Argonne Training Program on Extreme-Scale Computing (ATPESC)

Quick Start on ATPESC Computing Resources

Office of

Ray Loy ATPESC 2019 Deputy Program Director

Q Center, St. Charles, IL (USA) Date 07/28/2019

OUTLINE

- ALCF Systems
 - KNL (Theta)
 - x86+GPU (Cooley)
 - Blue Gene/Q (Mira, Cetus, Vesta)
- ANL JLSE
- OLCF
 - Cray (Summit)
- NERSC
 - KNL+Haswell (Cori)

The DOE Leadership Computing Facility

- Collaborative, multi-lab, DOE/SC initiative ranked top national priority in *Facilities for the Future of Science: A Twenty-Year Outlook.*
- Mission: Provide the computational and data science resources required to solve the most important scientific & engineering problems in the world.

- Highly competitive user allocation program (INCITE, ALCC).
- Projects receive 100x more hours than at other generally available centers.
- LCF centers partner with users to enable science & engineering breakthroughs (Liaisons, Catalysts).

Leadership Computing Facility System

	Argonne LCF		Oak Ridge LCF			
System	Cray XC40	IBM Blue Gene/Q	IBM			
Name	Theta	Mira	Summit			
Compute nodes	4,392	49,152	4608			
Node architecture	Intel Knights Landing, 64 cores	PowerPC, 16 cores	2 x IBM POWER9 22 cores 6 x NVIDIA V100 (Volta) GPU			
Processing Units	281,088 Cores	786,432 Cores	202,752 POWER9 Cores + 27648 GPUs			
Memory per node, (gigabytes)	192 DDR4 + 16 MCDRAM	16	512 DDR4 + 96 HBM2 + 1600 NVM			
Peak performance, (petaflops)	11.69	10	200			
$\Lambda r_{\sigma} \circ n_{\rho} = (\overline{c})$						

5

NATIONAL LABORATORY

ALCF Systems

- Theta Cray XC40
 - 4,392 nodes / 281,088 cores

▪ *Mira* – BG/Q

- 49,152 nodes / 786,432 cores
- 786 TB of memory
- Peak flop rate: 10 PetaFLOPs
- 3,145,728 hardware threads
- Vesta (T&D) BG/Q
 - 2,048 nodes / 32,768 cores
- Cetus (debug) BG/Q
 - 4,096 nodes / 65,5368 cores
- Cooley (visualization & data analysis) Cray CS
 - 126 nodes, each with
 - Two Intel Xeon E5-2620 Haswell 2.4 GHz 6-core processors
 - NVIDIA Tesla K80 graphics processing unit with 24 GB memory
 - 384 GB DDR4 memory

Theta serves as a bridge to the exascale system coming to Argonne

- Serves as a bridge between Mira and Aurora, transition and data analytics system
- Cray XC40 system. Runs Cray software stack
- ⊙ 11.69 PF peak performance
- ⊙ 4392 nodes with 2nd Generation Intel® Xeon Phi[™] processor
 - Knights Landing (KNL), 7230 SKU 64 cores 1.3GHz
 - 4 hardware threads/core
- 192GB DDR4 memory 16GB MCDRAM on each node
- $\odot~$ 128GB SSD on each node
- ⊙ Cray Aries high speed interconnect in dragonfly topology
- Initial file system: 10PB Lustre file system, 200 GB/s throughput

Theta - Filesystems

\odot GPFS

- Home directories (/home) are in /gpfs/mira-home
 - o Default quota 50GiB
 - \circ $\,$ Your home directory is backed up

\odot Lustre

- Project directories (/projects) are in /lus/theta-fs0/projects (e.g. /projects/ATPESC2019)
 - CREATE A SUBDIRECTORY /projects/ATPESC2019/your_username
 - $\circ~$ Access controlled by unix group of your project
 - Default quota 1TiB
 - NOT backed up
- ◎ With large I/O, be sure to consider stripe width

\odot **RECOMMENDATION**

◎ Source code ad compilation in your home directory. Data files and execution in project directory.

