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§ Today, we will present RAJA, how to use it, and how it enables performance 
portability

§ We will also present background material that will be help you think about key 
issues in parallel computing

§ Our discussion will contain both lecture materials and hands-on exercises

§ Our main objective is that you learn enough today to start using RAJA in your 
own code development 

Welcome to the RAJA tutorial 
Intro

See the RAJA User Guide for more information (https://readthedocs.org/projects/raja).
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Please don’t hesitate to ask 
any question at any time

During the tutorial…
Intro
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§ If you have comments, questions, suggestions, etc.,             
please let us know
— Join our Google Group (linked on RAJA Github project home page)

— Or send email to our project email list: raja-dev@llnl.gov

§ We appreciate specific, concrete feedback that helps us 
improve this tutorial

We value your feedback…
Intro

mailto:raja-dev@llnl.gov
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§ RAJA is a library of C++ abstractions that enable you to write single-source
loop kernels that can be run on different platforms by re-compiling your code
— Multicore CPUs, Xeon Phi, NVIDIA GPUs, …

§ RAJA helps you insulate your code from hardware and programming model-
specific implementation details
— SIMD vectorization, OpenMP, CUDA, …

§ RAJA supports a variety of parallel patterns and performance tuning options
— Simple and complex loop kernels
— Reductions, scans, atomic operations
— Loop tiling, thread-local data, GPU shared memory, …

RAJA and performance portability 
Intro

RAJA provides building blocks that extend the generally-accepted “parallel for” idiom.
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RAJA design goals emphasize usability and 
developer productivity
§ Applications should maintain single-source kernels (as much as possible)

§ Easy to understand and use for app developers (most are not CS experts)

§ Allow incremental and selective adoption

§ Don’t force major disruption to application source code

§ Promote flexible algorithm implementations via clean encapsulation

§ Make it easy to parameterize execution via type aliases

§ Enable systematic performance tuning

RAJA is developed collaboratively with production application teams.

Intro
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RAJA features are supported for a
variety of programming model back-ends

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
IndexSets

Atomics

Scans

Complex Loops

Layouts & Views

= available = work in progress = not available (yet)

Intro
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RAJA is an open source project on Github

https://github.com/LLNL/RAJA

Intro
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§ RAJA User Guide: getting started info, 
details about today’s topics, and more!

§ RAJA Performance Suite: Collection of loop 
patterns used to assess compilers and RAJA 
performance. Used by vendors, DOE 
platform procurement benchmark, etc.

§ CHAI: Array abstraction library that 
automatically migrates data as needed 
based on RAJA execution contexts

Related projects and other materials…

These are linked on the RAJA Github project.

Intro
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§ We’ve set up two options for you:

— Docker container for your laptop (Mac only)

— ALCF machines (Cooley and Theta)
• Get the RAJA code, and put it someplace in your home directory on those machines:

– git clone –recursive https://github.com/LLNL/RAJA.git

– cd RAJA

– git checkout ATPESC2019  (a branch we have set up for this tutorial)

You will need to do some simple preparation 
before attempting the tutorial exercises

Intro

Please try to do this before we get to the exercises.

https://github.com/LLNL/RAJA.git


LLNL-PRES-781841
11

§ You will need to install Docker Desktop (or similar)
— See https://docs.docker.com/install if you need to do this

• Create account if needed. Login. Download image for your OS. Install on your machine.

§ Get the RAJA tutorial Docker container
— Run the following command:

docker run -it rajaorg/raja-tutorial:atpesc19

— This puts you into a bash terminal inside the Docker container, which already has RAJA installed

If you will use the Docker container…
Intro

Please try to do this before we get to the exercises.

https://docs.docker.com/install
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Before we dig into RAJA, we will 
discuss some things that are 
helpful to keep in mind during 

the tutorial…

Good to know
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§ We hope that when we can perform multiple operations simultaneously, our 
applications will run faster

Why are we interested in parallel computing?
Good to know
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§ What are some forms of parallel computing?

Parallel computing comes in various forms
Good to know
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§ What are some forms of parallel computing?

— Instruction-level Parallelism (ILP) – multiple machine instructions run at the same time
• Typically, the result of compiler optimizations for specific hardware 
– Instruction pipelining
– Out-of-order execution
– Branch prediction
– Etc.

The amount of available parallelism depends on how many operations can be 
performed simultaneously

Parallel computing comes in various forms
Good to know

a = b + c
d = e * f
g = a + d

Independent
operations
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§ What are some forms of parallel computing?

— Instruction-level Parallelism (ILP) – multiple machine instructions run at the same time

— Task (functional) parallelism – tasks run in parallel using same or different data

The amount of available parallelism depends on 
the number of independent tasks

Parallel computing comes in various forms
Good to know

A

CBD

F
E

A task DAG
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§ What are some forms of parallel computing?

— Instruction-level Parallelism (ILP) – multiple machine instructions run at the same time

— Task (functional) parallelism – tasks run in parallel using same or different data

— Data Parallelism – same operation is applied to different subsets of data; e.g., SIMD 
vectorization

The amount of available parallelism is proportional to size of input data

Parallel computing comes in various forms
Good to know

for (int i = 0; i < N; ++i) {
a[i] = b[i] + c[i];

}
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§ What are some forms of parallel computing?

