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MD Simulation 

VMD – “Visual Molecular Dynamics” 

Cell-Scale Modeling 

• 100,000 active users worldwide  

• Visualization and analysis of: 

– Molecular dynamics simulations 

– Lattice cell simulations 

– Quantum chemistry calculations 

– Cryo-EM densities, volumetric data 

• User extensible scripting and plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 
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VMD Hands-On Tutorials 

• http://www.ks.uiuc.edu/Training/Tutorials/#vmd 
– Main VMD tutorial 

– QwikMD simulation preparation and analysis plugin 

– VMD images and movies tutorial 

– Structure check 

– VMD quantum chemistry visualization tutorial 

– Visualization and analysis of CPMD data with VMD 

– Parameterizing small molecules using ffTK 

 

 

http://www.ks.uiuc.edu/Training/Tutorials/#vmd
http://www.ks.uiuc.edu/Training/Tutorials/#vmd
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VMD Interoperability Serves Many Communities 

• Uniquely interoperable with a broad range of tools:  
– AMBER, CHARMM, CPMD, DL_POLY, GAMESS, GROMACS, HOOMD, 

LAMMPS, NAMD, and many more … 

• Supports key data types, file formats, and databases 

• Incorporates tools for simulation preparation, visualization, and 

analysis 



VMD Interoperates with Mainstream Research Tools 

• Provides tools for simulation preparation, visualization, and analysis 

• Interpret and process multi-modal structural information  

• Connects with key software tools to enable state-of-the-art simulations 

• Openness, extensibility, and interoperability are VMD hallmarks 

• Uses advanced algorithms and hardware technologies to address data size 

challenges posed by cutting-edge experimental imaging and simulation 
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Goal: A Computational Microscope 
Study the molecular machines in living cells 

Ribosome: target for antibiotics Poliovirus 



VMD Approach to Visualization 

• Molecular scene is composed of “graphical representations” 

• Each representation encapsulates a group of selected 

atoms, a drawing style, coloring style, and other parameters 

• Representations are independent of each other, can be 

toggled on/off easily, allowing molecular scenes to be built-

up incrementally 

• VMD atom selection language is shared with its analytical 

and scripting interfaces 
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Selection, Filtering 
• Most viz tools allow interactive visual picking, 

menu-driven selections of structure components to 
display or operate on 

• VMD also extensively uses a text-based selection 
language (think google): 

     water within 10 of  protein and z > 0 

     nucleic or protein or ions 

     segname BR 

     name “C.*” 

– Allows selection on user-defined data fields 

– Promotes synergy between interactive and 
scripting interfaces, visualization and 
quantitative analysis tasks 

– Works well with huge time-varying structures 



Structure Visualization 
Molecular representations provide different levels of abstraction, 
atomic detail vs. higher level organizational information 

• Atoms, VdW spheres, bonds, ball-stick, … 

• Coarse-grained “beads” 

• Ribbons, secondary structure, “cartoon” reps, RNA/DNA 

• Molecular surfaces  

• Molecular orbitals (quantum chemistry) 

 

 



Computed Properties 
• Smoothing of thermal noise 

• Secondary structure 

• Hydrogen bonds, salt bridges 

• Forces, energies, stress, strain 

• Time averaging of electrostatic fields, occupancy 
maps 

• Quality-of-fit cross correlation with cryo-EM 
density maps 

• Normal modes, principal component analysis, 
essential dynamics 

• Cluster simulation trajectory timesteps by 
structural similarity 

Chemoreceptor trimer-of-

dimers analysis with 

Bendix plugin in VMD 



PME electrostatic potential 

contour  for a helicase on a 

volumetric slice plane 
Per-residue solvent-accessible  

surface area of Ubiquitin 

Display of Computed Properties on Structures 



CheA kinase PCA: first principal component porcupine plot 
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Computing Molecular 

Properties 

• Compute properties, e.g., density, 
distance, occupancy, electrostatic 
potential over thousands of MD 
simulation trajectory frames 
 

• Example: display binding sites for 
diffusively bound ions as 
probability density isosurfaces 

tRNA magnesium ion occupancy 



Visualization of Molecular Dynamics 
• Molecular dynamics simulations save trajectories of atomic 

coordinates as simulated time progresses 

• Researchers study trajectories by analyzing force profiles, energies, 
structural changes, etc. 

• Visualization selections, graphics, structure properties 
recomputed for each trajectory timestep! 
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Cryo-EM / Cryo-ET Density Map Segmentation 

Evaluate 3-D 

volumetric electron 

density maps and 

segment them, to 

identify key 

structural 

components 

 

Index/label 

components so they 

can be referred to, 

colored, analyzed, 

and simulated… 
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Density Map Segmentation 

Earnest, et al. J. Physical Chemistry B, 121(15): 3871-

3881, 2017. 

