
Larry Meadows, Intel Corporation

ATPESC, St Charles, IL

August 7, 2018

Outline

What is Event Based Sampling

System-wide Performance

Core Performance

Vtune usage on Theta: https://www.alcf.anl.gov/user-guides/vtune-xc40

4

Statistical Profiling with Event Based Sampling

The hardware contains programmable counters to count events (e.g.,
Instructions Retired, HW Thread Clocks, Cache Misses).

One or more counters are programmed to interrupt after some threshold
number of a particular event (sample-after value).

At each interrupt the Instruction Pointer (IP) is recorded, along with the HW
Context for which the counter overflowed.

Symbolic information in the executable(s) is used to map IP to some meaningful
source or object code entity: instruction, line number, loop, function, shared
object.

The profiler creates a statistical profile with aggregated counts by bucket item.

5

Profiler Data Sources

a.out

Executable Program

ld.so
libc.so

...
(shared objects)

Symbolic Information

a.out
ld.so
libc.so

...
(shared objects)

Function foo@0x700 size
320 bytes

libc.so loaded @0x20000000

Dynamic information

Static information

foo

Sample Database Over Time

Each sample includes:
instruction pointer
hardware context (thread)
currently running thread ID
Hardware timestamp

Hardware event interrupts after N occurrences (N=14,000,000 here)

6

Example Profile
CPU_CLK_UNHALTED.THREAD

INST_RETIRED.ANY
Computed Metric

Source Code Information

7

Steps to get a Profile

Include –g (and -O) when compiling to get source-code mapping information:

icpc –O –g myprog.cc –o myprog

Collect with the command-line tool:

amplxe-cl –collect advanced-hotspots –r myresult ./myprog

Analyze with the GUI:

amplxe-gui myresult

Or with a command-line report

amplxe-cl –report hotspots –r myresult

8

Dimensionality of Profiling Analysis

Four dimensions to consider when analyzing an application profile:

• Code Entities

• Software Execution Entities

• Hardware Execution Entities

• Time

The first three have a natural nested structure imposed by the programming
model, execution model, and hardware. Time does not have a natural structure,
but annotation can impose structure on time.

9

Code Entities

InstructionsInstructions

Basic Blocks

Functions/Lines/Loops

Shared Objects (aka modules)• Compiler generates instructions
organized into functions and
source lines exposed by symbolic
information in object files.

• Linker generates shared objects (or
executables) by combining object
files.

• Basic Blocks and Loops are usually
determined by static object code
analysis.

10

Software Execution Entities

InstructionsThreads

Processes

Single System Image
• A thread is an execution context

containing an instruction pointer (IP)
and associated context.

• A process contains one or more
threads.

• A single system image is a shared
address space that contains multiple
processes.

11

Hardware Execution Entities

InstructionsHW Context

Core

Socket

Node• A HW Context is the hardware entity that
executes instructions. It contains an IP,
registers, and associated state.

• A core consists of one or more HW contexts
that share resources. Instructions from more
than one HW context can be in flight at the
same time.

• A socket consists of multiple cores with a
cache-coherent interconnect and a memory
interface. It may also contain other resources
(e.g. L3 cache, PCI-E interface).

• A node is a cache-coherent single address
space consisting of one or more sockets and
possibly other resources.

12

Time

Time can be measured in two ways:

• CPU time. This is the time for which a given thread was executing. This is a
thread-specific quantity.

• Elapsed time. This is traditional wallclock (e.g., stopwatch) time.

• If CPU time < Elapsed time then the thread was not executing for the entire
interval.

Note that we can measure elapsed time on a given thread by reading a wallclock-
equivalent timer (RDTSC) on that thread (thread-specific markers).

Time has no natural structure, but in any given application, there will be a natural
division into phases (e.g., OpenMP parallel regions). Dynamic instrumentation
(tracing) can be used to segment a profile into these phases.