— Instruction-level Parallelism (ILP) – multiple machine instructions run at the same time

— Task (functional) parallelism – tasks run in parallel using same or different data

— Data Parallelism – same operation is applied to different subsets of data

Parallel computing comes in various forms
Good to know

for (int i = 0; i < N; ++i) {
a[i] = b[i] + c[i];

}

If this loop runs in T time units on one process/thread, we hope it will run in T / M time 
units in parallel on M processors/threads (M <= N)

0 1 … … … …
𝑁
𝑀

2𝑁
𝑀

(𝑀 − 1)𝑁
𝑀

This tutorial focuses on “fine-grained” (loop-level) data parallelism.
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time (race condition)
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

Data dependencies are a key inhibitor of 
parallelism

Good to know
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time (race condition)
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

double sum = 0.0;
for (int i = 0; i < N; ++i) {

sum += a[i];
}
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time (race condition)
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

double sum = 0.0;
for (int i = 0; i < N; ++i) {

sum += a[i];
}

Each loop iteration writes to ‘sum’

We’ll discuss RAJA reductions later in the tutorial.
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

for (int i = 0; i < N; ++i) {
x[i] = x[i-1] + y[i];

}
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

for (int i = 0; i < N; ++i) {
x[i] = x[i-1] + y[i];

}

x[i-1] must be computed before x[i]
(loop-carried dependence) 

Sometimes algorithms must be rewritten to enable parallelism.
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

for (int r = 0; r < N; ++r) {
for (int c = 0; c < N; ++c) {

A[r][c] = A[c][r];
}

}
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

for (int r = 0; r < N; ++r) {
for (int c = 0; c < N; ++c) {

A[r][c] = A[c][r];
}

}

A(c, r) and A(r, c) depend on each other
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

for (int i = 0; i < N; ++i) {
x[i] = y[i+1] - y[i];

}
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§ A data dependence occurs when multiple threads or tasks could write to the 
same memory location at the same time
— This can cause an algorithm to produce non-deterministic results (order-dependent)
— Example: a for-loop where not all loop iterations are independent

What’s the issue?

Data dependencies are a main inhibitor of 
parallelism

Good to know

for (int i = 0; i < N; ++i) {
x[i] = y[i+1] - y[i];

}

There is no issue. All loop iterations are independent.

In a data parallel loop, all loop iterations are independent.
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§ Amdahl’s law:

Amdahl’s law tells us the maximum theoretical 
“speedup” we can achieve in a parallel program

Good to know

𝑆(𝑛) =
1

1 − 𝑝 + 𝑝𝑛

𝑆(𝑛)

𝑝

is the theoretical maximum speedup of a fixed 
workload run in parallel with n processors

is the proportion of sequential run time (1 processor) 
of the parts of the program that can run in parallel
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§ Amdahl’s law

§ Theoretical speedup can increase as we run on more processors. But, for a fixed 
workload, we cannot continue to add processors and expect additional speedup.  

Good to know

𝑆(𝑛) =
1

1 − 𝑝 + 𝑝𝑛

𝑆(𝑛)

𝑝

is the theoretical maximum speedup of a fixed 
workload run in parallel with n processors

is the proportion of sequential run time (1 processor) 
of the parts of the program that can run in parallel 

Amdahl’s law tells us the maximum theoretical 
“speedup” we can achieve in a parallel program
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§ Amdahl’s law

§ Theoretical speedup can increase as we run on more processors. But, for a fixed 
workload, we cannot continue to add processors and expect additional speedup.  

If only 50% of an application can run in parallel (p = 0.5), what does Amdahl’s law tell us 
the maximum speedup we could observe on any number of processors?

Good to know

𝑆(𝑛) =
1

1 − 𝑝 + 𝑝𝑛

𝑆(𝑛)

𝑝

is the theoretical maximum speedup of a fixed 
workload run in parallel with n processors

is the proportion of sequential run time (1 processor) 
of the parts of the program that can run in parallel

Amdahl’s law tells us the maximum theoretical 
“speedup” we can achieve in a parallel program
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§ Amdahl’s law

§ Theoretical speedup can increase as we run on more processors. But, for a fixed 
workload, we cannot continue to add processors and expect additional speedup.  

If only 50% of an application can run in parallel (p = 0.5), what does Amdahl’s law tell us 
the maximum speedup we could observe on any number of processors? 2x

Good to know

𝑆(𝑛) =
1

1 − 𝑝 + 𝑝𝑛

𝑆(𝑛)

𝑝

is the theoretical maximum speedup of a fixed 
workload run in parallel with n processors

is the proportion of sequential run time (1 processor) 
of the parts of the program that can run in parallel

Amdahl’s law tells us the maximum theoretical 
“speedup” we can achieve in a parallel program

Try plugging other values of p, between 0 and 1, into the formula.
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§ Amdahl’s law

§ Note the following:

Good to know

𝑆(𝑛) =
1

1 − 𝑝 + 𝑝𝑛

𝑆(𝑛) ≤
1

1 − 𝑝
lim
1→3

𝑆 𝑛 =
1

1 − 𝑝

𝑆(𝑛)

𝑝

is the theoretical maximum speedup of a fixed 
workload run in parallel with n processors

is the proportion of sequential run time (1 processor) 
of the parts of the program that can run in parallel

Theoretical speedup is always limited by
sequential portions of your code
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§ Compare sequential run time and parallel run time

— “Parallel Speedup”

— “Parallel Efficiency”

How do we measure what we actually gain 
from parallelism?

Good to know

Sn = T1 / Tn

En = Sn / n

“Perfect (ideal) scaling”Sn = n (En = 1)

T1 is sequential run time

Tn is run time using n 
processes or threads
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§ Compare sequential run time and parallel run time

In reality, Sn < n (En < 1) most of the time!

Good to know

“Perfect (Ideal) scaling”Sn = n (En = 1)

How do we measure what we actually gain 
from parallelism?
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§ Compare sequential run time and parallel run time

In reality, why is Sn < n (En < 1) most of the time?
— Synchronization overhead

Good to know

Master process/thread Master process/thread

Parallel processes/threads

time

“Perfect (Ideal) scaling”Sn = n (En = 1)

How do we measure how much we gain 
from parallelism?

