
Overview of Best Practices in HPC Software Development

Presented to
ATPESC 2018 Participants

Anshu Dubey

Computer Scientist, Mathematics and Computer Science Division
Q Center, St. Charles, IL (USA)
Date 08/08/2018

ATPESC 2018, July 29– August 10, 20172

License, citation, and acknowledgments
License and Citation

• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Anshu Dubey, Overview of Best Practices in HPC Software Development, tutorial, in
Argonne Training Program on Extreme-Scale Computing (ATPESC) 2018. DOI:
10.6084/m9.figshare.6943085.

Acknowledgements

• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific
Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration..

• This work was performed in part at the Argonne National Laboratory, which is managed managed by
UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Good Scientific Process Requires Good Software Practices

Good Software Practices Will Increase Science Productivity

ATPESC 2018, July 29– August 10, 20174

ATPESC 2018, July 29– August 10, 20175

Mitigate Risk But It Is Never Zero

• Quick and dirty development of particle capability in code

• Error in tracking particles resulted in duplicated tags from round-off

• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one

instance when the full process could not be applied because of time constraints.

• Short notice availability of one of the biggest

machines of it’s time

– < 1month to get ready, run was 1.5 weeks

ATPESC 2018, July 29– August 10, 20176

Objectives of the Session

• To bring knowledge of useful software engineering practices to
HPC scientific code developers
– Not to prescribe any set of practices as must use

• Be informative about practices that have worked for some projects
• Emphasis on adoption of practices that help productivity rather than put unsustainable

burden
• Customization as needed – based on information made available

• Your code will live longer than you expect. Prepare for this.

ATPESC 2018, July 29– August 10, 20177

Software Productivity Session
Time Topic Speaker
8:30am-9:15am Objectives and overview Anshu Dubey, ANL

9:15am-10am Workflow, definitions and examples Jared O’Neal, ANL

10:00am-10:30am Break
10:30am-11:30am Agile Methologies David Bernholdt, ORNL

11:30am-12:30pm Licensing David Bernholdt, ORNL

12:30pm-1:30pm Lunch
1:30pm-2:00pm Reproducibility David Bernholdt, ORNL

2:00pm-3.00:pm Verification and testing regime Anshu Dubey, ANL

3:00pm-3:30pm Break
3:30pm-4:30pm Testing, code coverage, CI Jared O’Neal, ANL

4:30pm-5:30pm Refactoring Anshu Dubey, ANL

ATPESC 2018, July 29– August 10, 20178

Heroic Programming

Usually a pejorative term, is used to describe the expenditure of huge amounts of
(coding) effort by talented people to overcome shortcomings in process, project
management, scheduling, architecture or any other shortfalls in the execution of a
software development project in order to complete it. Heroic Programming is often the
only course of action left when poor planning, insufficient funds, and impractical
schedules leave a project stranded and unlikely to complete successfully.

From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming
Many do not see anything wrong with that approach

http://c2.com/cgi/wiki?HeroicProgramming

ATPESC 2018, July 29– August 10, 20179

What is wrong with heroic programming
Scientific results that could be obtained with heroic programming
have run their course, because:

It is not possible for a single person to take on all these roles

Better scientific
understanding

Different roles
and responsibilities

More complex
software

Math model

Numerics

Verification

Performance

ATPESC 2018, July 29– August 10, 201710

In Extreme-Scale science
• Codes aiming for higher fidelity modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is

through separation of concerns
– It is more difficult to work on the same software in different roles

without a software engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software

engineering process

ATPESC 2018, July 29– August 10, 201711

In Extreme-Scale science
• Codes aiming for higher fidelity modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is

through separation of concerns
– It is more difficult to work on the same software in different roles

without a software engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software

engineering process

Supercomputers change fast
Especially Now

ATPESC 2018, July 29– August 10, 201712

Technical Debt

Accretion leads to unmanageable software

• Increases cost of maintenance

• Parts of software may become unusable over time

• Inadequately verified software produces questionable results

• Increases ramp-on time for new developers

• Reduces software and science productivity due to technical debt

Consequence of Choices
Quick and dirty collects interest which means more effort required to add features.

ATPESC 2018, July 29– August 10, 201713

• "... it seems likely that significant software contributions to existing
scientific software projects are not likely to be rewarded through the
traditional reputation economy of science. Together these factors provide
a reason to expect the over-production of independent scientific software
packages, and the underproduction of collaborative projects in which later
academics build on the work of earlier ones."

