
ATPESC Numerical Software Track

ODE/DAE Integrators and Nonlinear Solvers

Presented to
ATPESC 2018 Participants

Barry Smith
Argonne Distinguished Fellow
Mathematics and Computer Science Division
Argonne National Laboratory
Q Center, St. Charles, IL (USA)
Date 08//06/2018

1 / 25

Importance of Numerical ODE/DAE Solvers

Needed for almost all time-dependent simulation

Analytic solutions are rarely of practical use

Different problems require fundamentally different solution techniques

Large differences in efficiency depending on the method used

2 / 25

Two main HPC ODE/DAE Solver Packages

SUNDIALS - Lawrence Livermore National Laboratory

PETSc - Argonne National Laboratory

Trilinos - Sandia National Laboratory - has some limited integrators

3 / 25

ODE/DAEs

M(t, u)ut + F (t, u) = G(t, u)

u(0) = g

M(t, u) - mass matrix

F (t, u) - stiff portion of equation

G(t, u) - nonstiff portion

Linear example

ut −Au = 0

4 / 25

Euler Scheme

un+1 − un

∆t
= G(t, un)

un+1 = un + ∆tG(t, un)

5 / 25

From PDE to ODE

ut = uxx

u(0) = u(2π) = 0

u(0, x) =
∑
m

αm sin(mx)

Analytic solution

u(t, x) =
∑
m

αme
−m2t sin(mx)

6 / 25

From PDE to ODE

Semi-discrete form

(ui)t =
ui+1 − 2ui + ui−1

(∆x)2

u0 = uN = 0

Fully discrete form with Euler’s method

un+1
i = un

i +
∆t

(∆x)2
(un

i+1 − 2un
i + un

i−1)

u0
i = gi

7 / 25

Stability: Initial Solution

8 / 25

Stability: Stable Solution

9 / 25

Stability: Unstable Solution

10 / 25

Stability

un+1
i = un

i +
∆t

(∆x)2
(un

i+1 − 2un
i + un

i−1)

Consider a solution of the form un
i = sin(mi∆x). Does it grow or shrink as we integrate in time?

sin(mi∆x) +
∆t

(∆x)2
(sin(m(i+ 1)∆x) − 2 sin(mi∆x) + sin(m(i− 1)∆x))

sin(mi∆x) +
2∆t

(∆x)2
(sin(mi∆x) cos(m∆x) + cos(mi∆x) sin(m∆x)−

2 sin(mi∆x) + sin(mi∆x) cos(m∆x) − cos(mi∆x) sin(m∆x))

sin(mi∆x) +
2∆t

(∆x)2
sin(mi∆x)(cos(m∆x) − 1)

11 / 25

Stability

−1 ≤ sin(mi∆x)(1 +
2∆t

(∆x)2
(cos(m∆x) − 1)) ≤ 1

−1 ≤ 1 +
2∆t

(∆x)2
(−2)

∆t

(∆x)2
≤ 1/2.

Courant-Friedrichs-Lewy (CFL) condition

12 / 25

Stiffness

“The stepsize needed to maintain stability of the forward Euler method is much smaller than that
required to represent the solution accurately” – U. Ascher and L. Petzold

13 / 25

Backward Euler: Implicit Schemes

M(t, un)
un+1 − un

∆t
+ F (t, un+1) = 0

Unconditionally stable, proof, do the same analysis as for Euler and observe that the solution never
grows independent of ∆t and ∆x.

14 / 25

Implicit Explicit Schemes: A Cartoon

Treat the stiff portion of the equation implicitly and the rest explicitly

M(t, un)
un+1 − un

∆t
+ F (t, un+1) = G(t, un)

15 / 25

Differential Algebraic Equations (DAE)

M(t, u, w)ut + F (t, u, w) = G(t, u, w)

H(t, u, w) = 0

u(0) = g

w(0) = h

16 / 25

Multistep and Multistage Schemes

Approximate the time derivative with higher order finite differences

multistep - Use previous solutions (steps) to approximate the time derivatives

multistage - Use new intermediate solutions (stages) to approximate the time derivatives

17 / 25

Adaptive Time Stepping:

Estimate the local truncation error induced by the finite differencing in time at each time step by
integrating again with a higher order scheme

Adjust the time-step to keep the local truncation error below a prescribed value

May decrease or increase the time step

Can lead to much more efficient (and accurate) computation of the solution

18 / 25

Exercise I: Properties of Time Steppings:

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/time_
integrators

19 / 25

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/time_integrators
https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/time_integrators

Newton’s Method:

For implicit methods one needs to solve nonlinear systems

Q(w) = 0.