“fork” “join”
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§ Compare sequential run time and parallel run time

In reality, why is Sn < n (En < 1) most of the time?
— Synchronization overhead
— Communication overhead

Good to know

“Perfect (Ideal) scaling”Sn = n (En = 1)

Parallel processes/threads

time

Parallel processes/threads

Data exchange

How do we measure how much we gain 
from parallelism?
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§ Compare sequential run time and parallel run time

In reality, why is Sn < n (En < 1) most of the time?
— Synchronization overhead
— Communication overhead
— Load imbalance

Good to know

“Perfect (Ideal) scaling”Sn = n (En = 1)

Parallel processes/threads

time
sync sync

idle

idle

How do we measure how much we gain 
from parallelism?
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§ Compare sequential run time and parallel run time

In reality, why is Sn < n (En < 1) most of the time?
— Synchronization overhead
— Communication overhead
— Load imbalance
— Many algorithms contain sections that do not benefit from parallelization; e.g., parts that are 

inherently serial (remember Amdahl’s law)

Good to know

“Perfect (Ideal) scaling”Sn = n (En = 1)

How do we measure how much we gain 
from parallelism?



LLNL-PRES-781841
39

§ Recall definition of parallel speedup

Theoretically, it is not possible for Sn > n because of Amdahl’s Law.

In practice, it is possible to observe Sn > n. This is called “superlinear speedup”. 

How can this happen?

§ A useful reference on superlinear speedup:
— “Superlinear Speedup in HPC Systems: Why and When?” by S. Ristov et al. 

(https://ieeexplore.ieee.org/document/7733347)

Something to ponder….
Good to know

Sn = T1 / Tn

https://ieeexplore.ieee.org/document/7733347
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§ Modern multi-core CPUs have a hierarchy of 
memory levels
— Some are local to each core: registers, caches
— Some memory is shared with other cores or 

CPUs: caches, node local memory

Understanding basic architecture features 
helps to program for good performance

Good to know

Multi-core CPU

Registers

L1 Cache

L2 Cache

Processor Core

L3 Cache (shared)

Registers

L1 Cache

L2 Cache

Processor Core

…

Local Memory (DRAM)
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§ Modern multi-core CPUs have a hierarchy of 
memory levels
— Some are local to each core: registers, caches
— Some memory is shared with other cores or CPUs: 

caches, node local memory

§ Data move through the memory hierarchy to 
each processor core as they are used and 
migrate away when not used

§ Memory capacity and access times increase 
significantly as you get farther away from the 
processors

§ Levels closer to a core have higher bandwidth
(speed) and lower latency (delay)

Understanding basic architecture features 
helps to program for good performance

Good to know

Multi-core CPU

Registers

L1 Cache

L2 Cache

Processor Core

L3 Cache (shared)

Registers

L1 Cache

L2 Cache

Processor Core

…

Local Memory (DRAM)
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§ GPUs have multiple streaming multiprocessors 
(SMs) and a memory hierarchy
— Some memory levels are local to each SM, some 

are shared by SMs

Understanding basic architecture features 
helps to program for good performance

Good to know

GPU

L2 Cache (shared)

…

Main Memory (DRAM)

Registers

L1 Shared
Mem

SM

Registers

L1 Shared
Mem

SM
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§ GPUs have multiple streaming multiprocessors 
(SMs) and a memory hierarchy
— Some levels are local to each SM, some are 

shared by SMs

§ Each SM has a ”large” register file, an L1 cache 
and shared memory (accessible by all threads 
in each thread block)
— These have high bandwidth and very low latency

§ A unified cache (L2) is shared by all SMs
— Supports fast atomic memory operations

§ Main memory (DRAM) is accessible by GPU and 
host CPU (e.g., host-device copy)

Understanding basic architecture features 
helps to program for good performance

Good to know

GPU

L2 Cache (shared)

…

Main Memory (DRAM)

Registers

L1 Shared
Mem

SM

Registers

L1 Shared
Mem

SM
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§ General “rules of thumb”
— Place data that are used together close in memory: (cache) locality – spatial and temporal
— Consider data access patterns when designing algorithms

Reducing memory motion is critical for good 
performance

Good to know
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§ General “rules of thumb”
— Place data that are used together close in memory (cache) locality – spatial and temporal
— Consider data access patterns when designing algorithms

§ Memory coalescing is very important for GPU performance
— Multiple memory accesses are combined into a single memory transaction
— With CUDA, you typically want all 32 threads in a warp to read operands & write results in as few 

transactions as possible and avoid serialized memory access
— Avoid memory accesses that are non-sequential, sparse, or misaligned

§ Useful references:
— “What Every Programmer Should Know About Memory” by Ulrich Drepper

(https://akkadia.org/drepper/cpumemory.pdf)
— “Introduction to GPGPU and CUDA Programming” by Philip Nee 

(https://cvw.cac.cornell.edu/GPU/default)

Reducing memory motion is critical for good 
performance

Good to know

https://akkadia.org/drepper/cpumemory.pdf
https://cvw.cac.cornell.edu/GPU/default
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Before we dig into RAJA….

…a few other things to mention
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§ Templates enable one to write generic code and have the compiler generate a 
specific implementation for each set of template parameter types you specify

§ Here, “ExecPol”, “IdxType”, “LoopBody” are C++ types you specify at compile-time

RAJA makes heavy use of C++ templates
Good to know

template <typename ExecPol,
typename IdxType,
typename LoopBody>

forall(IdxType&& idx, LoopBody&& body) {
...

}
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RAJA makes heavy use of C++ templates
Good to know

template <typename ExecPol,
typename IdxType,
typename LoopBody>

forall(IdxType&& idx, LoopBody&& body) {
...

