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Debugging

Transforming a broken program to a working one

How? TRAFFIC!

•Track the problem

•Reproduce

•Automate - (and simplify) the test case

•Find origins – where could the “infection” be from?

•Focus – examine the origins

• Isolate – narrow down the origins

•Correct – fix and verify the test case is successful
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Profiling
Profiling is central to understanding and improving application performance.
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Performance Improvement Workflow

Get a realistic 
test case

Profile your 
code

Look for the 
significant

What is the 
nature of the 

problem?   

Apply brain to 
solve

Think of the 
future
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Arm Software



© 2018 Arm Limited7

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to parallel applications running at petascale)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable 

Commercially supported
by Arm
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Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users 
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm
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Run and ensure application correctness
Combination of debugging and re-compilation

• Ensure application correctness with Arm DDT scalable debugger
• Integrate with continuous integration system.
• Use version control to track changes and leverage Forge’s built-in VCS support.

Examples:
$> ddt --offline mpirun –n 48 ./example
$> ddt mpirun –n 48 ./example
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Understand application behaviour
Set a reference for future work

• Choose a representative test case with known behavior
• Analyse performance with Arm Performance Reports

Example:
$> perf-report mpirun –n 16 mmult_c.exe

Is it 
performant? 
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Optimize the application for Arm

• Measure all performance aspects with Arm MAP parallel profiler
• Identify bottlenecks and rewrite some code for better performance

Examples:
$> map --profile mpirun –n 48 ./example

if not, use the 
Arm MAP profiler 
for optimization
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Debugging with DDT
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Arm DDT – The Debugger

Who had a rogue behaviour ?

• Merges stacks from processes and threads

Where did it happen? 

• leaps to source

How did it happen? 

• Diagnostic messages

• Some faults evident instantly from source

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Arm tools

Identify 
a problem

Gather info
Who, Where, How, 

Why

Fix
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Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug flag typically -g

It is recommended to turn off optimization flags i.e. –O0

Leaving optimizations turned on can cause the compiler to optimize out some variables and 
even functions making it more difficult to debug



© 2018 Arm Limited15

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?
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Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can pause and 
investigate
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Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to tab(4198128,0) 
which causes the segmentation fault.

i is not used, and x and y are not initialized
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It works… Well, most of the time

A strange behaviour where the 
application “sometimes” crashes is a 
typical sign of a memory bug

Arm DDT is able to force the crash 
to happen

•I am buggy 
AND not 
buggy. How 
about that?

SCHRODIN
BUG !
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Advanced Memory Debugging
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Heap debugging options available

basic
•Detect invalid pointers 
passed to memory 
functions 
(e.g. malloc, free, 
ALLOCATE, 
DEALLOCATE,...) 

check-fence
•Check the end of an 
allocation has not been 
overwritten when it is 
freed. 

free-protect
•Protect freed memory 
(using hardware 
memory protection) so 
subsequent read/writes 
cause a fatal error. 

Added goodiness
•Memory usage, 
statistics, etc. 

Fast free-blank
•Overwrite the bytes of 
freed memory with a 
known value. 

alloc-blank
•Initialise the bytes of 
new allocations with a 
known value.

check-heap
•Check for heap 
corruption (e.g. due to 
writes to invalid 
memory addresses).

realloc-copy
•Always copy data to a 
new pointer when re-
allocating a memory 
allocation (e.g. due to 
realloc)

Balanced check-blank
•Check to see if space 
that was blanked when 
a pointer was 
allocated/freed has 
been overwritten.

check-funcs
•Check the arguments of 
addition functions 
(mostly string 
operations) for invalid 
pointers. 

