n.:

.
i
R Y




Convergence of HPC, data science, & data enabling transformative advances at the
intersection of observational and simulation sciences
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360,000 cores + GPU acceleration 2015
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Research breakthroughs will occur at the interface of observational
and simulation science

Environmental & atmospheric Energy & Materials
chemistry (Sustainable Energy)
(Climate Change)

Biology & medicine
(New Therapeutics)
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Molecular Dynamics Simulations as a Computational Microscope




p53: Guardian of the genome

DNA breaks UV irradiation, stress Oncogenes Freq uency Of p53 mUtatlonS I n Ca ncer
' ‘ v
@ -
Proteasome 248 249 8%
175 6%
24 282 4%
Apoptosis Prevention of | | Translation 2%
Scotin PERP angiogenesis g::::: ‘|2 . .
orbR SR || BS : " i =
FAS BAX BAI DNA repair Transactivation Core domain for DNA binding Tetramerization
BBC3 LRDD RRM2B
TP53I13 STI3 . .
- >600,000 new cancer patients annually in the
on-transcriptional ownstream signalling: target gene transcription . . '
e ponnt et ene transerpt US with p53 point mutations

Susceptible to oncogenic mutations that
inactivate by lowering its stability
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Wild Type 1 Mutation 2+ Mutations

Cancer mutations

. Active p53 Inactive p53 Reactivated p53
Cancer rescue mutations

Brown et al (2009) Nature Reviews. Cancer, 9(12) 862-873



Dream of cancer biologists:
small-molecule p53 reactivation

_ Anti-Cancer
Inactive p53 Drug

@ﬁ ;Qf QN -~

PRIMA-1 MIRA-3

Cancer Cell Cell

Volume 15, Issue 5, 5 May 2009, Pages 376-388

Article

PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the
Core Domain

Jeremy M.R. Lambert'" 2, Petr Gorzov', Dimitry B. Veprintsev®, Maj ] a Sodergvist’, Dan Seg erbéck?, Jan
Bergman®, Alan R. Fersht3 Pierre Hainaut?, Klas G. Wiman': & . B4 V|adimir J.N. Bykov'

Reactivated p53

O

STIMA-1

—

CI Martins, et al., Modeling the
< therapeutic efficacy of p53
restoration in tumors, Cell, 2006.

Ventura, et al., Restoration of p53 function
el l€ads to tumour regression in vivo,
=8 Nature, 2007.

-

L 2

Xue, et al.,, Senescence and tumour

Plllesedl] C'carance is triggered by pS3 restoration
el in murine liver carcinomas, Nature, 2007.
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Simulations Reveal Target Flexibility

5% exposed,
matches NMR

Wassman, Baronio, Demir, et al. Nature Comm., (2013)



New Site Opns |

> 95 X-ray structures “Open” MD structure



New Site is Druggable

Wassman, Baronio, Demir, et al. Nature Comm., (2013) Vajda et al., Computational Solvent Mapping: http://ftmap.bu.edu/



http://ftmap.bu.edu/

Discovery of novel reactivation compound &
rationalization of clinical trial compound

Receptor 084 @R175H mutant
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Wassman, Baronio, Demir, et al. Nature Comm., (2013)



Our computational approach discovers more novel p53 reactivation
compounds in 6 months than all the research efforts of the previous 20
years combined

Receptor
Ensemble Ligands

1 structure ZINC Leads Now cancer cell with p53 mutant
G45$ ~R175H

T from MD Library
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diverse scaffolds rescue p53 activity and kill cancer cell
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Computational biophysics brldges gaps across scales

Molecular & Sub-Cellular
Macromolecular

Spatial and
Temporal Scales

Need to go into and across key “capability gaps”;
Computational methods to give unseen views
into the inner workings of cells at the molecular level




Volume 2, Article No. 0148, 2018

PERSPECTIVES

; : : nature
Multiscale methods in drug design REVIEWS

bridge chemical and biological CHEMISTRY
complexity in the search for cures

Rommie E. Amaro and Adrian J. Mulholland

Abstract | Drug action is inherently multiscale: it connects molecular interactions
to emergent properties at cellular and larger scales. Simulation techniques at each
of these different scales are already central to drug design and development, but
methods capable of connecting across these scales will extend our understanding
of complex mechanisms and our ability to predict biological effects. Improved
algorithms, ever-more-powerful computing architectures and the accelerating
growth of rich data sets are driving advances in multiscale modelling methods
capable of bridging chemical and biological complexity from the atom to the cell.




