
Refactoring with a Case Study

Presented to
ATPESC 2018 Participants

Anshu Dubey

Computer Scientist, Mathematics and Computer Science Division
Q Center, St. Charles, IL (USA)
Date 08/08/2018

ATPESC 2018, July 29– August 10, 20172

License, citation, and acknowledgments
License and Citation

• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Anshu Dubey, Refactoring with a case study, tutorial, in Argonne Training Program on
Extreme-Scale Computing (ATPESC) 2018. DOI: 10.6084/m9.figshare.6943076.

Acknowledgements

• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific
Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration..

• This work was performed in part at the Argonne National Laboratory, which is managed managed by
UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

ATPESC 2018, July 29– August 10, 20173

About this presentation

• What this lecture is ---
– Methodology for planning the

refactoring process
• Considerations before and during

refactoring
• Developing a workable process and

schedule
• Possible pitfalls and workarounds

– Examples from codes that underwent
refactoring
• And lessons learned

3

• What this lecture is not ---
– Instructions on detailed process

of refactoring
• It is a difficult process
• Each project has its own quirks and

challenges
• No one methodology will apply

everywhere
– Tutorial on tools for refactoring

• There really aren’t that many

ATPESC 2018, July 29– August 10, 20174

Definition

Refactoring usually applies to object oriented software where the internals
of the implementations are “cleaned up” without changing the behavior.

The general definition of refactoring

4

In the context of this lecture
A broad interpretation where any part of the software may change while
retaining or enhancing its basic capabilities.
The reason
In context of HPC scientific software the degree of change is motivated by
many factors. It may include redesign at a higher level.

BEFORE STARTING

ATPESC 2018, July 29– August 10, 20176

considerations

• Know why you are refactoring
– Is it necessary
– Where should the code be after

refactoring

• Know the scope of refactoring
– How deep a change
– How much code will be affected

6

• Estimate the cost
– Expected developer time
– Extent of disruption in production

schedules

• Get a buy-in from the stakeholders
– That includes the users
– For both development time and

disruption

ATPESC 2018, July 29– August 10, 20177

Reasons for refactoring

• Once before
– Vector to risc processors (cpu)
– Flat memory model to hierarchical memory model

• To heterogeneous
– Few CPU’s sufficient memory per cpu
– Several co-existing memory models

• The driving reason for these transitions is performance
– Performance may drive refactoring even without change in platforms

The big one these days is the change in platforms

7

ATPESC 2018, July 29– August 10, 20178

Reasons for refactoring

• Transition of code from research
prototype to production

• Imposing architecture and
maintainability on an old code
– Significant change in the code base

• Change in model or discretization
• Changes in numerical algorithms

– Significant change in intended use for the
code
• From a small team to a large team
• Releasing to wider user base

There can be other reasons

8

• Enabling extensibility or
configurability
– Partial common functionality

among different usage modes
– Model refinement
– Incorporating new insights

ATPESC 2018, July 29– August 10, 20179

Scope of refactoring

• For performance
– Know the target improvement

• Very easy to go down the rabbit hole of
squeezing the last little bit

• Almost never worth the effort for obtaining
scientific results

• For extensibility
– Similar to maintainability
– Greater emphasis on interfaces and

encapsulation

Know where you want the end product to be

9

• For maintainability
– Know the boundaries for imposing

structure
• Rewriting the entire code is generally

avoidable
• Kernels for implementing formulae can

be left alone ?
• In general it is possible to stop at higher

levels than that

ATPESC 2018, July 29– August 10, 201710

Reasons for refactoring

Transition from vector to risc machines
The big one these days is change in platforms

10

op1vector op2 op4op3

For vector processors
§ Data structures needed to be long vectors

– Longer => better
§ Spatial or temporal locality had no importance

– Memory access was flat
• Interleaving banks for better performance

ATPESC 2018, July 29– August 10, 201711

Reasons for refactoring
The big one these days is change in platforms

11

op1, op2,
op3, op4 small chunk that could fit

In the cache
For risc processors
• Memory has hierarchy

– Closer and smaller => faster access
– Small working sets that can persist in the closest

memory preferable
– Makes spatial and temporal locality important

• Data structures that enable formation of small
working sets on which multiple operations can be
performed are better

Transition from vector to risc machines

ATPESC 2018, July 29– August 10, 201712

How would the code change ?
Example of FFT calculation

12

x0

x1

y0

y1

ωi

y0 = x0 + ωi*x1
y1 = x0 – ωi*x1

ATPESC 2018, July 29– August 10, 201713

vector operations
13

ω0

.