}

forall< seq_exec >( RangeSegment(0, N), ...
// loop body

);
Like this…

§ Here, “ExecPol”, “IdxType”, “LoopBody” are C++ types you specify at compile-time

§ “IdxType” and “LoopBody” types are deduced by the compiler based on what you specify
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§ A C++ lambda expression is a closure that stores a function with a data environment

§ A lambda expression is like a functor, but much easier to use

You pass a loop body to RAJA as a C++ 
lambda expression (C++11)

Good to know

forall<seq_exec>(RangeSegment(0, N), 
[=] (int i) {

a[i] += b[i] * c;
}

);

Like this…
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§ A lambda expression has the following form

Users pass loop bodies to RAJA as C++ 
lambda expressions (C++11)

Good to know

forall<seq_exec>(RangeSegment(0, N), [=] (int i) {
a[i] += b[i] * c;

});

[capture list] (parameter list) {function body}
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§ A lambda expression has the following form

§ The capture list specifies how variables (outer scope) are pulled into lambda data environment
— Value or reference ([=] vs. [&])? By-value is required for GPU execution, when using RAJA reductions, etc.

— We recommend using capture by-value in all cases, as shown above

Users pass loop bodies to RAJA as C++ 
lambda expressions (C++11)

Good to know

forall<seq_exec>(RangeSegment(0, N), [=] (int i) {
a[i] += b[i] * c;

});

[capture list] (parameter list) {function body}
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§ A lambda expression has the following form

§ The capture list specifies how variables (outer scope) are pulled into lambda data environment
— Value or reference ([=] vs. [&])? By-value is required for GPU execution, when using RAJA reductions, etc.

— We recommend using capture by-value in all cases, as shown above

§ The parameter list are arguments passed to lambda function body; e.g.,  (int i)is “loop variable”

Users pass loop bodies to RAJA as C++ 
lambda expressions (C++11)

Good to know

forall<seq_exec>(RangeSegment(0, N), [=] (int i) {
a[i] += b[i] * c;

});

[capture list] (parameter list) {function body}
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§ A lambda expression has the following form

§ The capture list specifies how variables (outer scope) are pulled into lambda data environment
— Value or reference ([=] vs. [&])? By-value is required for GPU execution, when using RAJA reductions, etc.

— We recommend using capture by-value in all cases, as shown above

§ The parameter list are arguments passed to lambda function body; e.g.,  (int i)is “loop variable”

§ A lambda used in a CUDA kernel requires a device annotation:  [=] __device__ (…) { … }

Users pass loop bodies to RAJA as C++ 
lambda expressions (C++11)

Good to know

forall<seq_exec>(RangeSegment(0, N), [=] (int i) {
a[i] += b[i] * c;

});

[capture list] (parameter list) {function body}
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§ A lambda expression has the following form

§ The capture list specifies how variables (outer scope) are pulled into lambda data environment
— Value or reference ([=] vs. [&])? By-value is required for GPU execution, when using RAJA reductions, etc.

— We recommend using capture by-value in all cases, as shown above

§ The parameter list are arguments passed to lambda function body; e.g.,  (int i)is “loop variable”

§ A lambda used in a CUDA kernel requires a device annotation: [=] __device__ (…) { … }

Users pass loop bodies to RAJA as C++ 
lambda expressions (C++11)

Good to know

forall<seq_exec>(RangeSegment(0, N), [=] (int i) {
a[i] += b[i] * c;

});

[capture list] (parameter list) {function body}

The online RAJA User Guide has more information about C++ lambda expressions.
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§ RAJA does not provide a memory model (by design)
— Users must handle memory space allocations and transfers

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
a[i] = b[i];

} ); Are ‘a’ and ‘b’ accesible on GPU?

“Bring your own” memory management
Good to know
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§ RAJA does not provide a memory model (by design)
— Users must handle memory space allocations and transfers

§ Some possibilities:
— Manual – use cudaMalloc( ), cudaMemcpy( ) to allocate, copy to/from device 
— Unified Memory (UM) – use cudaMallocManaged( ), paging on demand
— CHAI (https://github.com/LLNL/CHAI) – automatic data copies as needed

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
a[i] = b[i];

} ); Are ‘a’ and ‘b’ accesible on GPU?

“Bring your own” memory management

CHAI was developed to complement RAJA.

Good to know
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§ RAJA does not provide a memory model (by design)
— Users must handle memory space allocations and transfers

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
a[i] = b[i];

} ); Are ‘a’ and ‘b’ accesible on GPU?

“Bring your own” memory management
Good to know

For simplicity, all tutorial exercises use unified memory
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Simple loop execution

Let’s start simple…
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A typical for-loop written in C/C++ exposes all 
aspects of execution explicitly

for (int i = 0; i < N; ++i)
{

x[i] = a * x[i] + y[i];
}

Daxpy operation: x = a * x + y, where x, y are vectors of length N, a is a scalar 

C-style for-loop

Simple Loops

In the implementation, loop iteration order, data access, etc. are explicit in the source code.
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RAJA encapsulates loop execution details
for (int i = 0; i < N; ++i)
{

x[i] = a * x[i] + y[i];
}

C-style for-loop

Simple Loops

RAJA-syle loop
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);

RAJA::forall<EXEC_POL>(range, [=] (int i) 
{

x[i] = a * x[i] + y[i];
} );

By changing the “execution policy”, you change the way the loop runs.
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for (int i = 0; i < N; ++i)
{

x[i] = a * x[i] + y[i];
}

C-style for-loop

Simple Loops

RAJA-syle loop
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);

RAJA::forall<EXEC_POL>(range, [=] (int i) 
{

x[i] = a * x[i] + y[i];
} );

Typically, these 
definitions go in a 

header file.

