
© 2018 Arm Limited

Ryan Hulguin

ryan.hulguin@arm.com

HPC Applications Engineer

Debugging and
Profiling HPC
Applications

ATPESC

August 7, 2018

© 2018 Arm Limited2

Agenda

• General Debugging and Profiling Advice

• Arm Software for Debugging and Profiling

• Debugging with DDT

• Profiling with MAP

• Theta Specific Settings

© 2018 Arm Limited3

Debugging

Transforming a broken program to a working one

How? TRAFFIC!

•Track the problem

•Reproduce

•Automate - (and simplify) the test case

•Find origins – where could the “infection” be from?

•Focus – examine the origins

• Isolate – narrow down the origins

•Correct – fix and verify the test case is successful

© 2018 Arm Limited4

Profiling
Profiling is central to understanding and improving application performance.

No

No

Profile
Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

CPU

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

© 2018 Arm Limited5

Performance Improvement Workflow

Get a realistic
test case

Profile your
code

Look for the
significant

What is the
nature of the

problem?

Apply brain to
solve

Think of the
future

© 2018 Arm Limited

Arm Software

© 2018 Arm Limited7

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to parallel applications running at petascale)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

© 2018 Arm Limited8

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

© 2018 Arm Limited9

Run and ensure application correctness
Combination of debugging and re-compilation

• Ensure application correctness with Arm DDT scalable debugger
• Integrate with continuous integration system.
• Use version control to track changes and leverage Forge’s built-in VCS support.

Examples:
$> ddt --offline mpirun –n 48 ./example
$> ddt mpirun –n 48 ./example

© 2018 Arm Limited10

Understand application behaviour
Set a reference for future work

• Choose a representative test case with known behavior
• Analyse performance with Arm Performance Reports

Example:
$> perf-report mpirun –n 16 mmult_c.exe

Is it
performant?

© 2018 Arm Limited11

Optimize the application for Arm

• Measure all performance aspects with Arm MAP parallel profiler
• Identify bottlenecks and rewrite some code for better performance

Examples:
$> map --profile mpirun –n 48 ./example

if not, use the
Arm MAP profiler
for optimization

© 2018 Arm Limited

Debugging with DDT

© 2018 Arm Limited13

Arm DDT – The Debugger

Who had a rogue behaviour ?

• Merges stacks from processes and threads

Where did it happen?

• leaps to source

How did it happen?

• Diagnostic messages

• Some faults evident instantly from source

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where, How,

Why

Fix

© 2018 Arm Limited14

Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug flag typically -g

It is recommended to turn off optimization flags i.e. –O0

Leaving optimizations turned on can cause the compiler to optimize out some variables and
even functions making it more difficult to debug

© 2018 Arm Limited15

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?

© 2018 Arm Limited16

Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can pause and
investigate

© 2018 Arm Limited17

Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to tab(4198128,0)
which causes the segmentation fault.

i is not used, and x and y are not initialized

© 2018 Arm Limited18

It works… Well, most of the time

A strange behaviour where the
application “sometimes” crashes is a
typical sign of a memory bug

Arm DDT is able to force the crash
to happen

•I am buggy
AND not
buggy. How
about that?

SCHRODIN
BUG !

© 2018 Arm Limited19

Advanced Memory Debugging

© 2018 Arm Limited20

Heap debugging options available

basic
•Detect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect
•Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes of
freed memory with a
known value.

alloc-blank
•Initialise the bytes of
new allocations with a
known value.

check-heap
•Check for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

Thorough

See user-guide:

Chapter 12.3.2

© 2018 Arm Limited21

Guard pages (aka “Electric Fences”)

4 kBytes

(typically

)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

• A powerful feature…:

• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:

• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

• Beware the additional memory usage cost

© 2018 Arm Limited22

Ah… Integer
overflow!

