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Protein Dynamics in Cellular Environments



Convergence of HPC, data science, & data enabling transformative advances at the 
intersection of observational and simulation sciences
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Research breakthroughs will occur at the interface of observational 
and simulation science
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Chemistry, Physics, Math, Software Supercomputers & GPUs

Molecular Dynamics Simulations as a Computational Microscope



p53: Guardian of the genome

Brown et al. (2009) Nature Reviews. Cancer, 9(12), 862–873

Cancer mutations
Cancer rescue mutations

Susceptible to oncogenic mutations that 
inactivate by lowering its stability

Frequency of p53 mutations in cancer

>600,000 new cancer patients annually in the 
US with p53 point mutations



Dream of cancer biologists:  
small-molecule p53 reactivation
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Simulations Reveal Target Flexibility

Wassman, Baronio, Demir, et al. Nature Comm., (2013)

5% exposed, 
matches NMR



New Site Opens

“Open” MD structure> 95 X-ray structures



New Site is Druggable

Wassman, Baronio, Demir, et al. Nature Comm., (2013) Vajda et al., Computational Solvent Mapping: http://ftmap.bu.edu/

http://ftmap.bu.edu/


Discovery of novel reactivation compound & 
rationalization of clinical trial compound

Wassman, Baronio, Demir, et al. Nature Comm., (2013)

Dose-dependent 
rescue in mammalian 

cancer cells
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Our computational approach discovers more novel p53 reactivation 
compounds in 6 months than all the research efforts of the previous 20 

years combined

15/138 compounds tested in mammalian cancer cell lines
rescue p53 activity and kill cancer cell





Computational biophysics bridges gaps across scales

e.g., Can we understand the drug target in its real environment?
Can we understand the molecular and chemical mechanisms underlying disease?

Need to go into and across key “capability gaps”;
Computational methods to give unseen views 

into the inner workings of cells at the molecular level
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Routine dataset is 1.2 trillion 
pixels
• 100,000’s of structures in 

a single dataset

3D structural data to build visible virtual cells
Serial Section EM
Resin-embedded samples Serial Block EM

Resin-embedded 
tissues 
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Cell-centered, data-centric modeling framework
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Lipid triangles positioned

Filling in holes

Surface definition, tesselation

Lipid bilayers with realistic geometries

Remove clashing lipids

LipidWrapper: Durrant JD, Amaro RE (2014) PLoS Comput Biol 10(7): e1003720.



Alasdair Steven, NIH

PyMolecule
LipidWrapper
CellPACK

Fully Atomic 
Reconstructions

Moving from single protein to whole virus

Johnson et al, Nature Methods (2014),;  Durrant & Amaro, PLOS Comp Bio (2014).  

• Improved sense of the physical arrangement of biological entities in complex biological milieu
• Enables simultaneous study of multiple components
• Mesoscale molecular models as a platform for other simulation approaches (e.g., Brownian dynamics, 

Mcell, lattice boltzmann MD)

… leads us to new avenues of investigation, not possible on the single protein scale
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In-silico pandemic 2009 H1N1 Influenza Virus

~160 millions atoms

708 HA monomers
(236 HA trimers)
120 NA monomers
(30 NA tetramers)
11 M2~110 nm diameter

Explicit water
(115 nm x 120 nm x 116 nm)



~ 160 million all-atom MD simulation with NAMD on Blue Waters, viz’d with CellView



Protein Dynamics from Viral Simulations

100 nm, 160 million atoms, 120 ns





• Markov state models define metastable states and transitions between states
• Allows extraction of long timescale dynamics from many short timescale

simulations

Active

Inactive

Cell-Scale Markov State Models of Protein Dynamics

B. E. Husic, V. S. Pande, J. Am. Chem. Soc. (2018).; J. D. Chodera, F. Noé, Curr. Opin. Struct. Biol. (2014).



Active 

Inactive

Markov state models define metastable states 
and transitions between states

Allows one to extract long timescale dynamics from many short 
timescale simulations

Cell-scale Markov state models of protein dynamics

Swope, Pande, Schutte, Noe…



MSMs characterize loop dynamics & druggable pockets

Virion has 30 NAs, 236 HAs
Enough sampling to make a 
Markov state model (MSM) 
of NA loop dynamics

2-state Macrostate model 
open/closed

MFPT for the 150-loop: 
• open to closed 52.9ns 
• closed to open 198.4 ns 



Comparison to single glycoprotein simulations

Mean First Passage Time (ns)
Single Glycoprotein Viral Coat

Open to Closed 390 164

Closed to Open 1000 520

MFPT Ratio 2.6 3.2

• Two MSMs, one each for viral coat 
and single glycoprotein simulations

• Same feature selection (residues 146 
to 156) and lag time (7.5 ns)

• Both independently converged 
according to CK tests

• Same relative populations, and similar 
MFPT ratios, but different absolute 
rates

Closed
75%

Open
25%



Molecular and Brownian Dynamics at Cellular Scales



Created 4 virions, ~15 million atoms each
Including reassorted strains, “gain of function” strain:

Unexpected role of the NA secondary 
site

IMAI

Amaro et al., ACS Central Science, 2018, 4 (11): 1570-1577



Molecular simulation at the mesoscale

100 nm

1000 nm (1 um)

10 nm

Biophysics is ready for exascale!
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