that move out of a safe zone element
must be migrated into a copy of element in the safe zone on
another PICpart

SRR,

NS4
274
oisrs!

A}
%

INN “‘ /
VAVAVAY:
i

NS
Vv ey
g

JAVAVAVAVAY,
vmmAm‘

A PICpart core — Bufter elements

minimum safe zone added APICpart g9



Dynamic Load balancing

Load balance can be lost as particles migrate

Use EnGPar to migrate particles for better load balance

B Construct subgraphs connecting processes
for each overlapping safe zone

B Set the weights of vertices to be the number of particles
in the elements for the overlapping safe zone

B Diffusively migrate weight :
(# of particles) in each
subgraph until processes
are balanced

Safe zone overlap for ABD

P A - Overlapping safe zones between parts A,B,C,
FASTMATH and D near the A-B boundary 61



PUMIpic for XGC Gyrokinetic Code

= XGC uses a 2D poloidal plane mesh con3|der|ng partlcle paths

e Mesh distribution takes advantage
of physics defined model/mesh

o Separate parallel field solve on
each poloidal plane /\A/\

= XGC gyro-averaging 4 p
for Charge-to-Mesh
= PETSc used for field solve

e Solves on each plane

e Mesh partitioned over
Nranks/Npianes ranks

e Ranks for a given plane form MPI
sub-communicators

ranks

Group 1
Group 0 [Rank 16~31]
[Rank 0~15]

Plafie 1

T N Two-level partition for solver
FASTMATH (left) and particle push (right)



Building In-Memory Parallel Workflows

-
A scalable workflow requires effective component coupling

* Avoid file-based information passing

— On massively parallel systems 1/O dominates power
consumption

— Parallel file system technologies lag behind performance
of processors and interconnects

— Unlike compute nodes, the file system resources are
shared and performance can vary significantly

 Use APIs and data-streams to keep inter-component
information transfers and control in on-process memory

— Component implementation drives the selection of an in-
memory coupling approach

— Link component libraries into a single executable

'MATH 63



Creation of Parallel Adaptive Loops

e
Parallel data and services are the core

= Geometric model topology for domain linkage
= Mesh topology — it must be distributed
= Simulation fields distributed over geometric model and

mesh
. Physics and Model Parameters Input Domain Definition with Attributes
= Partition control _
Solutioglljransfer constraints q lnon‘”;anc'I%g
. model constru
u Dynamlc Ioad : . Mesh Generation
. . Solution . and/or Adaptation geometric
balancing required Transfer interrogation
. PDE’s and
at mU|t|p|e StepS discretization a
i methods fields i '
- API!S tO Ilnk tO mesh size Parallel Data & Services | Domain
orrection
« CAD Indicator Mesh Topology/Shape geometry updates
* Mesh generation meSh
: wit [—
and adaptat|0n S —— ield Postprocessing/
e E ti ti Mesh-Based Visualization
rror estimation Analysis ‘. Dynamic Load Balancing | >

calculated fields mesh with fields

_e* etc
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Parallel Adaptive Simulation Workflows

,,,,,,,

* Automation and adaptive methods critical
to reliable simulations

= [n-memory examples

e MFEM - High order
FE framework

e PHASTA — FE for NS

e FUN3D -FV CFD

e Proteus — multiphase FE
e Albany — FE framework

« ACE3P — High order FE
electromagnetics

« M3D-C1 - FE based MHD -
e Nektar++ — High order FE flow Fr' T 1T T 1V

Fields i@’ patrticle“accelerator

e AL 38

S in beam frame moving at speed of light



Application interactions — Accelerator EM

-
OmegadP Electro Magnetic Solver (second-order curved meshes)

Initial mesh with Final mesh with

126K elements A 380K elements

-

efield_Magnitude

000 750 150 225
I

efield_Magnitude

000 7580 150 225
-

30.0

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with
~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements,
(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right)

-

T shows the first eigenmode of the electric field on the final (adapted) mesh.
FASTMATH 66



Application interactions — Land Ice

= FELIX, a component of the Albany
framework is the analysis code

= Omega_h parallel mesh adaptation

IS integrated with Albany to do:
= Estimate error
= Adapt the mesh

= |ce sheet mesh is modified to
minimize degrees of freedom

= Field of interest is the ice sheet
velocity




Application interactions — RF Fusion

= Accurate RF simulations require

Detailed antenna CAD geometry
CAD geometry defeaturing
Extracted physics curves from EFIT
Faceted surface from coupled mesh