© 2018 Arm Limited23

New Bugs from Latest Changes

© 2018 Arm Limited24

caption

Track Your Changes in a Logbook

© 2018 Arm Limited25

Inspect AVX Registers

© 2018 Arm Limited

Arm DDT Demo

© 2018 Arm Limited27

Five great things to try with Allinea DDT

The scalable print
alternative

Stop on variable change
Static analysis warnings

on code errors

Detect read/write
beyond array bounds

Detect stale memory
allocations

© 2018 Arm Limited28

Arm DDT cheat sheet

Load the environment module

• $ module load forge/18.2.1

Prepare the code

• $ cc -O0 -g myapp.c -o myapp.exe

Start Arm DDT in interactive mode

• $ ddt aprun -n 8 ./myapp.exe arg1 arg2

Or use the reverse connect mechanism

• On the login node:

• $ ddt &

• (or use the remote client) <- Preferred method

• Then, edit the job script to run the following command and submit:

• ddt --connect aprun -n 8 ./myapp.exe arg1 arg2

© 2018 Arm Limited

Profiling with MAP

© 2018 Arm Limited30

Small data files

<5% slowdown

No instrumentation

No recompilation

Arm MAP – The Profiler

© 2018 Arm Limited31

Glean Deep Insight from our Source-Level Profiler

Track memory usage across the
entire application over time

Spot MPI and OpenMP
imbalance and overhead

Optimize CPU memory and
vectorization in loops

Detect and diagnose I/O
bottlenecks at real scale

© 2018 Arm Limited32

Initial profile of CloverLeaf shows surprisingly unequal I/O
Each I/O operation should take about the same time, but it’s not the case.

© 2018 Arm Limited33

Symptoms and causes of the I/O issues
Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.

• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.

© 2018 Arm Limited34

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

© 2018 Arm Limited35

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.

• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.

© 2018 Arm Limited36

Arm MAP cheat sheet
Load the environment module (manually specify version)

• $ module load forge/18.2.1

Generate the wrapper libraries (static is default on Theta)

• $ make-profiler-libraries --lib-type=static

Unload Darshan module (It wraps MPI calls which cannot be used with MAP)

• $ module unload darshan

Follow the instructions displayed to prepare the code

• $ cc -O3 -g myapp.c -o myapp.exe -Wl,@/path/to/profiler_wrapper_libraries/allinea-profiler.ld

• Edit the job script to run Arm MAP in “profile” mode

• $ map --profile aprun -n 8 ./myapp.exe arg1 arg2

Open the results

• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

• (or load the corresponding file using the remote client connected to the remote system or locally)

© 2018 Arm Limited37

Six Great Things to Try with Allinea MAP

Find the peak memory
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP
regions make sense

Improve memory access
Restructure for
vectorization

© 2018 Arm Limited

Theta Specific Settings

© 2018 Arm Limited39

Configure the remote client
Install the Arm Remote Client

• Go to : https://developer.arm.com/products/software-development-

tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client

• Open your Remote Client

• Create a new connection: Remote Launch  Configure  Add

– Hostname: <username>@theta.alcf.anl.gov

– Remote installation directory:

/soft/debuggers/ddt

• ALCF Documentation available at

https://tinyurl.com/debugging-cpw-2018-05

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://tinyurl.com/debugging-cpw-2018-05

© 2018 Arm Limited40

Static Linking Extra Steps

To enable advanced memory debugging features, you must link explicitly against our
memory libraries

Simply add the link flags to your Makefile, or however appropriate

lflags = -L/soft/debuggers/ddt/lib/64 -Wl,--undefined=malloc -ldmalloc -Wl,--allow-multiple-
definition

In order to profile, static profiler libraries must be created with the command
make-profiler-libraries --lib-type=static

Instructions to link the libraries will be provided after running the above command

© 2018 Arm Limited41

Sample usage Commands

Theta

rpn=64
ddt aprun -n $((COBALT_JOBSIZE*rpn)) -N $rpn -d $depth -j 1 -cc depth ./myProgram.exe

map aprun -n $((COBALT_JOBSIZE*rpn)) -N $rpn -d $depth -j 1 -cc depth ./myProgram.exe

© 2018 Arm Limited

Questions?

4343 © 2018 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

© 2018 Arm Limited44

Arm Forge Hands-on Examples

© 2018 Arm Limited45

Hands-on files

The files for the examples that follow can be obtained on theta at the
following location

/projects/Comp_Perf_Workshop/allinea/allinea_handson.tgz

This extracts 2 directories: demonstrations and allinea_examples

The demonstrations are there for you to play with and ask
questions

The examples are more like guided exercises

© 2018 Arm Limited46

Launch Remote client

Be sure to launch the remote client first

Using a remote launch on your local machine is preferred

Alternatively you can forward X11 when connecting to the login node of theta, and launch it
there

module load forge/18.2.1

forge &

If you accidentally close this window (easy to do), you will have to start it again