VMD GPU-accelerated density map 

segmentation of GroEL 
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NAMD on Summit, May 2018 

NAMD simulations can generate up to 

10TB of output per day on 20% of Summit 

 



Molecular Dyamics Trajectory Analysis 
• MD simulations sample femtosecond timescales 

• Millions of timesteps stored per trajectory 

• Dynamics of biomolecular complexes are main interest, but solvent often 
accounts for half or more of the simulation content 

Skip I/O for regions of bulk solvent where possible [1] 

• Modern MD tools, e.g., VMD, NAMD, LAMMPS, HOOMD, employ extensive 
embedded scripting (Python, Tcl, etc) to permit simulation preparation, 
custom simulation protocols, analysis, and visualization 

• Unified collective variables module allows identical analytical computations to 
be performed within LAMMPS, NAMD, and VMD, during pre-simulation 
modeling, in-situ, and post-hoc [2] 

[1] Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics 

Trajectories. J. Stone, K. L. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International 

Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011. 

[2] Using collective variables to drive molecular dynamics simulations. G. Fiorin, M. L. Klein, and J. 

Hénin. Molecular Physics, 111:22-23, 3345-3362, 2013. 
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Petascale Molecular Dynamics I/O and 

Storage Challenges 
• NAMD simulations can produce up to 10TB/day @ 1024 nodes (~20%) of 

ORNL Summit, more as optimizations raise NAMD performance further 

• Petascale science campaigns require months of simulation runs 

• Long-term storage of large-fractional petabytes impractical 

• Historical “download output files for analysis and visualization” 

approach is a non-starter at this scale 

• Demands visualization and analysis operate on the data in-place on the HPC 

system, whether post-hoc, in-transit, or in-situ 

• Analyses must identify salient features of structure, dynamics, cull data 

that don’t contribute to biomolecular processes of interest 
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VMD Petascale Visualization and Analysis 
• Analyze/visualize large trajectories too large to 

transfer off-site: 

– User-defined parallel analysis operations, data types 

– Parallel rendering, movie making 

• Supports GPU-accelerated Cray XK7 nodes for both 

visualization and analysis: 

– GPU accelerated trajectory analysis w/ CUDA 

– OpenGL and GPU ray tracing for visualization and 

movie rendering 

• Parallel I/O rates up to 275 GB/sec on 8192 Cray 

XE6 nodes – can read in 231 TB in 15 minutes! 

Parallel VMD currently available on:  

ORNL Titan, NCSA Blue Waters, Indiana Big Red II, 

CSCS Piz Daint, and similar systems 

 

NCSA Blue Waters Hybrid Cray XE6 / XK7 

22,640 XE6 dual-Opteron CPU nodes 

4,224 XK7 nodes w/ Telsa K20X GPUs 
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VMD supports EGL for in-situ and parallel rendering 

on clouds, clusters, and supercomputers 
• Eliminate dependency on 

windowing systems 

• Simplified deployment of parallel 
VMD builds supporting off-screen 
rendering 

• Maintains 100% of VMD OpenGL 
shaders and rendering features 

• Support high-quality vendor-
supported commercial OpenGL 
implementations in HPC systems 
that were previously limited to Mesa 

 

 

Poliovirus 
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Swine Flu A/H1N1 neuraminidase bound to Tamiflu 

High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.  

J. E. Stone, P. Messmer, R. Sisneros, and K. Schulten.  High Performance Data Analysis 

and Visualization Workshop, IEEE IPDPSW, pp. 1014-1023, 2016. 

64M atom HIV-1 capsid simulation 

VMD EGL Rendering:  Supports full VMD GLSL shading features 

Vulkan support coming soon... 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

VMD EGL Performance on Amazon EC2 Cloud 

64M atom HIV-1 capsid 
simulation rendered via EGL 

MPI 

Ranks 

EC2 “G2.8xlarge” 

GPU Instances 

HIV-1 movie rendering time 

(sec),  (I/O %) 

3840x2160 resolution 

1 1 626s  (10% I/O) 

2 1 347s  (19% I/O) 

4 1 221s  (31% I/O) 

8 2 141s  (46% I/O) 

16 4 107s  (64% I/O) 

32 8   90s  (76% I/O) 

Performance at 32 nodes reaches ~48 frames per second  

High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.  