13

A Word on Quantization

Typical sample-after (overflow) values are 1e6 to 10e6 events.

The CPU can do a lot of things in 10 million cycles; sampling implicitly assumes
that it was doing the same thing the whole time.

Be very careful about drawing conclusions obtained by zooming in too closely.

Multiplexing events onto HW event counters exacerbates this effect.

Corollary: be very careful about interpreting profile counts for individual
instructions and even source lines.

15

Understanding 4D Data

Typical flat profile summarizes data by reducing over Time, HW Execution Entities,
and SW Execution Entities and grouping by function.

Vtune Amplifier generalizes this by providing hierarchical groupings, e.g.,
Thread/Module/Function reduces over Time and groups first by Thread, then by
Module, then by Function within the module. You can explore these in the GUI.

We can also generate 2D views using Pivot Tables by selecting a row dimension and
a column dimension, deciding on grouping attributes for each, and reducing over the
remaining dimensions. For example:

• Pivot by function is a function-level profile

• Pivot function by thread exposes load imbalance

• Pivot process by cpuid exposes multiple processes on same HW thread

• Pivot thread by cpuid exposes thread migration

16

Vtune Hierarchical Grouping

17

A Little Pandas

Generate the report:
amplxe-cl -report hw-events -r $1 -group-by=cpuid,core,thread,function \

-format=csv -csv-delimiter=tab -inline-mode=off

Create a pandas data frame:
import pandas as pd
df = pd.read_csv(file, sep='\t', index_col=False)

Generate a pivot table:
p = pd.pivot_table(df,

values='Hardware Event Count:CPU_CLK_UNHALTED.REF_TSC',
index='Thread',
columns='Module',
aggfunc=np.sum,
fill_value=0)

18

Custom Grouping of Code Entities

Modules are often too coarse grained, functions too fine-grained. Use pattern
matching and add a column to the dataframe to summarize more usefully (e.g.,
application, MKL, threading overhead, linux):

Thread MKLDNN App TBB OS Other
infer (TID: 1737) 12.28 2.47 2.62 0.34 0.02
TBB Worker Thread (TID: 1786) 12.22 2.36 0.93 0.31 0.00
TBB Worker Thread (TID: 1776) 12.07 2.44 0.84 0.33 0.00
TBB Worker Thread (TID: 1790) 11.83 2.47 0.95 0.30 0.00
TBB Worker Thread (TID: 1767) 11.86 2.49 0.88 0.27 0.00
TBB Worker Thread (TID: 1781) 11.62 2.39 1.01 0.28 0.00
TBB Worker Thread (TID: 1753) 11.29 2.56 1.09 0.25 0.00
...
TBB Worker Thread (TID: 1765) 10.01 2.60 1.38 0.28 0.00
TBB Worker Thread (TID: 1756) 10.14 2.37 1.40 0.31 0.00
TBB Worker Thread (TID: 1739) 9.82 2.60 1.50 0.29 0.00
TBB Worker Thread (TID: 1759) 10.12 2.45 1.35 0.27 0.00
TBB Worker Thread (TID: 1768) 9.78 2.68 1.45 0.27 0.00
TBB Worker Thread (TID: 1746) 10.02 2.53 1.34 0.30 0.00
TBB Worker Thread (TID: 1744) 10.02 2.54 1.37 0.24 0.00
TBB Worker Thread (TID: 1779) 10.01 2.44 1.36 0.27 0.00
TBB Worker Thread (TID: 1742) 9.56 2.61 1.51 0.24 0.00
vmlinux (TID: 0) 0.00 0.00 0.00 8.19 0.00
Other Threads (78) 0.00 0.00 0.30 0.04 0.00

0.00 5.00 10.00 15.00 20.00

infer (TID: 1737)
TBB Worker Thread (TID: 1786)
TBB Worker Thread (TID: 1776)
TBB Worker Thread (TID: 1790)
TBB Worker Thread (TID: 1767)
TBB Worker Thread (TID: 1781)
TBB Worker Thread (TID: 1753)