Learn to love using the C++ “using” directive.

RAJA encapsulates loop execution details
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for (int i = 0; i < N; ++i)
{

x[i] = a * x[i] + y[i];
}

C-style for-loop

Simple Loops

RAJA-syle loop
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);

RAJA::forall<EXEC_POL>(range, [=] (int i) 
{

x[i] = a * x[i] + y[i];
} );

Same loop body.

With RAJA, the loop header is different, but the loop body is the same (in most cases).

RAJA encapsulates loop execution details
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RAJA loop execution has four core concepts 
using EXEC_POLICY = ...;
RAJA::RangeSegment range(0, N);

RAJA::forall< EXEC_POLICY >( range, [=] (int i) 
{

// loop body...
} );

1. Loop execution template (e.g., ‘forall’)

2. Loop execution policy (EXEC_POLICY)

3. Loop iteration space (e.g., ‘RangeSegment’)

4. Loop body (C++ lambda expression)

Simple Loops
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RAJA::forall< EXEC_POLICY > ( iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall method runs loop based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)

Simple Loops
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RAJA::forall< EXEC_POLICY > ( iteration_space,
[=] (int i) {

// loop body
}

);

RAJA loop execution core concepts

§ RAJA::forall template runs loop based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (stride-1 range, list of indices, etc.)

Simple Loops
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RAJA::forall< EXEC_POLICY > ( iteration_space,
[=] (int i) {

// loop body
}

);

These core concepts are common threads 
throughout our discussion

§ RAJA::forall template runs loop based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (contiguous range, list of indices, etc.)

§ Loop body is passed as a C++ lambda expression
— Lambda argument is the loop variable

Simple Loops

The programmer must ensure the loop body works with the execution policy; e.g., thread safe
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RAJA::forall< EXEC_POLICY >( range, [=] (int i) 
{

x[i] = a * x[i] + y[i];
} );

RAJA::simd_exec

RAJA::omp_parallel_for_exec

RAJA::cuda_exec<BLOCK_SIZE>

RAJA::omp_target_parallel_for_exec<MAX_THREADS_PER_TEAM>

RAJA::tbb_for_exec

By changing the execution policy, you can 
change the way the loop will run  

Simple Loops

Examples of RAJA loop 
execution policy types.
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§ Sequential (forces strictly sequential execution)
§ “Loop” (let compiler decide which optimizations to apply)
§ SIMD (applies compiler vectorization pragmas)
§ OpenMP multithreading (CPU)
§ TBB** (Intel Threading Building Blocks)
§ CUDA (NVIDIA GPUs)
§ OpenMP target** (available target device; e.g., GPU)
§ HIP** (AMD GPUs)

RAJA provides a variety of execution policy 
types...

Simple Loops

**Implementations for some policies are works-in-progress.
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RAJA support for simple loops

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

Simple Loops

= available = work in progress = not available (yet)
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Reductions
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Reduction is a common and important 
parallel pattern

dot product: dot = (a, b), where a and b are vectors and dot is a scalar

C-style

double dot = 0.0;
for (int i = 0; i < N; ++i) {
dot += a[i] * b[i];

}

Reductions
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Reduction is a common and important 
parallel pattern

C-style

double dot = 0.0;
for (int i = 0; i < N; ++i) {

dot += a[i] * b[i];
}

Reductions

What might a parallel 
implementation look like?
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Reduction is a common and important 
parallel pattern

C-style

double dot = 0.0;
for (int i = 0; i < N; ++i) {

dot += a[i] * b[i];
}

Reductions

What might a parallel 
implementation look like?

Suppose N = 8 and we 
have P = 4 processors
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Reduction is a common and important 
parallel pattern

C-style

double dot = 0.0;
for (int i = 0; i < N; ++i) {

dot += a[i] * b[i];
}

Reductions

0 1 2 3 4 5 6 7

+ + + +

+ +

+

“Tree-based” algorithm

4 adds
in parallel

2 adds
in parallel

1 add

log2(8) = 3 steps

What might a parallel 
implementation look like?

Suppose N = 8 and we 
have P = 4 processors
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Reduction is a common and important 
parallel pattern

C-style

double dot = 0.0;
for (int i = 0; i < N; ++i) {

dot += a[i] * b[i];
}

Reductions

“Extra credit”:
What does Brent’s Theorem 
tell us about this algorithm?

0 1 2 3 4 5 6 7

+ + + +

+ +

+

“Tree-based” algorithm

4 adds
in parallel

2 adds
in parallel

1 add

log2(8) = 3 steps
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Reduction is a common and important 
parallel pattern

C-style

double dot = 0.0;
for (int i = 0; i < N; ++i) {

dot += a[i] * b[i];
}

Reductions

“Extra credit”:
What does Brent’s Theorem 
tell us about this algorithm?