J. E. Stone, P. Messmer, R. Sisneros, and K. Schulten.  High Performance Data Analysis and 

Visualization Workshop, IEEE IPDPSW, pp. 1014-1023, 2016. 



Next Generation: Simulating a Proto-Cell 
• Emulate aspects of the 

Mycoplasma mycoides 
bacterium 

• 200nm diameter 

• ~1 billion atoms w/ solvent 

• ~1400 proteins in membrane 

Cryo-ET image of 

ultra-small bacteria    

(scale bar 100nm) 

Luef et al. Nature 

Comm., 6:6372, 

2015.  

 



Proto-Cell Data Challenges 
• 1B-atom proto-cell requires nodes with more 

than TB RAM to build complete model…  

• 1B-atom proto-cell binary structure file: 63GB 

• Trajectory frame atomic coordinates: 12GB,  

1.2TB/ns of simulation (1 frame per 10ps) 

• Routine modeling and visualization tasks are 

a big challenge at this scale 

– Models contain thousands of atomic-detail 

components that must work together in harmony 

– Exploit persistent memory technologies to 

enable “instant on” operation on massive cell-scale 

models – eliminate several minutes of startup 

during analysis/visualization of known structure 

– Sparse output of results at multiple timescales 

will help ameliorate visualization and analysis I/O 

– Data quantization, compression, APIs like ZFP 
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High Fidelity Ray Tracing 

VMD/OptiX all-atom Chromatophore 

• Interactive RT on laptops, desk, cloud 
• Large-scale parallel rendering:                         

in situ or post hoc visualization tasks 
• AO, DoF, instancing, …. 
• Stereoscopic panorama and full-dome 

projections 
• Omnidirectional VR: YouTube, HMDs 

 
• Built-in ray tracing engines: 
     - Tachyon: cross-platform RT 
     - NVIDIA OptiX: GPU-accelerated 
 and remote RT on VCA clusters 
     - Intel OSPRay: CPU x86/Phi-optimized 
 parallel rendering w/ MPI 
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Lighting Comparison, STMV Capsid 
Two lights, no shadows Ambient occlusion + two 

lights, 144 AO rays/hit 
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Satellite Tobacco Mosaic Virus 
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VMD w/ OptiX 

VMD/OptiX GPU Ray Tracing of 

all-atom Chromatophore w/ lipids. 

GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.     

J. E. Stone, K. L. Vandivort, and K. Schulten. UltraVis’13, pp. 6:1-6:8, 2013. 

Visualization of Energy Conversion Processes in a Light Harvesting Organelle at 

Atomic Detail.  M. Sener, et al. SC'14 Visualization and Data Analytics Showcase, 2014. 

Chemical Visualization of Human Pathogens: the Retroviral Capsids.  J. R. Perilla, B.-C. 

Goh, J. E. Stone, and K. Schulten. SC'15 Visualization and Data Analytics Showcase, 2015. 

Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray 

Tracing.  J. E. Stone et al., J. Parallel Computing, 55:17-27, 2016. 

Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and 

Remote Rendering  J. E. Stone, W. R. Sherman, and K. Schulten. HPDAV, IPDPSW, pp. 

1048-1057, 2016. 

• Interactive RT on laptops, desktops, and cloud 

• Large-scale parallel rendering: in situ or post hoc 
visualization tasks 

• Remote RT on NVIDIA VCA clusters 

• Stereoscopic panoramic and full-dome projections 

• Omnidirectional VR for YouTube, VR HMDs 

• GPU memory sharing via NVLink 



HIV-1 Capsid 



[1] GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.                             

J. E. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13: Proceedings of the 8th International Workshop on 

Ultrascale Visualization, pp. 6:1-6:8, 2013. 

HIV-1 Parallel HD Movie Rendering on 

Blue Waters Cray XE6/XK7 

Ray Tracer 

Version 

 Node Type 

and Count 

Script 

Load 

State 

Load 

Geometry + 

Ray Tracing 

Total 

Time 

New TachyonL-OptiX   64 XK7 Tesla K20X GPUs 2 s 39 s 435 s 476 s 

New TachyonL-OptiX 128 XK7 Tesla K20X GPUs 3 s 62 s 230 s 295 s 

TachyonL-OptiX [1]   64 XK7 Tesla K20X GPUs 2 s 38 s 655 s 695 s 

TachyonL-OptiX [1] 128 XK7 Tesla K20X GPUs 4 s 74 s 331 s 410 s 

TachyonL-OptiX [1] 256 XK7 Tesla K20X GPUs 7 s 110 s 171 s 288 s 

Tachyon [1] 256 XE6 CPUs 7 s 160 s 1,374 s 1,541 s 

Tachyon [1] 512 XE6 CPUs 13 s 211 s 808 s 1,032 s 

New VMD TachyonL-OptiX on XK7 vs. Tachyon on XE6:                 

