
Verification and Developing a Testing Regime

Presented to
ATPESC 2018 Participants

Anshu Dubey

Computer Scientist, Mathematics and Computer Science Division
Q Center, St. Charles, IL (USA)
Date 08/08/2018

ATPESC 2018, July 29– August 10, 20172

License, citation, and acknowledgments
License and Citation

• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Anshu Dubey, Verification and developing a testing regime, tutorial, in Argonne Training
Program on Extreme-Scale Computing (ATPESC) 2018. DOI: 10.6084/m9.figshare.6943091

Acknowledgements

• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific
Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration..

• This work was performed in part at the Argonne National Laboratory, which is managed managed by
UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

ATPESC 2018, July 29– August 10, 20173

Verification

• Code verification uses tests
– It is much more than a collection of tests

• It is the holistic process through which you ensure that
– Your implementation shows expected behavior,
– Your implementation is consistent with your model,
– Science you are trying to do with the code can be done.

ATPESC 2018, July 29– August 10, 20174

Challenge with Exploratory Software

• Verification implies one knows the outcome
– The outcome is achieved or not achieved

• What if one doesn’t exactly know the outcome?
– Software is meant to understand the expected outcome

ATPESC 2018, July 29– August 10, 20175

Challenge with Scientific Software

This is for
simulations, but
the philosophy
applies to other
computations
too.

Many stages in
the lifecycle have
components that
may themselves

be under
research => need

modificationsNumerical
solvers

Validation

Physical World

Equations

Difference
equationsImplementation

Model

Discretize

Verify accuracy
stability

Model
fidelity

Model
fidelity

ATPESC 2018, July 29– August 10, 20176

Other specific verification challenges

• Integration testing may have hierarchy too
• Particularly true of codes that allow composability in their

configuration
• Codes may incorporate some legacy components

– Its own set of challenges
• No existing tests at any granularity

• Examples – multiphysics application codes that support multiple
domains

ATPESC 2018, July 29– August 10, 20177

Workarounds

• Approach the problem
sideways
– Components can be exercised

against known simpler
applications

– Same applies to combination of
components

• Build a scaffolding of
verification tests to gain
confidence

Unit test

Unit test

Mocked up
dependency

Real dependency

Unit test

Unit test Unit test

Unit test Unit test

Unit test Mocked up dependency

Real dependency

ATPESC 2018, July 29– August 10, 20179

Test Development

• Development of tests and diagnostics goes hand-in-hand with code
development
– Non-trivial to devise good tests, but extremely important
– Compare against simpler analytical or semi-analytical solutions

• They can also form a basis for unit testing

• In addition to testing for “correct” behavior, also test for stability,
convergence, or other such desirable characteristics

ATPESC 2018, July 29– August 10, 201710

Example from Flash

• Against manufactured solution

• Grid ghost cell fill
• Use a known analytical function to initialize

domain

– Use two variables A & B
– Initialize A including guard cells and B

excluding them
– Apply guard cell fill to B

• Works for uniform and adaptive mesh

ATPESC 2018, July 29– August 10, 201711

Example from Flash Equation of State

• Operates in three modes
– Given density and internal energy get pressure
– Given density and pressure get temperature
– Given density of pressure get internal energy

• Use initial conditions from a known problem

• Apply EOS in two different modes – at the end all
variables should be consistent within tolerance

ATPESC 2018, July 29– August 10, 201712

Example from FLASH, scaffolding

• Sedov blast wave
• High pressure at the center
• Shock moves out spherically
• FLASH with AMR and hydro
• Known analytical solution

Though it exercises both mesh, hydro and eos, if
mesh and eos are verified first, then this test

verifies hydro

ATPESC 2018, July 29– August 10, 201713

Building confidence

• First two unit tests are stand-alone

• The third test depends on Grid and Eos
– Not all of Grid functionality it uses is unit tested

• Flux correction in AMR

• If Grid and Eos tests passed and Hydro failed
– If UG version failed then fault is in hydro

– If UG passed and AMR failed the fault is likely in flux correction

ATPESC 2018, July 29– August 10, 201714

Stages and types of verification

• During initial code development
– Accuracy and stability
– Matching the algorithm to the model
– Interoperability of algorithms

• In later stages
– While adding new major capabilities or modifying existing capabilities
– Ongoing maintenance
– Preparing for production

ATPESC 2018, July 29– August 10, 201715

Stages and types of verification

• If refactoring
– Ensuring that behavior remains consistent and expected

• All stages have a mix of automation and human-intervention

Note that the stages apply to the whole code
as well as its components

ATPESC 2018, July 29– August 10, 201716

Test Development

• Development of tests and diagnostics goes hand-in-hand with code
development
– Non-trivial to devise good tests, but extremely important
– Compare against simpler analytical or semi-analytical solutions

• They can also form a basis for unit testing

• In addition to testing for “correct” behavior, also test for stability,
convergence, or other such desirable characteristics

• Many of these tests go into the test-suite

ATPESC 2018, July 29– August 10, 201717

Use of test harnesses

• Essential for large code
– Set up and run tests
– Evaluate test results

• Easy to execute a logical subset of tests
– Pre-push

– Nightly

• Automation of test harness is critical for
– Long-running test suites
– Projects that support many platforms

Jenkins
C-dash
Custom
(FlashTest)

ATPESC 2018, July 29– August 10, 201718

Policies on testing practices

• Must have consistent policy on dealing with failed tests
– Issue tracking

• How quickly does it need to be fixed?
• Who is responsible for fixing it?