Analysis geometry combining CAD,
physics geometry and faceted surface

Well controlled 3D meshes for
accurate FE calculations in MFEM

Integration with up-stream and down-
stream simulation codes

Simplified antenna array and
plasma surface merged into
reactor geometry and meshed



Integration of PUMI/MeshAdapt into MFEM

MFEM ideally suited to address RF simulation needs

e Higher convergence rates of high-order methods
can effectively deliver needed level of accuracy

 Well demonstrated scalability
* Frequency domain EM solver developed
Components integrated

e Curve straight sided meshes — includes mesh topology
modification — just curving often yields invalid elements)

Element geometry inflation up to order 6

 PUMI parallel mesh management

e Curved mesh adaptation based on mesh modification
* EngPar for mesh partition improvement

N
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Geometry and Meshing for RF Simulations

De-featuring Antenna CAD:
- Models have unneeded details & . sl

« SimModeler provides tools ; A S

to “de-feature” CAD models T

e Bolts, mounts & capping holes
removed

Combining Geometry:

* Import components:
— De-featured CAD assemblies
— EFIT curves for SOL (psi = 1.05)
— TORIC outer surface mesh

* Create rotated surfaces from cross section
* Assemble components into analysis geometry

A ‘ -
FASTMATH 70



Geometry and Meshing for RF Simulations

e Mesh controls set on Analysis Geometry

e Mesh generation — linear or
or quadratic curved meshed

e Order inflation up to 6" order

AV
AN UV,

Linear mesh
8M elements

o
I
oV AN

N

Eawer.
i
%7

D
EAVATAVE S
2 NININANZSY

\Z

ey GO
A
'4.‘ AV VAT A

Za

NNT

TAVY

Quadratic
mesh

2.5M elements

8M elements mesh
with refined SOL
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Hands-on Exercise: Workflow Introduction

Exercising Simmetrix and PUMI tools for model preparation and

https://xsdk-project.github.io/ATPESC2018HandsOnlLessons/lessons/pumi/

q“‘

_—.
FEASTMATH 72



MFEM - Extra Slides
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Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh
topology, basis, and geometry/physics components:

A=P'G'BT" DBGP

global domain sub-domains elements quadrature D
all (shared) dofs device (local) dofs element dofs point values q
P G B
+ — —
_ LR - » - - — . e .o .o e —
Pr . .o . . GT . .. . .o Br
T-vector L-vector E-vector Q-vector

* partial assembly = store only D, evaluate B (tensor-product structure)
* Dbetter representation than A: optimal memory, near-optimal FLOPs
* purely algebraic, applicable to many apps
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CEED high-order benchmarks (BPs)

* CEED's bake-off problems (BPs) are high-order kernels/benchmarks
designed to test and compare the performance of high-order codes.

BP1: Solve {Mu=f}, where {M} is the mass matrix, q=p+2

BP2: Solve the vector system {Mu,=f;} with {M} from BP1, g=p+2

e o e o e o e o
wopaalj Jo sealbaq

Processors

BP3: Solve {Au=f}, where {A} is the Poisson operator, g=p+2

BP4: Solve the vector system {Au,=f} with {A} from BP3, q=p+2

BP5: Solve {Au=f}, where {A} is the Poisson operator, g=p+1

wopaal} jo seaibag

BP6: Solve the vector system {Au,=f} with {A} from BP3, q=p+1 e

* Compared Nek and MFEM implementations on BG/Q, KNLs, GPUs.

[Processors

* Community involvement — deal.ii, interested in seeing your results. ,
BP terminology: T- and E-

. . vectors of HO dofs
* Goalis to learn from each other, benefit all CEED-enabled apps.

github.com/ceed/benchmarks
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Tensorized partial assembly

By = %’(%) - (p%f((] )90@2 ( ) Bklanzzz Uk1k2 BkmBkz’uV’lW = U= BldV(Bld)

p — order, d — mesh dim, O(p%) — dofs 500 1=
Assemb g Partial Assembly
ly 8
= 100 1
Full Matrix 2d 3d - EE
Assem b|y 0 (P ) 0 (p ) 0 (p ) % Full Matrix Assembly
5
= ull Assem. empl. ( s)
Partlal 0( d) 0( d) 0( d+1) ° _—:—_ EartjAAssem.cg::Ter:pl.2(2P§8CCP;JUS)
p p p —4— Part. Assem. OCCA-Enabled (2 P8 CPUs)
Assembly —=- Part. Assem. OCCA-Enabled (1 P100 GPU)
S
Order
Storage and floating point operation scaling for Poisson CG solve performance with different
different assembly types assembly types (higher is better)

Full matrix performance drops sharply at high orders while partial assembly scales well!
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