K20X GPUs yield up to twelve times geom+ray tracing speedup 
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Omnidirectional Stereoscopic Ray Tracing 
• Ray trace 360° images and movies for Desk and 

VR HMDs: Oculus, Vive, Cardboard 

• Stereo spheremaps or cubemaps allow very high-
frame-rate interactive OpenGL display 

• AO lighting, depth of field, shadows, transparency, 
curved geometry, … 

• Summit 6x Tesla V100 GPU nodes: 
– Render many omni-stereo viewpoints, no acceleration 

structure rebuilds, tens of frames/sec per-node! 

– OptiX multi-GPU rendering, NVLink compositing and 
data distribution, etc… 

– Future: AI for warping between views 
 

Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated 
Ray Tracing.  J. E. Stone, et al.  J. Parallel Computing, 55:17-27, 2016. 

Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing 
and Remote Rendering.  J. E. Stone, W. R. Sherman, and K. Schulten. High 
Performance Data Analysis and Visualization Workshop, IEEE International Parallel and 
Distributed Processing Symposium Workshops (IPDPSW), pp. 1048-1057, 2016. 
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Goal: Intuitive interactive viz. in crowded molecular complexes 

Results from 64 M atom, 1 μs sim! 

Close-up view of chloride ions permeating through 

HIV-1 capsid hexameric centers 
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Planetarium Dome Master Projections 



Technology Opportunities and Collaborations 
• Supercomputer Centers, Cray, IBM 

– Remote visualization 

– Performance, power profiling and optimization 

• NVIDIA 
– GPU computing 

– Ray tracing 

– Remote visualization 

– ARM, Tablets, power profiling and optimization 

• Intel 
– x86, Xeon Phi optimization 

– Ray tracing 

• Amazon 
– Cloud deployment of VMD/NAMD, related tools 

– Remote visualization 

• Universities: 
– G. Fiorin, J. Henin, Toni Giorgino, collective variables  

– T. Ertl, U. Stuttgart: visualization algorithms 

– M. Kuttel, U. Cape Town: visualization and analysis 

– W. Sherman, Indiana U.: VR HMDs, visualization 

Energy efficiency: ARM+GPU 

VR HMDs, 6DoF input devices 

GPU computing, 

Ray tracing, 

Remote viz. 
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VMD is a Platform for Developing Research Tools 

Over 110 VMD Plugins, Half Developed by Users 

• VMD user-extensible scripting w/ 
Tcl/Tk, Python 

• User-developed plugins: 

– Alanine Scanning 

– Collective Variable Analyzer 

– Clustering Tool 

– Carbon Nanostructure Builder 

– TorsionPlot 

– RMSD Trajectory Tool 

– Many others… 

VMD Core 

Molfile 

Plugins 

Graphical 

Interface 

Plugins 

Text 

Plugins 

Tcl/Tk Python 
Plugin 

Interface 
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Ribeiro, et al. QwikMD - Integrative Molecular Dynamics Toolkit for Novices and Experts. Sci. Rep. 6, 26536, 2016 

QwikMD: Guided MD Simulation and Training 

Smooths initial  learning 

curve (non-expert users) 

 

Training: used in 4 Center 

workshops to-date 

 

Speed up tedious 

simulation preparation 

tasks (expert users) 

 

Reproducibility:      

detailed log of all steps 

 

Interactive preparation, 

simulation, and analysis  
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Analysis 
APBSRun 

CatDCD 

Contact Map 

GofRGUI 

HeatMapper 

ILSTools 

IRSpecGUI 

MultiSeq 

NAMD Energy 

NAMD Plot 

NetworkView 

NMWiz 

ParseFEP 

PBCTools 

PMEpot 

PropKa GUI 

RamaPlot 

RMSD Tool 

RMSD Trajectory Tool 

RMSD Visualizer Tool 

Salt Bridges 

Sequence Viewer 

Symmetry Tool 

Timeline 

TorsionPlot 

VolMap 

 

 

Modeling 

AutoIonize 

AutoPSF 

Chirality 

Cionize 

Cispeptide 

CGTools 

Dowser 

ffTK 

Inorganic Builder 

MDFF 

Membrane 

Merge Structs 

Molefacture 

Mutator 

Nanotube 

Psfgen 

RESPTool 

RNAView 

Solvate 

SSRestraints 

Topotools 

 