...
TBB Worker Thread (TID: 1765)
TBB Worker Thread (TID: 1756)
TBB Worker Thread (TID: 1739)
TBB Worker Thread (TID: 1759)
TBB Worker Thread (TID: 1768)
TBB Worker Thread (TID: 1746)
TBB Worker Thread (TID: 1744)
TBB Worker Thread (TID: 1779)
TBB Worker Thread (TID: 1742)

vmlinux (TID: 0)
Other Threads (78)

1e9 cycles

MKLDNN App TBB OS Other

19

Adding Structure to the Time Dimension

Add instrumentation to the code to record time stamps for ‘interesting’
intervals, e.g. OpenMP parallel regions (Vtune Amplifier has those built in), user-
defined tasks, solver calls, CNN convolutions. Vtune Amplifier can import this
data, see:

https://software.intel.com/en-us/vtune-amplifier-help-external-data-import

Example: Use MKLDNN_VERBOSE to print log for each operation with start and
end TSC, convert with python script, and import into existing result:

MKLDNN_VERBOSE=2 amplxe-cl –collect advanced-hotspots sh run.sh >Log

python parse.py Log

amplxe-cl -r r000ah –import mkldnn-hostname-ortce-skl3.csv

https://software.intel.com/en-us/vtune-amplifier-help-external-data-import

20

Example: Metrics by MKLDNN call

Frame Domain INST_RETIRED.ANY CPU_CLK_UNHALTED.THREAD CPU_CLK_UNHALTED.REF_TSC CPI Turbo Frame Time Frame Count
ECF19 178,825,000,000 132,496,100,000 142,772,500,000 0.741 0.93 1.76 100
ECF20 93,478,900,000 65,727,100,000 71,442,600,000 0.703 0.92 0.88 100
ECF17 69,250,700,000 53,900,500,000 58,666,100,000 0.778 0.92 0.72 100
ECF1 52,451,500,000 43,752,900,000 47,913,600,000 0.834 0.91 0.59 100
ECF13 14,280,700,000 33,037,200,000 32,062,000,000 2.313 1.03 0.39 100
ECF18 36,864,400,000 28,664,900,000 31,595,100,000 0.778 0.91 0.39 100
ECF15 28,975,400,000 28,853,500,000 31,146,600,000 0.996 0.93 0.39 100
ECF0 32,296,600,000 26,969,800,000 29,014,500,000 0.835 0.93 0.36 100
ECF14 9,887,700,000 31,700,900,000 28,267,000,000 3.206 1.12 0.35 100
ECF21 36,406,700,000 25,711,700,000 28,135,900,000 0.706 0.91 0.35 100
ECF7 6,216,900,000 23,379,500,000 21,318,700,000 3.761 1.10 0.26 100
ECF16 18,377,000,000 17,894,000,000 19,499,400,000 0.974 0.92 0.24 100
ECF3 17,381,100,000 16,721,000,000 18,160,800,000 0.962 0.92 0.22 100
EPF2 1,285,700,000 17,544,400,000 15,957,400,000 13.646 1.10 0.20 100
ECF11 4,123,900,000 9,832,500,000 10,228,100,000 2.384 0.96 0.13 100
ECF12 3,454,600,000 8,995,300,000 9,434,600,000 2.604 0.95 0.12 100
ECF5 7,316,300,000 8,038,500,000 8,574,400,000 1.099 0.94 0.11 100
ECF9 1,973,400,000 7,659,000,000 7,516,400,000 3.881 1.02 0.09 100
EPF4 471,500,000 5,556,800,000 5,437,200,000 11.785 1.02 0.07 100
EPF6 167,900,000 2,279,300,000 2,343,700,000 13.575 0.97 0.03 100
EPF8 85,100,000 1,087,900,000 975,200,000 12.784 1.12 0.01 100
EPF10 41,400,000 409,400,000 409,400,000 9.889 1.00 0.01 100
[No frame domain -
Outside any frame] 33,846,800,000 66,950,700,000 60,122,000,000 1.978 1.11

amplxe-cl -report hw-events -group-by frame-domain -r r000ah/ -format csv -csv-delimiter comma -q >report.csv