0 1 2 3 4 5 6 7

+ + + +

+ +

+

“Tree-based” algorithm

4 adds
in parallel

2 adds
in parallel

1 add

log2(8) = 3 steps
𝑇5 ≤

𝑁
𝑝 + log8(𝑁)

Reference:
“Distributed Algorithms and Optimization” by Reza Zadeh 
(https://stanford.edu/~rezab/dao/notes/lecture01/cme323_lec1.pdf)

https://stanford.edu/~rezab/dao/notes/lecture01/cme323_lec1.pdf
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RAJA::ReduceSum< REDUCE_POLICY, double> dot(0.0);

RAJA::forall< EXEC_POLICY >( range, [=] (int i) {
dot += a[i] * b[i];

} );

RAJA reduction objects hide the complexity of 
parallel reduction operations

C-style

double dot = 0.0;
for (int i = 0; i < N; ++i) {
dot += a[i] * b[i];

}

RAJA

Reductions
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RAJA::ReduceSum< REDUCE_POLICY, DTYPE > sum(init_val);

RAJA::forall< EXEC_POLICY >(... {
sum += func(i);

});

DTYPE reduced_sum = sum.get();

Elements of RAJA reductions…

§ A reduction type requires:
— A reduction policy
— A reduction value type
— An initial value

Reductions



LLNL-PRES-781841
79

Elements of RAJA reductions…

§ A reduction type requires:
— A reduction policy
— A reduction value type
— An initial value

§ Updating reduction value is 
what you expect (+=, min, max)

Reductions

RAJA::ReduceSum< REDUCE_POLICY, DTYPE > sum(init_val);

RAJA::forall< EXEC_POLICY >(... {
sum += func(i);

});

DTYPE reduced_sum = sum.get();
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RAJA::ReduceSum< REDUCE_POLICY, DTYPE > sum(init_val);

RAJA::forall< EXEC_POLICY >(... {
sum += func(i);

});

DTYPE reduced_sum = sum.get();

Elements of RAJA reductions…

§ A reduction type requires:
— A reduction policy
— A reduction value type
— An initial value

§ Updating reduction value is 
what you expect (+=, min, max)

§ After loop runs, get reduced 
value via ‘get’ method

Reductions

Note that you cannot access the 
reduced value inside a kernel. This 

may change in the future.
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RAJA::ReduceSum< REDUCE_POLICY, DTYPE > sum(init_val);

RAJA::forall< EXEC_POLICY >(... {
sum += func(i);

});

type reduced_sum = sum.get();

Elements of RAJA reductions…

The reduction policy and loop execution policy must be compatible.

Reductions
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RAJA::seq_reduce;

RAJA::omp_reduce;

RAJA::cuda_reduce;

RAJA::tbb_reduce;

RAJA::omp_target_reduce;

RAJA provides reduction policies for all 
supported programming model back-ends

RAJA::ReduceSum< REDUCE_POLICY, int > sum(0);

Note: SIMD, OpenMP target, and HIP are works-in-progress.

Reductions

Examples of RAJA 
reduction policy types.
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RAJA::ReduceMinLoc< REDUCE_POLICY, DTYPE > r(in_val, 
in_loc);

RAJA supports five common reductions types

RAJA::ReduceSum<    REDUCE_POLICY, DTYPE > r(in_val);

RAJA::ReduceMin<    REDUCE_POLICY, DTYPE > r(in_val);

RAJA::ReduceMax<    REDUCE_POLICY, DTYPE > r(in_val);

“Loc” reductions give index where reduced value was found.

RAJA::ReduceMaxLoc< REDUCE_POLICY, DTYPE > r(in_val, 
in_loc);

Initial
“loc” 

values

Reductions
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Multiple RAJA reductions can be used in a kernel

RAJA::ReduceSum< REDUCE_POL, int > sum(0);
RAJA::ReduceMin< REDUCE_POL, int > min(MAX_VAL);
RAJA::ReduceMax< REDUCE_POL, int > max(MIN_VAL);
RAJA::ReduceMinLoc< REDUCE_POL, int > minloc(MAX_VAL, -1);
RAJA::ReduceMaxLoc< REDUCE_POL, int > maxloc(MIN_VAL, -1);

RAJA::forall< EXEC_POL >( a_range, [=](int i) {
seq_sum += a[i];

seq_min.min(a[i]);
seq_max.max(a[i]);

seq_minloc.minloc(a[i], i);
seq_maxloc.maxloc(a[i], i);

} );

Reductions
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Suppose we run the code on the previous slide 
with this setup…

• What are the reduced values…
— Sum?
— Min?
— Max?
— Max-loc?
— Min-loc?

‘a’ is an int vector of length ‘N’ (N / 2 is even) initialized as:

a :   1   -1  1   -1  1       . . .     1  -10  10  -10  1         . . .           -1   1   -1
0    1    2   . . .                            N/2    . . .                                    N-1

Reductions
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Suppose we run the code on the previous slide 
with this setup…

• What are the reduced values?
— Sum = -9
— Min = -10
— Max = 10
— Max-loc = N/2
— Min-loc = N/2 – 1 or N/2 + 1 (order-dependent)

‘a’ is an int vector of length ‘N’ (N / 2 is even) initialized as:

a :   1   -1  1   -1  1       . . .     1  -10  10  -10  1         . . .           -1   1   -1
0    1    2   . . .                            N/2    . . .                                    N-1

Reductions

Generally, the result of a parallel reduction is order-dependent.



LLNL-PRES-781841
87

RAJA support for reductions

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

= available = in progress = not available (yet)

Reductions
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Hands on Exercises
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§ We’ve set up two options for you:

— Docker container for your laptop (Mac only)

— ALCF machines (Cooley and Theta)
• Get the RAJA code, and put it someplace in your home directory on those machines:

– git clone –recursive https://github.com/LLNL/RAJA.git

– cd RAJA

– git checkout ATPESC2019  (a branch we have set up for this tutorial)

Preparation for the hands-on exercises
Hands-on

https://github.com/LLNL/RAJA.git
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§ You will need to install Docker Desktop (or similar)
— See https://docs.docker.com/install if you need to do this

• Create account if needed. Login. Download image for your OS. Install on your machine.