Theta - Modules (Theta ONLY)

- $\odot\,$ A tool for managing a user's environment
 - Sets your PATH to access desired front-end tools
 - Your compiler version can be changed here
- \circ module commands
 - ⊚ help
 - \odot list \leftarrow what is currently loaded
 - ⊚ avail
 - ⊚ load

 - ⊚ switch|swap

Theta - Compilers

- ⊙ For all compilers (Intel, Cray, Gnu, etc):

 - Do not use mpicc, MPICC, mpic++, mpif77, mpif90
 - o they do not generate code for the compute nodes
- Selecting the compiler you want using "module swap" or "module unload" followed by "module load"
 - Intel
 - o PrgEnv-intel This is the default
 - Cray
 - module swap PrgEnv-intel PrgEnv-cray
 - NOTE: links libsci by default
 - ⊚ Gnu
 - module swap PrgEnv-intel PrgEnv-gnu
 - - module swap PrgEnv-intel PrgEnv-llvm

Theta - Job script

#!/bin/bash
#COBALT -t 10
#COBALT -n 2
#COBALT -A ATPESC2019

Various env settings are provided by Cobalt echo \$COBALT_JOBID \$COBALT_PARTNAME \$COBALT_JOBSIZE

```
aprun -n 16 -N 8 -d 1 -j 1 -cc depth ./a.out status=$?
```

could do another aprun here...

exit \$status

Theta - aprun overview

- Start a parallel execution (equivalent of *mpirun, mpiexec* on other systems)
 - Must be invoked from within a batch job that allocates nodes to you!

 \odot Options

- -N ranks_per_node

- ◎ -j hyperthreads [cpus (hyperthreads) per compute unit (core)]
- \odot Env settings you may need
 - ◎ -e OMP_NUM_THREADS=*nthreads*
 - ◎ -e KMP_AFFINITY=...

 \odot See also man aprun

Submitting a Cobalt job

o qsub -A <project> -q <queue> -t <time> -n <nodes> ./jobscript.sh
 E.g.

qsub - A Myprojname - q default t - t 10 - n 32 ./jobscript.sh

- If you specify your options in the script via #COBALT, then just:
 - qsub jobscript.sh
- $\odot\,$ Make sure jobscript.sh is executable
- $\odot~$ Without "-q", submits to the queue named "default"
 - ◎ For ATPESC reservations, specify e.g. "-q R.ATPESC2019" (see *showres* output)
 - ◎ For small tests outside of reservations, use e.g. "-q debug-cache-quad"
- Theta "default" (production) queue has 128 node minimum job size
 - The ATPESC reservation does not have this restriction
- \odot man qsub for more options

Managing your job

\odot qstat – show what's in the queue

- ◎ qstat –u <username> # Jobs only for user
- - # Detailed info on job

⊙ qdel <jobid>

◎ qstat –fl <jobid>

 \odot showres – show reservations currently set in the system

 \odot man qstat for more options

Cobalt files for a job

- Cobalt will create 3 files per job, the basename <prefix> defaults to the jobid, but can be set with "qsub -O myprefix"
 - ◎ jobid can be inserted into your string e.g. "-O myprefix_\$jobid"

○ Cobalt log file: <prefix>.cobaltlog

- ◎ created by Cobalt when job is submitted, additional info written during the job
- contains submission information from qsub command, runjob, and environment variables

⊙ Job stderr file: <prefix>.error

- o created at the start of a job
- contains job startup information and any content sent to standard error while the user program is running
- ⊙ Job stdout file: <prefix>.output
 - ontains any content sent to standard output by user program

Interactive job

 \odot Useful for short tests or debugging

⊙ Submit the job with –I (letter I for Interactive)

Default queue and default project

○ qsub –l –n 32 –t 30

Specify queue and project:

○ qsub –I –n 32 –t 30 –q training –A ATPESC2018

- \odot Wait for job's shell prompt
 - ◎ *This is a new shell* with env settings e.g. COBALT_JOBID
 - Exit this shell to end your job
- ⊙ From job's shell prompt, run just like in a script job, e.g.
 - ⊚ aprun –n 512 –N 16 –d 1 –j 1 –cc depth ./a.out
- After job expires, apruns will fail. Check qstat \$COBALT_JOBID