22

Microarchitecture Review

Common elements between KNL and Intel® Xeon® processors (SKX/BDW):

Multithreaded cores with private L1 caches connected by a mesh

Key differences:

Two KNL cores share one L2, SKX/BDW cores have private L2

SKX/BDW has an L3 cache, KNL does not

SKX/BDW systems are multi-socket, KNL is single-socket

SKX/BDW can retire 4 IPC, KNL can retire 2 IPC

KNL MCDRAM has much higher bandwidth than SKX/BDW DDR

BDW does not have AVX-512

23

Processor Performance

Standard metric is retired Instructions Per Cycle (IPC)

• KNL max is 2 IPC per core. SKX/BDW max is 4 IPC per core.

• Vtune amplifier displays the reciprocal CPI

• Computed as ∑"#$"%&'() *+,-./0-*1+,∑"#$"%&'() 02034,

• instructions == INST_RETIRED.ANY cycles == CPU_CLK_UNHALTED.THREAD

Note: IPC per core depends on how many HW threads per core (nHT) are running:

56701.4 = 567-9.4:;*nHT

76501.4 = 765-9.4:;/nHT

Vtune Amplifier always displays 765-9.4:;

This is why all scaling graphs should be in
terms of cores, not threads, and should show
the number of threads per core used.

24

Common Impediments to Perfect IPC

Bandwidth Bound

• Beware of BW bound code that doesn’t need to be (e.g., fails to optimize for reuse in L2
cache)

• Lack of vectorization, lack of streaming stores, missing SW prefetches may limit BW

Other Impediments

• Code may be BW bound from L1 or L2 cache as well as from memory.

• Micro-architectural decisions may limit IPC (e.g., some VPU instructions issue on only one
port)

• Real dependences may limit IPC (one instruction needs to wait for another’s result)

• Code may be front-end bound (instruction fetch and decode, branch prediction)

25

Vtune Amplifier Pre-defined Collection Types

-collect advanced-hotspots

CPI, Turbo frequency

-collect memory-access

Memory bandwidth, L2 hit/miss information

-collect general-exploration

Top-down cycle accounting

General exploration multiplexes many events onto the hardware counters. This
can lead to inaccurate results especially on short-running program segments. It
is more useful on SKX/BDW than on KNL.

26

Finding Bottlenecks

Two general methods:

Top-down breaks execution into 4 domains: FE Bound, Bad Speculation, BE
Bound, and Retiring.

https://www.researchgate.net/publication/269302126_A_Top-
Down_method_for_performance_analysis_and_counters_architecture

Bottleneck analysis looks for common bottlenecks, typically some kind of
bandwidth, and compares performance against expected peak.

https://www.researchgate.net/publication/269302126_A_Top-Down_method_for_performance_analysis_and_counters_architecture

27

Instruction Roofline Guides BW Analysis
Generalization of roofline model using instructions rather than flops

193.60

387.2

1.00

10.00

100.00

1000.00

0.0625 0.125 0.25 0.5 1 2 4 8

G
IP

S

Instructions/Byle

Instruction Roofline

bw 2IPC 4IPC

E5-2699 v4 @ 2.20GHz
2 socket 22 cores/socket
BW = 115GB/Sec
Peak GIPS: IPC*44*2.2 GHz
(ignores frequency changes)

28

Top-Down Analysis Categories

FE Bound: Decoder can’t deliver uops fast enough. Usually I$ or really big
codes.

Bad Speculation: uops that are speculatively executed but the result is never
used.