3D structural data to build visible virtual cells

Electron crystallography Single-particle analysis Electron tomography Serial Section EM

2-D crystals of membrane proteins Purified molecules in Pleomorphic samples, Resin-embedded samples Serial Block EM
in their native environment solution ~0.2-10 MDa e.g., cells and organelles Resin-embedded

tissues

Routine dataset is 1.2 trillion
pixels
e 100,000’s of structures in
a single dataset
16




Cell-centered, data-centric modeling framework

Proteins
structure
(X-Ray,NMR,EMDB)

Cellular
— informations

Proteomics

cellPAC £&
. Input Data

7 J | Set of d's )




Lipid bilayers with realistic geometries

Surface definition, tesselation Lipid triangles positioned
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Remove clashing lipids Fiﬁlling in holes

LipidWrapper: Durrant JD, Amaro RE (2014) PLoS Comput Biol 10(7): e1003720.



Moving from single protein to whole virus

Fully Atomic
Reconstructions

PyMolecule
LipidWrapper
CellPACK

Alasdair Steven, NIH

Improved sense of the physical arrangement of biological entities in complex biological milieu
Enables simultaneous study of multiple components

Mesoscale molecular models as a platform for other simulation approaches (e.g., Brownian dynamics,
Mcell, lattice boltzmann MD)

... leadls us to new avenues of investigation, not possible on the single protein scale

Johnson et al, Nature Methods (2014),; Durrant & Amaro, PLOS Comp Bio (2014).



pandemic 2009 HIN1 Influenza Vi_rus

~160 millions atoms

Explicit water
(115 nm x 120 nm x 116 nm)

~110 nm diameter

708 HA monomers

(236 HA trimers)
120 NA monomers

(30 NA tetramers)




~ 160 million all-atom MD simulation with NAMD on Blue Waters, viz’d with CellView




Protein Dynamics from Viral Simulations
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Cell-Scale Markov State Models of Protein Dynamics

* Markov state models define metastable states and transitions between states

* Allows extraction of long timescale dynamics from many short timescale
simulations

B. E. Husic, V. S. Pande, J. Am. Chem. Soc. (2018).; J. D. Chodera, F. Noé, Curr. Opin. Struct. Biol. (2014).



Cell-scale Markov state models of protein@dynamics

e
ST

Uiaullp

Markov state models define metastable states
and transitions between states

Allows one to extract long timescale dynamics from many short
timescale simulations

Swope, Pande, Schutte, Noe...




MSMs characterize loop dynamics & druggable pockets

Virion has 30 NAs, 236 HAs
Enough sampling to make a
Markov state model (MSM)
of NA loop dynamics

2-state Macrostate model
open/closed

MEPT for the 150-loop:
s open to closed52.9ns
» closed toopenl98.4 ns




Comparison to single glycoprotein simulations

Two MSMSs, one each for viral coat
and single glycoprotein simulations
Same feature selection (residues 146
to 156) and lag time (7.5 ns)

Both independently converged
according to CK tests

Same relative populations, and similar
MFPT ratios, but different absolute
EIES

Mean First Passage Time (ns)

Open to Closed
Closed to Open
MFPT Ratio

Single Glycoprotein Viral Coat




Molecular and Brownian Dynamics at Cellular Scales




100000 ~ Il NA Active site [ |NA2% site  [[00] HA

Unexpected role of the NA secondary 10000 |
Site » 1000

100
Created 4 virions, ~15 million atoms each

. H “ . . ” . 1
Including reassorted strains, “gain of function” strain: 0

HA NA NA stalk length
CALIO9 (wt) CALIO9 CALIO9 long

VIET04 (wt) VIET04 VIET04 short
BLUMEN CALIO9 VIET04 short
IMAI VIET04 CALI09 long

Amaro et al., ACS Central Science, 2018, 4 (11): 1570-1577




1000 nm (1 um)

Molecular simulation at the mesoscale < ==
P

KT
Gy
By o

it

Biophysics is ready for exascale!




http://amarolab.ucsd.edu http://nbcr.ucsd.edu
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