Thorough

See user-guide:

Chapter 12.3.2
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Guard pages (aka “Electric Fences”)

4 kBytes

(typically

)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

• A powerful feature…:

• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:

• Kernel limitation: up to 32k guard pages max ( “mprotect fails” error)

• Beware the additional memory usage cost
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Ah…   Integer 
overflow!
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New Bugs from Latest Changes
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caption

Track Your Changes in a Logbook
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Inspect AVX Registers
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Arm DDT Demo
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Five great things to try with Allinea DDT

The scalable print 
alternative

Stop on variable change
Static analysis warnings 

on code errors

Detect read/write 
beyond array bounds

Detect stale memory 
allocations
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Arm DDT cheat sheet

Load the environment module

• $ module load forge/18.2.1

Prepare the code

• $ cc -O0 -g myapp.c -o myapp.exe

Start Arm DDT in interactive mode

• $ ddt aprun -n 8 ./myapp.exe arg1 arg2

Or use the reverse connect mechanism

• On the login node:

• $ ddt &

• (or use the remote client) <- Preferred method

• Then, edit the job script to run the following command and submit:

• ddt --connect aprun -n 8 ./myapp.exe arg1 arg2
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Profiling with MAP
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Small data files

<5% slowdown

No instrumentation

No recompilation

Arm MAP – The Profiler
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Glean Deep Insight from our Source-Level Profiler

Track memory usage across the 
entire application over time

Spot MPI and OpenMP 
imbalance and overhead

Optimize CPU memory and 
vectorization in loops

Detect and diagnose I/O 
bottlenecks at real scale
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Initial profile of CloverLeaf shows surprisingly unequal I/O
Each I/O operation should take about the same time, but it’s not the case.
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Symptoms and causes of the I/O issues
Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.

• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.
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Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.
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Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.

• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.
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Arm MAP cheat sheet
Load the environment module (manually specify version)

• $ module load forge/18.2.1

Generate the wrapper libraries (static is default on Theta)

• $ make-profiler-libraries --lib-type=static

Unload Darshan module (It wraps MPI calls which cannot be used with MAP)

• $ module unload darshan

Follow the instructions displayed to prepare the code

• $ cc -O3 -g myapp.c -o myapp.exe -Wl,@/path/to/profiler_wrapper_libraries/allinea-profiler.ld

• Edit the job script to run Arm MAP in “profile” mode

• $ map --profile aprun -n 8 ./myapp.exe arg1 arg2

Open the results

• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

• (or load the corresponding file using the remote client connected to the remote system or locally)
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Six Great Things to Try with Allinea MAP

Find the peak memory 
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP 
regions make sense

Improve memory access
Restructure for 
vectorization
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Theta Specific Settings
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Configure the remote client
Install the Arm Remote Client

• Go to : https://developer.arm.com/products/software-development-

tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client

• Open your Remote Client

• Create a new connection: Remote Launch  Configure  Add 

– Hostname: <username>@theta.alcf.anl.gov

– Remote installation directory: 

/soft/debuggers/ddt

• ALCF Documentation available at

https://tinyurl.com/debugging-cpw-2018-05

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://tinyurl.com/debugging-cpw-2018-05
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Static Linking Extra Steps

To enable advanced memory debugging features, you must link explicitly against our 
memory libraries

Simply add the link flags to your Makefile, or however appropriate

lflags = -L/soft/debuggers/ddt/lib/64 -Wl,--undefined=malloc -ldmalloc -Wl,--allow-multiple-
definition

In order to profile, static profiler libraries must be created with the command
make-profiler-libraries --lib-type=static

Instructions to link the libraries will be provided after running the above command
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Sample usage Commands

Theta

rpn=64
ddt aprun -n $((COBALT_JOBSIZE*rpn)) -N $rpn -d $depth -j 1 -cc depth ./myProgram.exe

map aprun -n $((COBALT_JOBSIZE*rpn)) -N $rpn -d $depth -j 1 -cc depth ./myProgram.exe
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Questions?
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Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद
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Arm Forge Hands-on Examples
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Hands-on files

The files for the examples that follow can be obtained on theta at the 
following location

/projects/Comp_Perf_Workshop/allinea/allinea_handson.tgz

This extracts 2 directories: demonstrations and allinea_examples

The demonstrations are there for you to play with and ask 
questions

The examples are more like guided exercises
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Launch Remote client

Be sure to launch the remote client first

Using a remote launch on your local machine is preferred

Alternatively you can forward X11 when connecting to the login node of theta, and launch it 
there

module load forge/18.2.1

forge &

If you accidentally close this window (easy to do), you will have to start it again
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Hands-on Examples