Retiring: What you want! Normal retirement of uops

BE Bound: Everything else. Stalls due to data unavailable and no more OOO

Vtune Amplifier general exploration has good documentation on this. The GUI
tooltips give the actual names of the events.

29

Top-Down Analysis Example
Metric Formula
FE Bound IDQ_UOPS_NOT_DELIVERED.CORE /

(4*(CPU_CLK_UNHALTED.THREAD/2))
Bad Speculation (UOPS_ISSUED.ANY-

UOPS_RETIRED.RETIRE_SLOTS+4*INT_MISC.RECOVERY_CYCLES) /
(4*CPU_CLK_UNHALTED.THREAD/2)

Retiring UOPS_RETIRED.RETIRE_SLOTS /
(4*(CPU_CLK_UNHALTED.THREAD/2))

BE Bound 1 - (FE Bound + Bad Speculation + Retiring)

Vtune Command:
amplxe-cl -collect-with runsa \
-knob event-config=\
CPU_CLK_UNHALTED.REF_TSC,CPU_CLK_UNHALTED.THREAD,\
INST_RETIRED.ANY,\
IDQ_UOPS_NOT_DELIVERED.CORE,INT_MISC.RECOVERY_CYCLES,\
UOPS_RETIRED.RETIRE_SLOTS,UOPS_ISSUED.ANY \
<command>

30

Metrics for KNL
Metric Formula Ideal

L2 input BW 64*(L2_REQUESTS.MISS + L2_PREFETCHER.ALLOC_XQ) / elapsed_time 380 GB/sec

L2 Hit Rate

MEM_UOPS_RETIRED.L2_HIT_LOADS /
(MEM_UOPS_RETIRED.L2_HIT_LOADS+MEM_UOPS_RETIRED.L2_MISS_L
OADS) 100%

L1 input lines
(2*L2_REQUESTS.MISS + 3* L2_PREFETCHER.ALLOC_XQ
+ L2_REQUESTS.REFERENCE) / CPU_CLK_UNHALTED.THREAD 0.46

L1 Hit Rate

(MEM_UOPS_RETIRED.ALL_LOADS -
MEM_UOPS_RETIRED.L1_MISS_LOADS) /
MEM_UOPS_RETIRED.ALL_LOADS

100%

SIMD operations/clock
(UOPS_RETIRED.SCALAR_SIMD+UOPS_RETIRED.PACKED_SIMD) /
CPU_CLK_UNHALTED.THREAD 2

FE Bound NO_ALLOC_CYCLES.NOT_DELIVERED / CPU_CLK_UNHALTED.THREAD <5%

Branch Mispredict Bound NO_ALLOC_CYCLES.MISPREDICTS / CPU_CLK_UNHALTED.THREAD <5%

Frequency Ratio CPU_CLK_UNHALTED.THREAD/CPU_CLK_UNHALTED.REF_TSC
varies with

SKU

32

Performance Analysis and Improvement

1. Measure the performance of the application running on the system

2. Estimate the peak performance of the application

3. If performance is near enough to peak, you are done

4. Rewrite the code (and possibly algorithm) and go to step 1

Here we cover #1 and #2

33

Measuring Performance

Instrumentation

• Modify the code to read timers or counters around interesting code regions

• Summarize the data and print it

Sampling

• Program timers or counters to interrupt the program periodically

• Use the address of the interrupted instruction to build a statistical profile

We primarily discuss sampling but include information on instrumentation
techniques

34

Hardware+OS View of Program Execution

Each HW thread executes instructions from a single OS process at a time

The process executing on a given thread may change (voluntary or involuntary
context switch)

For full understanding of machine performance must see all instructions
executed on all HW threads

amplxe-cl –analyze-system or

perf –a

Otherwise you may miss important events perturbing the execution of your
program.