Visualization 

Clipping Plane Tool 

Clone Rep 

DemoMaster 

Dipole Watcher 

Intersurf 

Navigate 

NavFly 

MultiMolAnim 

Color Scale Bar 

Remote 

Palette Tool 

ViewChangeRender 

ViewMaster 

Virtual DNA Viewer 

VMD Movie Maker 

Simulation 

AlaScan 

AutoIMD 

IMDMenu 

NAMD GUI 

NAMD Server 

QMTool 

Collaboration 

Remote Control 

Data Import and Plotting 

Data Import 

Multiplot 

PDBTool 

MultiText 

Externally Hosted Plugins and 

Extensions 

Check sidechains 

MultiMSMS 

Interactive Essential Dynamics 

Mead Ionize 

Clustering Tool 

iTrajComp 

Swap RMSD 

Intervor 

SurfVol 

vmdICE 

 

Selected VMD Plugins: Center Developed, and User Developed 

http://www.ks.uiuc.edu/Research/vmd/plugins/ 

75 MolFile I/O Plugins: 
structure, trajectory, sequence, 

and density map 



Example VMD Visualization and Analysis Plugins 

Bendix 
Dahl ACE, Chavent M and Sansom MSP   Bendix: intuitive helix geometry analysis 

and abstraction.  Bioinformatics 2012 28(16): 2193-2194. 

Normal Mode Wizard 

Bakan A, Meireles LM, Bahar I   ProDy: Protein Dynamics Inferred from 

Theory and Experiments.  Bioinformatics 2011 27(11):1575-1577. 



Making Our Research Tools Easily Accessible 

• Cloud based deployment 
– Full virtual machines (known as “AMI” in Amazon terminology) 

– Amazon AWS EC2 GPU-accelerated instances: 

     http://www.ks.uiuc.edu/Research/cloud/ 

 

• Docker “container” images available in NVIDIA NGC registry 
– Users obtain Docker images via registry, download and run on the 

laptop, workstation, cloud, or supercomputer of their choosing 

– https://ngc.nvidia.com/registry/ 

– https://ngc.nvidia.com/registry/hpc-vmd 

Clusters, Supercomputers 

Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy 

maps.  Abhishek Singharoy, Ivan Teo, Ryan McGreevy, John E. Stone, Jianhua Zhao, and Klaus 

Schulten. eLife, 10.7554/eLife.16105, 2016. (66 pages). 

QwikMD-integrative molecular dynamics toolkit for novices and experts.  Joao V. Ribeiro, Rafael C. 

Bernardi, Till Rudack, John E. Stone, James C. Phillips, Peter L. Freddolino, and Klaus Schulten. Scientific 

Reports, 6:26536, 2016. 

High performance molecular visualization: In-situ and parallel rendering with EGL. John E. Stone, 

Peter Messmer, Robert Sisneros, and Klaus Schulten. 2016 IEEE International Parallel and Distributed 

Processing Symposium Workshop (IPDPSW), pp. 1014-1023, 2016. 

 

 

Workstations, 

Servers, 

Cloud 
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Molecular Dynamics Flexible Fitting (MDFF) 

X-ray crystallography X-ray crystallography Electron microscopy Electron microscopy 

APS at Argonne FEI microscope 

MDFF MDFF 

ORNL Titan 

Acetyl - CoA Synthase 

Molecular dynamics-based refinement and validation for sub-5Å cryo-

electron microscopy maps. A. Singharoy, I. Teo, R. McGreevy, J. E. 

Stone, J. Zhao, and K. Schulten.  eLife 2016;10.7554/eLife.16105 
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Structural Route to the all-atom HIV-1 Capsid 

Zhao et al. , Nature 497: 643-646 (2013) 

High res. EM of hexameric tubule, tomography of capsid, 

all-atom model of capsid by MDFF w/ NAMD & VMD, 

NSF/NCSA Blue Waters computer at Illinois 

Pornillos et al. , Cell 2009, Nature 2011 

Crystal structures of separated hexamer and pentamer 

Ganser et al. Science, 1999 

1st TEM (1999) 1st tomography (2003) 

Briggs et al. EMBO J, 2003 

Briggs et al. Structure, 2006 

cryo-ET (2006) 

Byeon et al., Cell 2009 Li et al., Nature, 2000 

hexameric tubule 
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Evaluating Quality-of-Fit for Structures Solved by 

Hybrid Fitting Methods 

Compute Pearson correlation to 

evaluate quality-of-fit between a 

reference cryo-EM density map 

and a simulated density map 

from an all-atom structure. 