Core files and debugging

- Abnormal Termination Processing (ATP)
 - Set environment ATP_ENABLED=1 in your job script before aprun
 - On program failure, generates a merged stack backtrace tree in file atpMergedBT.dot
 - ◎ View the output file with the program **stat-view** (module load stat)
- $\odot\,$ Notes on linking your program
 - make sure you load the "atp" module before linking
 - \circ to check, module list
- \odot Other debugging tools
 - You can generate STAT snapshots asynchronously
 - Full-featured debugging with DDT
 - $\ensuremath{\, \ensuremath{ \e$
 - o <u>https://www.alcf.anl.gov/files/Loy-comp_perf_workshop-debugging-2019-v1.2.pdf</u>

Machine status web page

http://status.alcf.anl.gov/theta/activity (a.k.a. The Gronkulator)

ALCF Cooley (x86+GPU)

Argonne Leadership Computing Facility

Cooley - Softenv (Cooley and BG/Q only)

 \odot Similar to **modules** package

 \odot Keys are read at login time to set environment variables like PATH.

Mira, Cetus, Vesta: ~/.soft

Cooley: ~/.soft.cooley

 \odot To get started:

This key selects XL compilers to be used by mpi wrappers +mpiwrapper-xl

@default

the end - do not put any keys after the @default

 \odot After edits to .soft, type "resoft" or log out and back in again

Cooley Job Script

 \odot More like a typical Linux cluster

- \odot Job script different than BG/Q.
 - Sector Example test.sh:

```
#!/bin/sh
NODES=`cat $COBALT_NODEFILE | wc -l`
PROCS=$((NODES * 12))
mpirun -f $COBALT_NODEFILE -n $PROCS myprog.exe
```

Submit on 5 nodes for 10 minutes

```
qsub -n 5 -t 10 -q training -A ATPESC2018 ./test.sh
```

Refer to online user guide for more info

ALCF References

- Sample files (Theta, Cooley, Mira, Vesta, Cetus)
 - /projects/ATPESC19_Instructors/ALCF_Getting_Started/examples
- Online docs
 - www.alcf.anl.gov/user-guides
 - Getting Started Presentations (*slides and videos*)
 - Theta and Cooley ; BG/Q (Mira, Vesta, Cetus)
 - https://www.alcf.anl.gov/workshops/2019-getting-started-videos
 - Debugging:
 - <u>https://www.alcf.anl.gov/files/Loy-comp_perf_workshop-debugging-2019-v1.2.pdf</u>

Cryptocard tips

 \odot The displayed value is a hex string. Type your PIN followed by all letters as CAPITALS.

- ⊙ If you fail to authenticate the first time, you may have typed it incorrectly
 - Try again with the same crypto string (do NOT press button again)
- ⊙ If you fail again, try a different ALCF host with a fresh crypto #
 - A successful login resets your count of failed logins
- \odot Too many failed logins \rightarrow your account locked
 - Symptom: You get password prompt but login denied even if it is correct
- \odot Too many failed logins from a given IP \rightarrow the IP will be blocked
 - Symptom: connection attempt by ssh or web browser will just time out

- \odot Joint Laboratory for System Evaluation
 - $\ensuremath{\,\circ}$ ALCF / MCS evaluation of future HW and SW platforms
 - http://jlse.anl.gov
- \odot Systems
 - https://wiki.jlse.anl.gov/display/JLSEdocs/JLSE+Hardware
- \odot Monday hands-on with FPGA system
- Email: help@jlse.anl.gov

ATPESC Resources

ALCF – Theta and Cooley

- Project name: ATPESC2019 (qsub A ATPESC2019 …)
- **Note:** use your ALCF Username. The password will be your old/newly established PIN + token code displayed on the token.
- Support: on-site ALCF staff available to help you!! and support@alcf.anl.gov
- **Reservations:** Please check the details of the reservations directly on each machine (**command**: showres)
- Queue: R.ATPESC2019 (check showres) or default