• Howison & Herbsleb (2011)

ATPESC 2018, July 29– August 10, 201714

Challenges Developing a Scientific Application

Technical
• All parts of the cycle can be under

research
• Requirements change throughout the

lifecycle as knowledge grows
• Verification complicated by floating

point representation
• Real world is messy, so is the

software

Sociological
• Competing priorities and incentives

• Limited resources
• Perception of overhead without

benefit
• Need for interdisciplinary interactions

ATPESC 2018, July 29– August 10, 201715

Customizations For Science Applications

• Testing does not follow specific methods as understood by the
software engineering research community
– The extent and granularity reflective of project priorities and team size

– Larger teams have more formalization

• Lifecycle of science compare to lifecycle of development

• Development model
– Mostly ad-hoc, some are close to agile model, but none follows it

explicitly
– Much more responsive to the needs of the lifecycle

ATPESC 2018, July 29– August 10, 201716

Lifecycle of Scientific Application • Modeling
– Approximations
– Discretizations
– Numerics

• Convergence
• Stability

• Implementation
– Verification

• Expected behavior

– Validation
• Experiment/observ

ation
Numerical

solvers

Validation

Physical World

Equations

Difference
equationsImplementation

Model

Discretize

Verify accuracy
stability

Model
fidelity

Model
fidelity

ATPESC 2018, July 29– August 10, 201717

Software productivity cycle

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

ATPESC 2018, July 29– August 10, 201718

Software Process Best Practices

Baseline
• Invest in extensible code design

• Use version control and automated
testing

• Institute a rigorous verification and
validation regime

• Define coding and testing standards

• Clear and well defined policies for
– Auditing and maintenance

– Distribution and contribution

– Documentation

Desirable
• Provenance and reproducibility

• Lifecycle management

• Open development and frequent
releases

ATPESC 2018, July 29– August 10, 201719

A Useful Resource

https://ideas-productivity.org/resources/howtos/

• ‘What Is’ docs: 2-page characterizations of
important topics for SW projects in computational
science & engineering (CSE)

• ‘How To’ docs: brief sketch of best practices
– Emphasis on ``bite-sized'' topics enables CSE software teams

to consider improvements at a small but impactful scale

• We welcome feedback from the community to help
make these documents more useful

8/7/18 19

https://ideas-productivity.org/resources/howtos/

ATPESC 2018, July 29– August 10, 201720

Other resources
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

8/7/18 20

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://flash.uchicago.edu/cc2012/
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255
http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

ATPESC 2018, July 29– August 10, 201721

Why Community Codes?
• Scientists can focus on developing for their algorithmic needs instead

of getting bogged down by the infrastructural development

• Graduate students do not start developing codes from scratch

– Look at the available public codes and converge on the ones that most meet

their needs

– Look at the effort of customization for their purposes

– Select the public code, and build upon it as they need

8/7/18 21

Important to remember that they still need to understand the components

developed by others that they are using, they just don’t have to actually develop

everything themselves. And this is particularly true of pesky detailed

infrastructure/solvers that are too well understood to have any research

component, but are time consuming to implement right

ATPESC 2018, July 29– August 10, 201722

Why Community Codes Continued
• Researchers can build upon work of others and get further faster,

instead of reinventing the wheel
– Code component re-use
– No need to become an expert in every numerical technique

• More reliable results because of more stress tested code
– Enough eyes looking at the code will find any errors faster
– New implementations take several years to iron out the bugs and deficiencies
– Different users use the code in different ways and stress it in different ways

• Open-source science results in more reproducible results

• Generally good for the credibility

ATPESC 2018, July 29– August 10, 201723

Communities Do Use Community Codes
• Astrophysics, Molecular Dynamics, Chemistry, Climate, etc
• Community/open-source approach more common in areas which

need multi-physics and/or multi-scale
• A visionary sees the benefit of software re-use and releases the code
• Sophistication in modeling advances more rapidly in such

communities
• Others keep their software close for perceived competitive advantage

– Repeated re-invention of wheel
– General advancement of model fidelity slower

ATPESC 2018, July 29– August 10, 201724

• Good software practices are needed for scientific productivity

• Science at extreme-scales is complex and requires multiple expertise

• Software process does need to address reality

• Open codes, community contribution, are a powerful tool

It is extremely important to recognize that science through computing is
only as good as the software that produces it

Questions