These examples are meant to be run on Theta in an interactive session

qsub -I -q training -t 120 -n 1 --proccount 64

Once a session has been allocated, load the Forge module

module load forge/18.2.1
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Before Generating MAP profiles

Static profiler libraries need to be created before MAP profiles can be generated

Go to the allinea_examples/wrapper directory

Run

make-profiler-libraries --lib-type=static

The Makefiles for the examples have already been modified to look for the profiler libraries 
in this directory
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Go to exercise 1 – [Bug] Solver is not converging

• Exercise objectives

• Familiarize with DDT user interface

• Inspect values of u using multidimensional array viewer

• Set watchpoint for diffnorm_global

• Set breakpoint at line 89

• Typical run commands to use:
$> cd allinea_examples/1_debug/

$> make

• Key DDT commands
On the login node: 

$> forge &

In a submission file/interactive job:

$> ddt --connect –n 4 ./jacobi.exe
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Matrix Multiplication Example

Master process

Slave process 1

Slave process n-1

C = A x B + C
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Matrix Multiplication Example Continued

C = A x B + C

• The "Master" process initializes

matrices A, B and C

• The "Master" process sends the 

whole matrix B along with slices of 

A and C to the "Slave" processes

• The "Master" and "Slave" 

processes perform the matrix 

multiplication function on the 

domain that has been given to them 

and everyone computes a slice of C

• The "Master" process retrieves all 

slices of C and puts the result 

matrix C together 
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Use Allinea Forge to vectorize your codes
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Use Forge to optimize memory access
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Go to exercise 2
• Exercise objectives

• Generate initial baseline profile

• Ensure the matrices are stored in the MCDRAM (if applicable)

• Fix the inefficient memory access issues

• Further enable vectorization with Intel compiler flag -xMIC-AVX512

• Generate profile with MAP after applying changes

• Typical run commands to use:
$> cd allinea_examples/2_memory_accesses/

$> make

• Key Map commands
On the login node: 

$> forge &

In a submission file/interactive job:

$> map --profile -n 64 ./mmult2_c.exe

$> map --connect ./mmult2_c_*.map
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How to identify load balancing issues?
Problem: “one or some process(es) have too much work”

Clues visible in synchronization

• MPI Collective calls (MPI_Barrier, _Broadcast, etc.) with no actual data transfer

• Idle cores where threads are stuck in locks/mutexes

Process/Thread 0

Process/Thread 1

Process/Thread 2 

Process/Thread 3

Sync.
Start

Sync.
Stop

INACTIVE

INACTIVE

INACTIVE

Total runtime: 100 sec
Total CPU time available: 400 sec
Total CPU time actually used: 250 sec 
Efficiency: 62.5% of the machine time

INACTIVE

Process/Thread 0

Process/Thread 1

Process/Thread 2 

Process/Thread 3

Sync.
Start

Sync.
Stop

Total runtime: 100 sec
Total CPU time available: 400 sec
Total CPU time actually used: 300 sec 
Efficiency: 75% of the machine time
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Use Allinea MAP to balance your workloads
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Go to exercise 3

• Exercise objectives

• Expose workload imbalance issues in the code (preferably on 2 nodes)

• Make suggestions to fix the problem

• Typical run commands to use:
$> cd allinea_examples/3_imbalance/

$> make

• Key Map commands

$> map --profile -n 64 ./mmult4_c.exe
$> map --connect mmult4_c_*.map
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Go to exercise 4

Sometimes optimizations introduce bugs of their own

• Exercise objectives

• Use ddt in offline mode to detect memory leaks

• Examine the debug_report.txt file

• Fix the leak

• Generate new report

• Typical run commands to use:
$> cd allinea_examples/4_memory_leak/

$> make

• Key ddt commands
$> ddt --offline --mem-debug --output=debug_report.txt -n 64 ./mmult6_c.exe



© 2018 Arm Limited59

Solutions to exercises

Solutions to these exercises can be found in the .solution directory in each of the 
exercises