MDFF Cross Correlation Timeline 

Regions with poor fit               Regions with good fit 
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MDFF Density Map Algorithm 

• Build spatial acceleration data 

structures, optimize data for 

GPU 

• Compute 3-D density map: 

 

 

• Truncated Gaussian and 

spatial acceleration grid 

ensure linear time-complexity 

 

 

 

3-D density map lattice point 

and the neighboring spatial 

acceleration cells it references 
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Padding optimizes global 

memory performance, 

guaranteeing coalesced global 

memory accesses 

Grid of thread blocks 

Small 8x8x2 CUDA thread blocks afford large  

per-thread register count, shared memory 

              

3-D density map decomposes into 3-D grid 

of 8x8x8 tiles containing CC partial sums 

and local CC values 

… 0,0 0,1 

1,1 

… … 

… 

… 

Inactive threads, 
region of 
discarded output 

Each thread computes 

4 z-axis density map 

lattice points and 

associated CC partial 

sums 

Threads 
producing 
results that are 
used 

1,0 

Fusion of density and CC 

calculations into a single 

CUDA kernel!!! 

 

Spatial CC map and overall 

CC value computed in a 

single pass 

Single-Pass MDFF GPU Cross-Correlation 
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Parallel MDFF Cross Correlation Analysis on Cray XK7  

Rabbit Hemorrhagic Disease Virus (RHDV) 

Traj. frames 10,000 

Structure 

component 

selections 

720 

Single-node XK7 

(projected) 

336 hours (14 days) 

128-node XK7 3.2 hours 

105x speedup 

2048-node XK7 19.5 minutes 

1035x speedup 

Relative CC 

Calculation of 7M CCs would take        

5 years using serial CPU algorithm! 
Stone et al., Faraday Discuss., 169:265-283, 2014. 

Time 

RHDV colored 

by relative CC 



VMD Tesla V100 Cross Correlation Performance 
Rabbit Hemorrhagic Disease Virus: 702K atoms, 6.5Å resolution 

Volta GPU architecture almost 2x faster than previous gen Pascal: 

Application and Hardware platform Runtime, Speedup vs. Chimera,   VMD+GPU 

Chimera Xeon E5-2687W (2 socket) [1] 15.860s,                              1x 

VMD-CUDA IBM Power8 + 1x Tesla K40 [2]   0.488s,                            32x             0.9x 

VMD-CUDA Intel Xeon E5-2687W + 1x Quadro K6000 [1,2]   0.458s,                            35x             1.0x 

VMD-CUDA Intel Xeon E5-2698v3    + 1x Tesla P100   0.090s,                          176x             5.1x  

VMD-CUDA IBM Power8 “Minsky”   + 1x Tesla P100   0.080s,                          198x             5.7x 

VMD-CUDA Intel Xeon E5-2697Av4 + 1x Tesla V100   0.050s,                          317x             9.2x 

VMD-CUDA IBM Power9 “Newell”   + 1x Tesla V100   0.049s,                          323x             9.3x 

[1] GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics Flexible 

Fitting.  J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten.  Faraday Discussions 169:265-283, 2014. 

[2] Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-

Accelerated OpenPOWER Platforms. J. E. Stone, A.-P. Hynninen, J. C. Phillips, K. Schulten. International 

Workshop on OpenPOWER for HPC (IWOPH'16), LNCS 9945, pp. 188-206, 2016. 
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Clustering Analysis of Molecular Dynamics Trajectories: 
Requires I/O+Memory for All-Pairs of Trajectory Frames 

GPU-Accelerated Molecular Dynamics Clustering Analysis with 

OpenACC. J.E. Stone, J.R. Perilla, C. K. Cassidy, and K. Schulten.           

In, Robert Farber, ed., Parallel Programming with OpenACC, Morgan 

Kaufmann, Chapter 11, pp. 215-240, 2016. 
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Use of Node-Local Burst Buffers and 

Non-Volatile Memory DIMMs 
• Perform viz+analysis in-transit in node-local SSDs, persistent memory NVDIMMs 

• ORNL Summit I/O: 
– Parallel FS: 2.5 TB/s 

– Node-local PCIe “burst buffer” SSDs: 10+ TB/sec, 7PB capacity  

• Plenty of capacity for full-detail MD trajectories, could enable ~100x increase in  temporal 
resolution in cases where it would be valuable to the science 

• Enable all-pairs trajectory clustering analyses and resulting visualizations 

• Future systems with NVDIMMs (3D Xpoint, phase change memory) could eventually provide 
bandwidths approaching DRAM 

• Use NVDIMMs w/ mmap(), APIs like PMDK to perform formerly-out-of-core calculations 
using persistent memory: 

         https://github.com/pmem/pmdk 

• Imagine future Summit-like machines w/ NVLink-connected GPUs w/ 
access to high-bandwidth persistent memory on each node 