.
ωn/2-1

T0=ω0*x1

T1-ω0*x1.

.

.

.
Tn-2=ω0*xn-1

Tn-1=-ω0*xn-1

T0=x0+T0

.

.

.

.

.

.
Tn-1=xn-1+Tn-1

T0=ω0*xn/2

T1=ω1*xn/2+1.

.
Tn/2-1=ωn/2-1*xn-1

Tn/2=-ω0*xn/2
-
-
Tn-1=-ωn/2-1*xn-1

….

after some
permutations

and
computations

T0=ω0*x1

T1-ω0*x1.

.

.

.
Tn-2=ω0*xn-1

Tn-1=-ω0*xn-1

ATPESC 2018, July 29– August 10, 201714

Risc calculation
14

Assume cache accommodates working
set for k butterflies at a time
§ Blocking of input vector

– first log2k+1 stages computed in one
block

– then shuffle so that next log2k+1 stages
can be computed

– Repeat until done

x0,x1……….x14,x15

x0,x4,x8,x12,x1,x5……….x11,x15

§ Order of operations changes
§ Loops need rearranging
§ Extra nesting in loops may be

required
Note that vector algorithm would still have
worked but would have been slow

PLANNING AND IMPLEMENTATION

ATPESC 2018, July 29– August 10, 201716

Cost estimation

• Can be costly itself if the project
is large

• Most projects do a terrible job of
estimation
– Insufficient understanding of code

complexity
– Insufficient provisioning for

verification and obstacles
– Refactoring often overruns in both

time and budget

The biggest potential pitfall

16

• Factors that can help
– Knowing the scope and sticking to it

• If there is change in scope estimate
again

– Plan for all stages of the process
with contingency factors built-in

– Make provision for developing tests
and other forms of verification
• Can be nearly as much or more work

than the code change
• Insufficient verification incurs technical

debt

ATPESC 2018, July 29– August 10, 201717

Cost estimation

• Potential for branch divergence

• Policies for code modification
– Estimate the cost of synchronization
– Plan synchronization schedule and account for overheads

• Anticipate production disruption
– From code freeze due to merges
– Account for resources for quick resolution of merge issues

This is where buy-in from the stake-holders is critical

When development and production co-exist

17

ATPESC 2018, July 29– August 10, 201718

On ramp plan
Proportionate to the scope

18

Bad
idea

All at once

May
be OK

All at once

ATPESC 2018, July 29– August 10, 201719

On ramp plan
So how should it be done

19

§ Incrementally if at all possible

§ Small components, verified
individually

§ Migrated back

§ Alternatively migrate
them into new
infrastructure

ATPESC 2018, July 29– August 10, 201720

verification

• Understand the verification needs
during transition

• Map from here to there

• Know your error bounds
– Bitwise reproduction of results

unlikely after transition

Critical component of refactoring

20

• Check for coverage provided by
existing tests

• Develop new tests where there
are gaps

• Make sure tests exist at different
granularities
– There should definitely be

demanding integration and system
level tests

ATPESC 2018, July 29– August 10, 201721

implementation

• Developers (hopefully) know what the end code should be
– They will do the code implementation

Process and policies are important
• Managing co-existence of production and development
• Managing branch divergence
• Any code pruning
• Schedule of testing
• Schedule of integration and release

– Release may be external or just to the internal users

Procedures and policies

21

EXPERIENCE – FLASH VERSIONS 1-5

ATPESC 2018, July 29– August 10, 201723

Version 1
• Three independently developed codes smashed together

– Desire to use the same code for many different applications necessitated some
thought to infrastructure and architecture