§ Get the RAJA tutorial Docker container
— Run the following command:

docker run -it rajaorg/raja-tutorial:atpesc19

— This puts you into a bash terminal inside the Docker container, which already has RAJA installed

If you will use the Docker container…
Hands-on

https://docs.docker.com/install
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§ We’ve set up build scripts for you to configure and build the code

— Scripts live in the directory RAJA/scripts/alcf-builds

— Each script has instructions to get on a compute node and set up your basic environment

— Before running a build script, run the commands specified in the build script first

— Then, in the top-level RAJA directory, build the RAJA code:

• Run script for machine and compiler you want to use; e.g., 

./scripts/alcf-builds/cooley_nvcc9.1_clang4.0.sh

• cd into the build directory created by the script

• Type ‘make –j’ to build RAJA and ‘make test’ to check if it works

If you’re using ALCF machines…
Hands-on
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§ In either case, each exercise involves:

— Editing the exercise source file to insert RAJA code

— Recompiling the code (i.e., run make in the build directory)

— Running the exercise executable file (i.e., enter executable name in ‘bin’ directory)

— Checking the output to see if what you did passes or fails the checks

§ Each exercise source file contains a description of the exercise and the RAJA features you 
will use to perform the exercise

§ The locations to modify in the exercise source files are indicated by comments 
containing the text ‘TO DO…’ and ‘EXERCISE’

How to work through the exercises…
Hands-on
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§ See file: RAJA/exercises/tutorial_halfday/ex1_vector-addition.cpp

— It contains C-style sequential and OpenMP implementations of loops that add two vectors: 

§ Exercise: Implement sequential and OpenMP variants using RAJA::forall( ) methods and execution 
policies (also do the same for CUDA if you can). Run the code and check your results. The file has 
empty code sections indicated with comments for you to fill in and methods you can use to check 
your work and print results.

Exercise #1: vector addition
Hands-on

for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

#pragma omp parallel for
for (int i = 0; i < N; ++i) {
c[i] = a[i] + b[i];

}

See https://raja.readthedocs.io/en/v0.9.0/feature/policies.html
for a listing of RAJA loop execution policies.

https://raja.readthedocs.io/en/v0.9.0/feature/policies.html
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§ Your code should look something like this:

Where the execution policy type is chosen for each case (seq, OpenMP, CUDA).

§ The file RAJA/exercises/tutorial_halfday/ex1_vector-addition_solution.cpp contains 
complete implementations of the solution to exercise #1.  It also shows multiple 
”sequential” variants using different execution policies.

Exercise #1 solution
Hands-on

RAJA::forall< EXEC_POL >(RAJA::RangeSegment(0, N), [=] (int i) {
c[i] = a[i] + b[i];

});
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Note that basic RAJA usage is 
conceptually the same as the C-style 

loops. The syntax is different. 
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§ Recall some basic calculus:

§ See file: RAJA/exercises/tutorial_halfday /ex2_approx-pi.cpp 

— It contains C-style sequential and OpenMP loops that use this formula to approximate pi using Riemann 
integration.

§ Exercise: Implement RAJA sequential and OpenMP variants of the pi approximation using 
RAJA::forall( ) methods and RAJA reductions (also do the same for CUDA if you can). The file contains 
empty code sections indicated with comments for you to fill in and methods you can use to check 
your work and print results.

Exercise #2: approximate pi
Hands-on

𝜋
4 = tan>? 1 = @

A

? 1
1 + 𝑥8 𝑑𝑥

See https://raja.readthedocs.io/en/v0.9.0/feature/policies.html
for a listing of RAJA loop execution and reduction policies.

https://raja.readthedocs.io/en/v0.9.0/feature/policies.html
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§ Your code should look something like this:

Where the execution policy type is provided in the file for each case and you have  
filled in a compatible reduction policy type.

§ The file RAJA/exercises/tutorial_halfday/ex2approx-pi_solution.cpp contains 
complete implementations of the solution to exercise #2.

Exercise #2 solution
Hands-on

RAJA::ReduceSum< REDUCE_POL, double > pi(0.0);

RAJA::forall< EXEC_POL >(RAJA::RangeSegment(0, N), [=] (int i) {
double x = (double(i) + 0.5) * dx;
pi += dx / (1.0 + x * x);

});
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Iteration spaces : 
Segments and IndexSets
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§ A “Segment” defines a set of loop indices to run as a unit

Contiguous range [beg, end)

Strided range [beg, end, stride)

List of indices (indirection)

A RAJA “Segment” is defines a loop iteration 
space 

Iteration
spaces
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§ A “Segment” defines a set of loop indices to run as a unit

§ An “Index Set” is a container of segments (of arbitrary types)

Contiguous range [beg, end)

Strided range [beg, end, stride)

List of indices (indirection)

Range Stride-1 RangeList

A RAJA “Segment” is the basic means to define
a loop iteration space 

Iteration
spaces

You can run all segments in an IndexSet in one RAJA loop execution template.
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RAJA::RangeSegment range( 0, N );

RAJA::forall< RAJA::seq_exec >( range , [=] (int i) {

// ...

} );

A RangeSegment defines a contiguous 
sequence of indices (stride-1)

Runs loop indices: {0, 1, 2, … , N-1}

Iteration
spaces



LLNL-PRES-781841

10
2

A RangeStrideSegment defines a
strided sequence of indices

Runs loop indices: {0, 2, 4, …}

Iteration
spaces

RAJA::RangeStrideSegment srange1( 0, N, 2 );

RAJA::forall< RAJA::seq_exec >( srange1 , [=] (int i) 
{
// ... 

} );
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RAJA::RangeStrideSegment srange2( N-1, -1, -1 );

RAJA::forall< RAJA::seq_exec >( srange2 , [=] (int i) 
{
// ... 

} );

A RangeStrideSegment defines a
strided sequence of indices

Runs loop in reverse: {N-1, N-2, … , 1, 0}

RAJA supports negative indices and strides.