35

Two Different Ways to Collect and View a Profile
Using Hardware Counters
Intel® Vtune™ Amplifier

amplxe-cl –collect advanced-hotspots –r myresult ./a.out

amplxe-gui myresult # GUI

amplxe-cl –report hotspots –r myresult # CLI

Linux perf

perf record –e cycles –e ref-cycles –e instructions ./a.out

perf report # GUI or CLI

perf script # Raw data

36

Why use Vtune Amplifier?

Linux perf has higher overhead than the driver used by Vtune Amplifier

• perf –a has lower overhead but requires root permissions or
perf_event_paranoid=0

Vtune Amplifier has superior GUI and report generation

• See all events on one grid

• Powerful grouping and filtering capabilities

• Command-line reports can use all grouping and filtering capabilities

We primarily focus on Vtune Amplifier with some discussion of perf

37

Other Tools

Several third party tools can provide useful information:

HPCToolkit (Rice); Tau (ParaTools); MAP (ARM); PAPI (UTK); others...

Linux kernel tracing (ftrace) for detailed kernel-level performance analysis.

Linux statistics (via top, ps, sysfs and procfs psuedo-files) for detailed node-
level performance analysis like memory usage, overactive daemons, and I/O
performance.

perf stat for a quick check on hardware event counts and metrics.

Don’t forget the shell’s time command!

Shared Memory Parallelism Review

Multiple hardware threads cooperate to solve a problem

Use a parallel language like OpenMP or OpenCL, or

Use a parallel library like TBB

Underlying implementation uses pthreads on linux:

• Pthreads are essentially linux processes sharing an address space

• Linux scheduling decides which hardware threads run which pthreads

• It may be necessary to affinitize (bind) pthreads to specific hardware threads
to avoid linux scheduler issues

• Normally we assume that we own some or all of the cores on the machine

40

Goal is linear scaling as cores are
added:

If one core takes time P, then N cores
should take time P/N

Using multiple threads per core can
help to hide latency but does not add
resources:

2 threads on only 1 core is very
different than 2 threads on 2 separate
cores

Plot scaling as shown:

Parallel Scaling

1.00E+09

1.00E+10

1.00E+11

1 4 16 64

O
pt

io
ns

/S
ec

#cores

eu-options scaling, KNL

1T 2T 4T

41

Impediments to Parallel Scaling

Algorithmic

• Load Imbalance

• Serial code

• Synchronization

Architectural:

• Cache contention

• Mesh bandwidth

• Memory bandwidth

• NUMA issues

42

Identifying Load Imbalance

Performance is typically determined by the slowest thread

Serial code is an extreme case of load imbalance (only one thread)

Key insight: look at clocks executed per thread.
Long-running task Parallel for

Master thread waiting for
completion of long-running task

43

Synchronization

On Intel® Architecture Processors synchronization is always through memory.

Synchronization implies transfers from cache on one core to cache on another.

Implicit synchronization occurs because of the programming model, e.g.,
starting and ending a TBB task.

Explicit synchronization occurs due to a programmer action, e.g., an atomic
operation.

False synchronization (aka false sharing) occurs when two cores access the
same cache line but different parts of that cache line.

Note that cache-to-cache transfers can occur even with read-only data; this is
not synchronization but still can have performance implications.

44

Identifying Synchronization

Significant time in runtime shared objects (modules, e.g. libtbb.so)

But that might also be due to load imbalance (waiting for work)

Significant time in or near atomic operations or compare-and-set loops

May be necessary to look at assembly

lock prefix is an atomic
operation

45

Bandwidth (KNL)

Memory bandwidth: on Intel® Xeon Phi™ 7250

DDR: ~90 GB/sec, can saturate with ~10 cores

MCDRAM: ~490 GB/sec, can saturate with ~64 cores

MCDRAM is asymmetric, read-only BW is ~380GB/sec, write-only is ~200GB/sec

Mesh bandwidth: includes cache-to-cache transfers and memory transfers

Rule of thumb: ~380 GB/sec max read BW

We can measure mesh read BW with per-thread hardware events:

64*(L2_REQUESTS.MISS + L2_PREFETCHER.ALLOC_XQ) / elapsed_time

46

Bandwidth (Intel® Xeon® processors)

Each socket has its own DDR

Cross-socket traffic is through QPI/UPI and has much less bandwidth that DDR
(NUMA effects)

Memory BW is dependent on number of DIMMS and memory frequency. On
Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz with 2400MHz DDR4:

Stream Triad 113GB/sec (56GB/sec/socket)

SKX gets ~105GB/sec/socket

47

KNL STREAM Benchmark Scaling

10000

100000

1 2 4 8 16 32 64

G
B/

se
c

#cores

MCDRAM Stream Triad

1T 2t 4T

10000

100000

1 2 4 8 16 32 64

G
B/

se
c

#cores

DDR Stream Triad

1T 2T 4T

48

One socket, local memory One socket, remote memory

BDW Bandwidth Scaling

10000

100000

1 2 4 8 16 32

G
B/

Se
c

#cores

1T 2T

10000

100000

1 2 4 8 16 32

G
B/

Se
c

#cores

1T 2T

49

Vtune Amplifier Data, KNL
amplxe-cl –collect memory-access

Using core hardware events: amplxe-cl –collect-with runsa –knob event-config=...

CPU_CLK_UNHALTED.THREAD 28,798,043,197

CPU_CLK_UNHALTED.REF_TSC 28,802,043,203
L2_REQUESTS.MISS 144,602,169
L2_PREFETCHER.ALLOC_XQ 1,531,807,219
Lines in 1,676,409,388
Elapsed Time 0.321451375
Read BW (GB/sec) 334

-collect memory-access uses
uncore counters at the memory
controllers. The data can’t be
localized to a particular code
segment.

Core hardware events can be
localized to specific code segments
but can measure only read
bandwidth and include cache-to-
cache transfers. This data is for the
STREAM Triad loop only.

50

Vtune Amplifier Data, BDW
amplxe-cl –collect memory-access

Note two packages (sockets)
Data from uncore counters

CPU_CLK_UNHALTED.THREAD 156,602,234,903
CPU_CLK_UNHALTED.REF_TSC 132,510,198,765
L2_LINES_IN.ALL 1,668,750,061
Time (s) 1.368907012
L2 input BW 78.01845046

Using core hardware events: amplxe-cl –collect-with runsa –knob event-config=...

L2 input bandwidth for stream triad

51

Command Line Reports and Pivot Tables

Generate a report with all useful columns:
amplxe-cl -report hw-events -r $1 \

–group-by=process,package,cpuid,core,thread,function \
-format=csv -csv-delimiter=comma -inline-mode=off

Pivot, summarizing by addition, to see relationships. Examples:

Pivot by function is a function-level profile

Pivot function by thread exposes load imbalance

Pivot process by cpuid exposes multiple processes on same HW thread

Pivot thread by cpuid exposes thread migration

52

Pivot Table Example

eu-options-AVX2 md127_raid10 vmlinux md127_resync
core_0 2,380,400,000 4,400,000
core_1 2,292,400,000 6,600,000
core_10 2,285,800,000 24,200,000
core_2 2,292,400,000 0
core_20 2,013,000,000 268,400,000 0
core_4 2,292,400,000 147,400,000 6,600,000
Grand Total 99,723,800,000 415,800,000 143,000,000 116,600,000

(part of a) Pivot Table of core by process
Entries are CPU_CLK_UNHALTED.REF_TSC (elapsed time)

Note processes md127_* and vmlinux running on same cores as application

53

Legal Disclaimers
This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at
intel.com, or from the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance
and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect
future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a
number of risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the
annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm
whether referenced data are accurate.

Intel, the Intel logo, Atom, Xeon, Xeon Phi, 3D Xpoint, Iris Pro and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names
and brands may be claimed as the property of others.

© 2016 Intel Corporation.

http://www.intel.com/performance

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimers

Optimization Notice