• Challenges
– F77 style of programming; Common blocks for data sharing
– Inconsistent data structures, divergent coding practices and no coding standards

• Solution
– A setup script and config files
– Concept of alternative implementations, with a script for some plug and play
– Inheriting directory structure to emulate object oriented approach
– Wrapper layer with interfaces

23

ATPESC 2018, July 29– August 10, 201724

Version 2
24

• Data inventory and interface
formalization
– Modularize the code and make it

extensible
– Elimination of common blocks
– Formalization of interfaces

• Objectives partially met
– Centralized database was built

• It met the data objectives
• But got in the way of modularization
• No data scoping, partial

encapsulation
• Database query overheads

• Scope not fully determined
– Enforced backward compatibility

• Precluded needed deep changes
• Hugely increased developer effort
• High barrier to entry for a new developer

• Not enough buy-in from users
– Did not get adopted for production in

the center for more than two years
• Development continued in FLASH1.6, and

so had to be brought simultaneously into
FLASH2 too

ATPESC 2018, July 29– August 10, 201725

Version 3 : the Current Architecture
25

§Kept inheriting directory structure, configuration and customization
mechanisms from earlier versions

§Defined naming conventions
– Differentiate between namespace and organizational directories
– Differentiate between API and non-API functions in a unit
– Prefixes indicating the source and scope of data items

§Formalized the unit architecture
– Defined API for each unit with null implementation at the top level

§Resolved data ownership and scope
§Resolved lateral dependencies for encapsulation
§ Introduced subunits and built-in unit test framework

ATPESC 2018, July 29– August 10, 201726

Version transition

• Build the framework in isolation
– Used the second model in the ramp-on slide

• Ramp on was planned
– scope of change was determined ahead of time

• Determine data scoping and arbitration

• Code mostly not altered at the kernel level

• Base APIs for various units

– scientists were on-board with the plan
• Including the depth of changes

26

ATPESC 2018, July 29– August 10, 201727

The Ramp-on Plan

• Infrastructure units first implemented with a homegrown Uniform Grid.

• Unit tests for infrastructure built before any physics was brought over

• Test-suite started on multiple platforms

• Migrate mature solvers (few likely changes) and freeze them in version 2

• Migrate the remaining solvers one application dependencies at a time

• Scientists in the loop for verification and in prioritizing physics migration

27

ATPESC 2018, July 29– August 10, 201728

Version 4

• Capability building exercise
• Did not need any change in the architecture
• Few infrastructure changes

– Mesh replication was easily introduced for multigroup radiation
– Laser drive
– Interface with linear algebra libraries

• No or minimal changes to existing code
No explicit version transition methodology

28

ATPESC 2018, July 29– August 10, 201729

Version 5

• Objective: prepare for platform and deeper heterogeneity
– Expected changes in platforms

• Hierarchical parallelism
• Remove bulk synchronism
• Different targets for execution

– Needed in the code
• Deeper encapsulation of physics kernels

– Knowledge of grid
• Constrained semantics

– Enable code transformation and optimization

Ongoing

29

ATPESC 2018, July 29– August 10, 201730

Version 5

• Approach
– Determine level of modifications for each aspect of the change in code
– Where possible keep modifications orthogonal between different aspects
– Determine changes to setup script, config and API
– Devise an approach to prototyping
– Devise verification methodology
– Add tests as needed
– Devise an approach for moving from prototyping to production code

30

ATPESC 2018, July 29– August 10, 201731

Version 5

• Implementation
– Change looping over blocks to smart iterators
– Metadata obtained through the iterator

• The iterators can be looping over arbitrary sections of the domain
• Metadata ensures that the physics kernels only see the domain they are meant to

operate on
– Add function calls in place of explicit statements where possible

• The overhead of function call can be eliminated through code translation

• Iterators and function calls in kernels do not interfere with one
another

31

www.anl.gov

TO HAVE GOOD OUTCOME FROM REFACTORING
KNOW WHY
KNOW HOW MUCH
KNOW THE COST
PLAN
HAVE STRONG TESTING AND VERIFICATION
GET BUY-IN FROM STAKEHOLDERS

Questions