© 2018 Arm Limited47

Hands-on Examples

These examples are meant to be run on Theta in an interactive session

qsub -I -q training -t 120 -n 1 --proccount 64

Once a session has been allocated, load the Forge module

module load forge/18.2.1

© 2018 Arm Limited48

Before Generating MAP profiles

Static profiler libraries need to be created before MAP profiles can be generated

Go to the allinea_examples/wrapper directory

Run

make-profiler-libraries --lib-type=static

The Makefiles for the examples have already been modified to look for the profiler libraries
in this directory

© 2018 Arm Limited49

Go to exercise 1 – [Bug] Solver is not converging

• Exercise objectives

• Familiarize with DDT user interface

• Inspect values of u using multidimensional array viewer

• Set watchpoint for diffnorm_global

• Set breakpoint at line 89

• Typical run commands to use:
$> cd allinea_examples/1_debug/

$> make

• Key DDT commands
On the login node:

$> forge &

In a submission file/interactive job:

$> ddt --connect –n 4 ./jacobi.exe

© 2018 Arm Limited50

Matrix Multiplication Example

Master process

Slave process 1

Slave process n-1

C = A x B + C

© 2018 Arm Limited51

Matrix Multiplication Example Continued

C = A x B + C

• The "Master" process initializes

matrices A, B and C

• The "Master" process sends the

whole matrix B along with slices of

A and C to the "Slave" processes

• The "Master" and "Slave"

processes perform the matrix

multiplication function on the

domain that has been given to them

and everyone computes a slice of C

• The "Master" process retrieves all

slices of C and puts the result

matrix C together

© 2018 Arm Limited52

Use Allinea Forge to vectorize your codes

© 2018 Arm Limited53

Use Forge to optimize memory access

© 2018 Arm Limited54

Go to exercise 2
• Exercise objectives

• Generate initial baseline profile

• Ensure the matrices are stored in the MCDRAM (if applicable)

• Fix the inefficient memory access issues

• Further enable vectorization with Intel compiler flag -xMIC-AVX512

• Generate profile with MAP after applying changes

• Typical run commands to use:
$> cd allinea_examples/2_memory_accesses/

$> make

• Key Map commands
On the login node:

$> forge &

In a submission file/interactive job:

$> map --profile -n 64 ./mmult2_c.exe

$> map --connect ./mmult2_c_*.map

© 2018 Arm Limited55

How to identify load balancing issues?
Problem: “one or some process(es) have too much work”

Clues visible in synchronization

• MPI Collective calls (MPI_Barrier, _Broadcast, etc.) with no actual data transfer

• Idle cores where threads are stuck in locks/mutexes

Process/Thread 0

Process/Thread 1

Process/Thread 2

Process/Thread 3

Sync.
Start

Sync.
Stop

INACTIVE

INACTIVE

INACTIVE

Total runtime: 100 sec
Total CPU time available: 400 sec
Total CPU time actually used: 250 sec
Efficiency: 62.5% of the machine time

INACTIVE

Process/Thread 0

Process/Thread 1

Process/Thread 2

Process/Thread 3

Sync.
Start

Sync.
Stop

Total runtime: 100 sec
Total CPU time available: 400 sec
Total CPU time actually used: 300 sec
Efficiency: 75% of the machine time

© 2018 Arm Limited56

Use Allinea MAP to balance your workloads

© 2018 Arm Limited57

Go to exercise 3

• Exercise objectives

• Expose workload imbalance issues in the code (preferably on 2 nodes)

• Make suggestions to fix the problem

• Typical run commands to use:
$> cd allinea_examples/3_imbalance/

$> make

• Key Map commands

$> map --profile -n 64 ./mmult4_c.exe
$> map --connect mmult4_c_*.map

© 2018 Arm Limited58

Go to exercise 4

Sometimes optimizations introduce bugs of their own

• Exercise objectives

• Use ddt in offline mode to detect memory leaks

• Examine the debug_report.txt file

• Fix the leak

• Generate new report

• Typical run commands to use:
$> cd allinea_examples/4_memory_leak/

$> make

• Key ddt commands
$> ddt --offline --mem-debug --output=debug_report.txt -n 64 ./mmult6_c.exe

© 2018 Arm Limited59

Solutions to exercises

Solutions to these exercises can be found in the .solution directory in each of the
exercises