Trade FLOPS for Reduced I/O 

ORNL Summit compute node: 

• 6x Tesla V100 GPUs, 2x POWER9 CPUs 

• GPUs Peak: ~46 DP TFLOPS, ~96 SP TFLOPS 

• Peak IB rate per node: ~23GB/sec 

• Ratio of FLOPS vs. I/O: 

~2,000 DP FLOPS/byte, ~4000 SP FLOPS/byte 

~16K FLOPS per FP word 

 

Unconventional approach: Recompute to avoid I/O 
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Computing+Visualizing Molecular Orbitals 
• Movies of simulation trajectories provides insight into results 

• QM, and hybrid (QM/MM) MO visualizations historically done from 

huge “cube” files, impractical 

• Store QM wavefunctions + Gaussian basis set, only 10s of  KB per 

stored timestep compared to 100s of MB 

• Recompute MO grid on-the-fly from QM basis set, huge 

decrease in RAM+I/O in exchange for heavy FP arithmetic 

NAMD goes quantum: An integrative suite for hybrid simulations. Melo, M. C. R.; Bernardi, R. C.; Rudack T.; Scheurer, M.; 

Riplinger, C.; Phillips, J. C.; Maia, J. D. C.; Rocha, G. D.; Ribeiro, J. V.; Stone, J. E.; Neese, F.; Schulten, K.; Luthey-Schulten, Z.; 

Nature Methods, 2018.  

http://dx.doi.org/10.1038/nmeth.4638 

 

High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-core CPUs.  J. E. Stone, J. 

Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,   2nd Workshop on General-Purpose Computation on Graphics Processing Units 

(GPGPU-2), ACM International Conference Proceeding Series, volume 383, pp. 9-18, 2009. 

C60 

http://dx.doi.org/10.1038/nmeth.4638
http://dx.doi.org/10.1038/nmeth.4638
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MO Kernel for One Grid Point  (Naive C) 

Loop over atoms 

Loop over shells 

Loop over primitives: 

largest component of 

runtime, due to expf() 

Loop over angular 

momenta 

(unrolled in real code) 

…  

for (at=0; at<numatoms; at++) { 

    int prim_counter = atom_basis[at]; 

    calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv); 

    for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) { 

        int shell_type = shell_symmetry[shell_counter]; 

        for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) { 

            float exponent         = basis_array[prim_counter       ]; 

            float contract_coeff = basis_array[prim_counter + 1]; 

            contracted_gto += contract_coeff * expf(-exponent*dist2); 

            prim_counter += 2; 

        } 

        for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) { 

           int imax = shell_type - j;  

           for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) 

              tmpshell += wave_f[ifunc++] * xdp * ydp * zdp; 

        } 

        value += tmpshell * contracted_gto; 

        shell_counter++; 

   }  

} ….. 
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Padding optimizes global memory 

performance, guaranteeing coalesced 

global memory accesses Grid of thread blocks 

Small 8x8 thread blocks afford large  

per-thread register count, shared memory 

              

MO 3-D lattice decomposes 

into 2-D slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 
results that are 
discarded 

Each thread 

computes one 

MO lattice point. 

Threads 
producing 
results that 
are used 

1,0 

…  

GPU 2 

GPU 1 

GPU 0 

Lattice computed 

using multiple GPUs 

MO GPU Parallel Decomposition 
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VMD C60  MO Viz. Perf, 516x519x507 Grid: 

@ .13s/frame, avoids 3.8GB/s I/O per-node 

Hardware platform Runtime,       Speedup 

IBM Power8 (ORNL ‘crest’) + 1x Tesla K40 [1]   3.49s,            1.0x                    

Intel Xeon E5-2697Av4      + 1x Tesla V100   0.610s,          5.7x 

Intel Xeon E5-2697Av4      + 2x Tesla V100   0.294s,        11.8x 

Intel Xeon E5-2697Av4      + 3x Tesla V100   0.220s,        15.9x 

IBM Power9 “Newell”        + 1x Tesla V100   0.394s,          8.8x 

IBM Power9 “Newell”        + 2x Tesla V100   0.207s,        16.8x 

IBM Power9 “Newell”        + 3x Tesla V100   0.151s,        23.1x 

IBM Power9 “Newell”  + 4x Tesla V100  0.130s,      26.8x 

[1] Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to 

GPU-Accelerated OpenPOWER Platforms.  J. E. Stone, A.-P. Hynninen, J. C. Phillips, K. Schulten. 