ATPESC Resources

OLCF – Summit

- Summit User Guide https://www.olcf.ornl.gov/for-users/system-user-guides/summit/
- Tools to learn how to use the `jsrun` job launcher
 - <u>Hello_jsrun</u> A "Hello, World!"-type program to help understand resource layouts on Summit/Ascent nodes.
 - jsrunVisualizer A web-based tool to learn the basics of `jsrun`.
 - Jsrun Quick Start Guide A very brief overview to help get you started
- OLCF Tutorials at https://github.com/olcf-tutorials
- See documents in your Argonne Folder for additional information
- For token issues, call: 865.241.6536 (24x7). For other questions, email: <u>help@olcf.ornl.gov</u>

ATPESC Resources

NERSC – Cori (Cray XC40)

- 9688 KNL (68-core) nodes + 2388 Haswell (16-core) nodes
- Logging in: ssh trainNNN@cori.nersc.gov
- Project (repository) name: ntrain
- Submit jobs

http://www.nersc.gov/users/computational-systems/cori/running-jobs/

- Reservations

#SBATCH – reservation = name of reservation ./mybatchscript

- Support: accounts@nersc.gov or call 1-800-666-3772

Reservations (Check *showres* **for updates)**

TRACK 1	TRACK 2		TRACK 3	TRACK 4
Hardware	Programming Models		Data Intensive	Visualization and
Architectures	and Languages		Computing and I/O	Data Analysis
No reservations	Tue 7/30 12h @ 9:30 AM Theta (40 nodes) Cooley (40 nodes)	Wed 7/31 & Thu 8/1 13h @ 8:30 AM Cooley (80 nodes)	Fri 8/2 12h @ 9:00 AM Theta (79 nodes)	Mon 8/5 10.5h @ 10:30 AM Cooley (78 nodes)

TRACK 5 Numerical Algorithms and Software for Extreme-Scale Science	TRACK 6 Performance Tools and Debuggers	TRACK 7 Software Productivity	TRACK 8 Machine Learning and Deep Learning for Science
Tue 8/6	Wed 8/7 10h @ 8:30 AM	Thu 8/8	Fri 8/9
9h @ 8:30 AM Cooley (80 nodes)	Theta (1K nodes) 4.5h @ 6:30 PM Theta (2K nodes)	No reservations	TBD
ГРЕSC 2019, July 28 – August 9, 2019		Argonne	E COMPUTING PROJECT

Questions?

• Use this presentation as a reference during ATPESC!

• Supplemental info will be posted as well

Hands-on exercise

- Theta
 - /projects/ATPESC19_Instructors/ALCF_Getting_Started/examples/theta/compilation
- Cooley
 - /projects/ATPESC19_Instructors/ALCF_Getting_Started/examples/cooley/compilation
- 1. Log in
- 2. Create your own subdirectory in /projects/ATPESC2019
- 3. Copy example code to your directory
- 4. Compile (Makefile) and submit job (jobscripts.sh)

Supplemental Info

Argonne Leadership Computing Facility

Theta Memory Modes - IPM and DDR

Selected at node boot time

Argonne Leadership Computing Facility

- Two memory types
- In Package Memory (IPM)
 - 16 GB MCDRAM
 - ~480 GB/s bandwidth
- Off Package Memory (DDR)
 - Up to 384 GB
 - ~90 GB/s bandwidth
- One address space
- Possibly multiple NUMA domains
- Memory configurations
- Cached: DDR fully cached by IPM
 - Flat: user managed
- Hybrid: $\frac{1}{4}$, $\frac{1}{2}$ IPM used as cache
 - Managing memory:
 - jemalloc & memkind libraries
- Pragmas for static memory allocations

Theta queues and modes

- MCDRAM and NUMA modes can only be set by the system when nodes are rebooted. Users cannot directly reboot nodes.
- Submit job with the --attrs flag to get the mode you need. E.g.
 - qsub -n 32 -t 60 -attrs mcdram=cache:numa=quad ./jobscript.sh
- Other mode choices
 - mcdram: cache, flat, split, equal
 - numa: quad, a2a, hemi, snc2, snc4
- Queues
 - Normal jobs use queue named "default"
 - Debugging: debug-cache-quad, debug-flat-quad
 - Note: pre-set for mcdram/numa configuration
 - "qstat –Q" lists all queues