From Taylor series

Q(w + δw) = Q(w) + JQ(w)δw + ... = 0

δw = −JQ(w)−1Q(w)

wm+1 = wm − JQ(wm)−1Q(ww)

20 / 25

Exercise II: Quadratic and Mesh Independence convergence of Newton’s method

21 / 25

PETSc/TAO:		
Portable,	Extensible	Toolkit	for	Scien9fic	
Computa9on	/	Toolkit	for	Advanced	Op9miza9on	

Scalable algebraic solvers for PDEs. Encapsulate
parallelism in high-level objects. Active & supported
user community. Full API from Fortran, C/C++, Python.

https://www.mcs.anl.gov/petsc

PETSc provides the backbone of
diverse scientific applications.
clockwise from upper left: hydrology,
cardiology, fusion, multiphase steel,
relativistic matter, ice sheet modeling

§  Easy customization and
composability of solvers at
runtime
—  Enables optimality via flexible

combinations of physics,
algorithmics, architectures

—  Try new algorithms by
composing new/existing
algorithms (multilevel, domain
decomposition, splitting, etc.)

§  Portability & performance
—  Largest DOE machines, also

clusters, laptops
—  Thousands of users worldwide

Precondi)oners	

Krylov	Subspace	Solvers	

Nonlinear	Algebraic	Solvers	

Time	Integrators	

Computa)on	&	
Communica)on	Kernels		

Op)miza)on	

	
	
	
	
	
	
Domain-		
Specific	
Interfaces	

	
	
	
	
	
	

Structured	Mesh	
Unstructured	Mesh	
Quadtree	/	Octree	

Networks	

Vectors	 Matrices	Index	Sets	

22 / 25

PETSc:		Pla*orm	for	experimenta5on	
•  No	op%mality	without	interplay	among	physics,	

algorithmics,	and	architectures		
•  Need	algebraic	solvers	to	be:	

–  Composable:	Separately	developed	solvers	may	be	easily	combined,	by	
non-experts,	to	form	a	more	powerful	solver.	

–  Hierarchical:	Outer	solvers	may	iterate	over	all	variables	for	a	global	
problem,	while	inner	solvers	handle	smaller	subsets	of	physics,	smaller	
physical	subdomains,	or	coarser	meshes.	

–  Nested:	Outer	solvers	call	nested	inner	solvers.	
–  Extensible:	Users	can	easily	customize/extend.	

•  Many	solver	configura5ons	can	be	set	at	run5me	to	avoid	needing	to	
recompile.	

1	
23 / 25

1	

PETSc/TAO	capabili0es	

	
	
	
	
	
	

	
	
	
	
	
	

			PDE	Constrained														Adjoint	Based																Deriva0ve	Free											Others				

Infrastructure	networks,	e.g.,	electrical,	gas,	water	

Compressed	Sparse	Row	(AIJ)												Block	AIJ																Matrix	Blocks	(MatNest)		
				Symmetric	Block	AIJ																											Dense																	GPU		and	Phread	Matrices						

Blocks	(by	field)														Addi0ve	Schwarz													ILU/ICC										Schur	Complement						
Algebraic	Mul0grid							Geometric	Mul0grid					App-specific														Others	

Pipeline	methods										GMRES								Chebyshev								BiCG-Stabilized													CG		
Hierarchical	Krylov										LSQR											SYMMLQ																	TFQMR																	Others											

Line	Search	Newton								Quasi-Newton	(BFGS)												Nonlinear	Gauss	Seidel					Nonlinear	CG	
Trust	Region	Newton				Nonlinear	Mul0grid	(FAS)							Successive	Subs0tu0ons				Ac0ve	Set	VI	

	Pseudo-transient								Runge-Ku[a										Strong	Stability	Preserving									Others	
		General	Linear																		IMEX																								Rosenbrock-W										

MPI,	OpenMP,	MPI-IO,	CUDA,	Pthreads,	BLAS,	LAPACK,	etc.	

Structured	mesh	refinement	

Simple	domains	and	discre0za0ons,	e.g.,	finite	difference	methods	
Complex	domains	with	finite	element	and	finite	volume	discre0za0ons	

Precondi*oners	

Krylov	Subspace	Solvers	

Nonlinear	Algebraic	Solvers	

Time	Integrators	

Computa*on	&	
Communica*on	Kernels		

Op*miza*on	

	
	
	
	
	
	
Domain-		
Specific	
Interfaces	

	
	
	
	
	
	

Structured	Mesh	
Unstructured	Mesh	
Quadtree	/	Octree	

Networks	

Vectors	 Matrices	Index	Sets	

	Func*onality																												More	Details	(Algorithms,	Data	Structures,	etc.)	

24 / 25

Take Away

PETSc and SUNDIALS provide a wide variety of high quality, scalable ODE/DAE integrators

PDEs can be converted to ODEs/DAE via discretization in space and then solved using
ODE/DAE libraries

Stiffness is an important property of ODEs and effects the appropriate schemes to use

Adaptive time-stepping provides an inexpensive way to to efficiently integrate ODEs/DAEs

25 / 25