International Workshop on OpenPOWER for HPC (IWOPH'16), LNCS 9945, pp. 188-206, 2016. 

NVLink perf. 

boost w/ no 

code tuning 

(YET) 
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MO Kernel Structure, Opportunity for NRTC JIT… 
Data-driven execution, but representative loop trip counts in (…) 

Loop over atoms (1 to ~200) {                   

Loop over electron shells for this atom type (1 to ~6) { 

Loop over primitive functions for this shell type (1 to ~6) { 

 

                                                                                                } 

Loop over angular momenta for this shell type (1 to ~15) {} 

} 

} 

Small loop trip counts result in significant loop overhead.  Runtime kernel 

generation and NVRTC JIT compilation can achieve in a large (1.8x!) speed 

boost via loop unrolling, constant folding, elimination of array accesses, … 
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Molecular Orbital Computation and Display Process 
Runtime Kernel Generation, NVRTC Just-In-Time (JIT) Compilation 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 

using basis set-specific CUDA kernel 

Extract isosurface mesh from 3-D MO grid  

Render the resulting surface  

Preprocess MO coefficient data 

eliminate duplicates, sort by type, etc… 

For current frame and MO index,  

retrieve MO wavefunction coefficients   

One-time 

initialization 

Generate/compile basis set-specific CUDA kernel 

For each trj frame, 

for each MO shown 

Initialize Pool of GPU  

Worker Threads 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

   contracted_gto = 1.832937 * expf(-7.868272*dist2); 

  contracted_gto += 1.405380 * expf(-1.881289*dist2); 

  contracted_gto += 0.701383 * expf(-0.544249*dist2); 

    for (shell=0; shell < maxshell; shell++)  { 

      float contracted_gto = 0.0f; 

 

      // Loop over the Gaussian primitives of CGTO 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shell_type = const_shell_symmetry[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent          = const_basis_array[prim_counter      ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff  * expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

General loop-based 

data-dependent  MO 

CUDA kernel 

Runtime-generated data-

specific MO CUDA kernel 

compiled via CUDA 

NVRTC JIT… 

1.8x Faster 
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Vectors of wavefunction 

amplitudes are computed 

using hardware SIMD 

instructions 

              
MO 3-D lattice decomposes 

into 2-D slices 

Each CPU thread 

computes 1, 4, 8, 16 

MO lattice points 

per loop iteration: 

C, SSE, AVX2 or 

AVX-512ER 

SIMD lanes 
producing results 
that are used 

…  

Thread 2 

Thread 1 

Thread 0 

Lattice decomposed 

across many CPU 

threads 

MO CPU Parallel Decomposition 
AVX-512 Kernels on KNL 

Padding: 

Inactive SIMD lanes 
or region of 
discarded output 
used to guarantee 
aligned vector 
loads+stores 
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AVX-512ER MO CGTO Loop 
int maxprim = num_prim_per_shell[shell_counter]; 

int shelltype = shell_types[shell_counter]; 

for (prim=0; prim<maxprim; prim++) { 

     float exponent         = basis_array[prim_counter      ]; 

     float contract_coeff = basis_array[prim_counter + 1]; 

 

     // contracted_gto += contract_coeff * exp(exponent*dist2); 

     __m512 expval = _mm512_mul_ps(_mm512_set1_ps(exponent * MLOG2EF), dist2); 

 

     // expf() approximation required, use (base-2) AVX-512ER instructions… 

     __m512 retval = _mm512_exp2a23_ps(expval); 

 

     __m512 ctmp = _mm512_mul_ps(_mm512_set1_ps(contract_coeff), retval); 

     contracted_gto = _mm512_add_ps(contracted_gto, ctmp); 

     prim_counter += 2; 

} 
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Performance of AVX-512ER Instrinsics vs. 

Autovectorization on KNL: Small 172x173x169 Grid 

• Intel C++ ‘15 autovectorization (fail):                           220+ sec 

• Hand-coded SSE2 w/ existing thread scheme:             48.5 sec 

• Hand-coded AVX-512ER w/ existing thread scheme:     6.3 sec 

• Hand-coded AVX-512ER, refactoring thread pool:         0.2 sec 

• Hand-coded AVX-512ER tuned thread pool:          0.131 sec 

• Hand-coded AVX-512ER+FMA tweaks:                   0.107 sec 

 

Further improvement will require attention to details of cache behaviour 

and further tuning of low-level threading constructs for Xeon Phi/KNL 
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“When I was a young man, my goal was to look with mathematical and computational means at the 

inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and 

I never deflected from this goal.” – Klaus Schulten  
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