• Someone needs to be in charge of watching the test suite

ATPESC 2018, July 29– August 10, 201719

Policies on testing practices

• When refactoring or adding new features, run a regression suite
before checkin
– Be sure to add new regression tests for the new features

• Require a code review before releasing test suite
– Another person may spot issues you didn’t
– Incredibly cost-effective

ATPESC 2018, July 29– August 10, 201720

Maintenance of a test suite

• Testing regime is only useful if it is
– Maintained

• Tests and benchmarks periodically updated
– Monitored regularly

• Can be automated
– Has rapid response to failure

• Tests should pass most of the time

How to evaluate project needs

And devise a testing regime

ATPESC 2018, July 29– August 10, 201722

Why not always use the most stringent testing?

• Effort spent in devising tests and testing regime are a tax on team
resources

• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…

– Necessary oversight not provided

– Defects in code sneak through

ATPESC 2018, July 29– August 10, 201723

Evaluating project needs

• Objectives: expected use of the code

• Team: size and degree of heterogeneity

• Lifecycle stage: new or production or refactoring

• Lifetime: one off or ongoing production

• Complexity: modules and their interactions

ATPESC 2018, July 29– August 10, 201724

Commonalities

• Unit testing is always good
– It is never sufficient

• Verification of expected behavior

• Understanding the range of validity and applicability is always
important
– Especially for individual solvers

ATPESC 2018, July 29– August 10, 201725

Challenges with legacy codes

• Legacy codes can have many gotchas
– Dead code
– Redundant branches

• Interactions between sections of the code may be
unknown

• Can be difficult to differentiate between just bad
code, or bad code for a good reason
– Nested conditionals

Checking for coverage

Code coverage tools are of limited help

ATPESC 2018, July 29– August 10, 201726

An Approach
• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Verify correctness

– Always inject errors to verify that the test is working

Methodology developed for the E3SM project, proving to be
very useful

ATPESC 2018, July 29– August 10, 201727

Selection of tests
• Two purposes

– Regression testing
• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

• A mix of different granularities works well
– Unit tests for isolating component or sub-component level faults
– Integration tests with simple to complex configuration and system

level
– Restart tests

• Rules of thumb
– Simple
– Enable quick pin-pointing

ATPESC 2018, July 29– August 10, 201728

Approach for Test Selection
• Build a matrix

– Physics along rows
– Infrastructure along columns
– Alternative implementations, dimensions, geometry

• Mark <i,j> if test covers corresponding features
• Follow the order

– All unit tests – including full module tests
– Tests representing ongoing productions
– Tests sensitive to perturbations
– Most stringent tests for solvers
– Least complex test to cover remaining spots

ATPESC 2018, July 29– August 10, 201729

Hydro EOS Gravity Burn Particles
AMR CL CL CL CL
UG SV SV SV
Multigrid WD WD WD WD
FFT PT

Tests Symbol
Sedov SV
Cellular CL
Poisson PT
White Dwarf WD

Example

• A test on the same row indicates
interoperability between corresponding
physics

• Similar logic would apply to tests on the
same column for infrastructure

• More goes on, but this is the primary
methodology

Questions

ATPESC 2018, July 29– August 10, 201731

Benefits of testing

• Promotes high-quality software that delivers correct results and
improves confidence

• Increases quality and speed of development, reducing development
and maintenance costs

• Maintains portability to a variety of systems and compilers

• Helps in refactoring
– Avoid introducing new errors when adding new features
– Avoid reintroducing old errors

ATPESC 2018, July 29– August 10, 201732

How common are bugs?

• Bugs per 1000 lines of code (KLOC)
• Industry average for delivered software

– 1-25 errors

• Microsoft Applications Division
– 10-20 defects during in-house testing
– 0.5 in released product

Programs do not acquire bugs as people acquire germs,
by hanging around other buggy programs.
Programmers must insert them.
- Harlan Mills

Code Complete (Steven McConnell)

ATPESC 2018, July 29– August 10, 201733

Why testing is important:
the protein structures of Geoffrey Chang

• Some inherited code flipped two columns of data, inverting an
electron-density map

• Resulted in an incorrect protein structure
• Retracted 5 publications

– One was cited 364 times

• Many papers and grant applications conflicting with his results were
rejected

He found and reported the error himself

ATPESC 2018, July 29– August 10, 201734

Why testing is important:
the 40 second flight of the Ariane 5

• Ariane 5: a European orbital launch vehicle meant to lift 20 tons into low
Earth orbit

• Initial rocket went off course, started to disintegrate, then self-destructed
less than a minute after launch

• Seven variables were at risk of leading to an Operand Error (due to
conversion of floating point to integer)
– Four were protected

• Investigation concluded insufficient test coverage as one of the causes for
this accident

• Resulted in a loss of $370,000,000.

ATPESC 2018, July 29– August 10, 201735

Why testing is important:
the Therac-25 accidents

• Therac-25: a computer-controlled radiation therapy
machine

• Minimal software testing

• Race condition in the code went undetected

• Unlucky patients were struck with approximately 100
times the intended dose of radiation, ~ 15,000 rads

• Error code indicated that no dose of radiation was
given, so operator instructed machine to proceed

• Recalled after six accidents resulting in death and
serious injuries