Iteration
spaces
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using RAJA::RangeSegment = 
RAJA::TypedRangeSegment<RAJA::Index_type>;

using RAJA::RangeStrideSegment = 
RAJA::TypedRangeStrideSegment<RAJA::Index_type>;

Segments are templates on the index type

RangeSegment and RangeStrideSegment are type aliases

Iteration
spaces
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using RAJA::RangeSegment = 
RAJA::TypedRangeSegment<RAJA::Index_type>;

using RAJA::RangeStrideSegment = 
RAJA::TypedRangeStrideSegment<RAJA::Index_type>;

§ RAJA::IndexType is a useful parametrization
— It is an alias to std::ptrdiff_t
— Appropriate for most compiler optimizations

Segments are templates on the index type

RangeSegment and RangeStrideSegment are type aliases

Use the ‘Typed’ Segment types for other index value types.

Iteration
spaces
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A ListSegment can define any set of indices

Think “indirection array”.

Iteration
spaces

using IdxType = RAJA::Index_type;
using ListSegType = RAJA::TypedListSegment<IdxType>;

// array of indices
IdxType idx[ ] = {10, 11, 14, 20, 22};

// ListSegment object containing indices...
ListSegType idx_list( idx, 5 );
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using IdxType = RAJA::Index_type;
using ListSegType = RAJA::TypedListSegment<IdxType>;

// array of indices
IdxType idx[ ] = {10, 11, 14, 20, 22};

// ListSegment object containing indices...
ListSegType idx_list( idx, 5 );

RAJA::forall< RAJA::seq_exec >( idx_list, [=] (IdxType i) 
{

a[i] = ...;
} );

A ListSegment can define any set of indices

Note: indirection does not appear in loop body.

Runs loop indices: {10, 11, 14, 20, 22}

Iteration
spaces
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using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);

RAJA::Index_type idx[ ] = {10, 11, 14, 20, 22};
ListSegType list2( idx, 5 );

RangeSegType range3(24, 28);

A RAJA IndexSet may contain multiple 
Segment types

Iteration
spaces
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using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);

RAJA::Index_type idx[ ] = {10, 11, 14, 20, 22};
ListSegType list2( idx, 5 );

RangeSegType range3(24, 28);

RAJA::TypedIndexSet< RangeSegType, ListSegType > iset;

iset.push_back( range1 );
iset.push_back( list2 );
iset.push_back( range3 );

A RAJA IndexSet is a container of Segments
Iteration
spaces
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using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);

RAJA::Index_type idx[ ] = {10, 11, 14, 20, 22};
ListSegType list2( idx, 5 );

RangeSegType range3(24, 28);

RAJA::TypedIndexSet< RangeSegType, ListSegType > iset;

iset.push_back( range1 );
iset.push_back( list2 );
iset.push_back( range3 );

A RAJA IndexSet is a container of Segments

Iteration space is partitioned into 3 Segments
{ 0, …, 7 } + {10, 11, 14, 20, 22 } + { 24, …, 27 }

range1                  list2                     range3

Iteration
spaces
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using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);

RAJA::Index_type idx[ ] = {10, 11, 14, 20, 22};
ListSegType list2( idx, 5 );

RangeSegType range3(24, 28);

RAJA::TypedIndexSet< RangeSegType, ListSegType > iset;

iset.push_back( range1 );
iset.push_back( list2 );
iset.push_back( range3 );

A RAJA IndexSet is a container of Segments
Iteration
spaces

Segment types 
must be specified 
at compile time

Iteration space is partitioned into 3 Segments
{ 0, …, 7 } + {10, 11, 14, 20, 22 } + { 24, …, 27 }

range1                  list2                     range3
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using ISET_EXECPOL = 
RAJA::ExecPolicy< RAJA::omp_parallel_segit, 

RAJA::seq_exec >;

RAJA::forall<ISET_EXECPOL>(iset, [=] (IdxType i) {
// loop body

} );

An IndexSet can be passed to a 
RAJA execution template to run all Segments

Index sets require a two-level execution policy:
— Outer iteration over segments ( “…_segit”)
— Inner segment execution

Iteration
spaces
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Why does RAJA provide Index Sets?

§ Multiphysics codes use indirection arrays (a lot!)
— Indirection inhibits performance: more instructions + memory traffic, impedes optimizations

§ Range Segments are better for performance
— When large stride-1 ranges are embedded in iteration space…
— …you can expose these as SIMD-izable ranges “in place” to compilers (no gather/scatters)

§ Partitioning and reordering iterations gives flexibility and performance
— Avoid fine-grained synchronization (atomics or critical sections), which are contention heavy
— Avoid extra arrays and gather/scatter operations, which require extra memory traffic
— Prefer coarse-grained synchronization, which has much lighter memory contention

With IndexSets, you can change a kernel iteration pattern
without changing the way the kernel looks in source code.

Iteration
spaces
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RAJA Segments and IndexSets work with
all back-ends

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

= available = in progress = not available (yet)

Iteration
spaces
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§ Consider an irregularly-spaced 2D Cartesian mesh

§ At each mesh vertex, we want to compute the 
average area of the 4 surrounding elements

IndexSets can help enable parallelism
Hands-on
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§ Consider an irregularly-spaced 2D Cartesian mesh

§ At each mesh vertex, we want to compute the 
average area of the 4 surrounding elements
— For each element e, add ¼ area(e) to area(vi), i = 0,…,3

IndexSets can help enable parallelism

v1v0

v2v3
e

Hands-on
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A C-style serial code for the vertex area

for (int ie = 0 ; ie < N_elem ; ++ie) {

int* iv = e2v_map(ie);

areav[ iv[0] ] += areae[ie] / 4.0 ;
areav[ iv[1] ] += areae[ie] / 4.0 ;
areav[ iv[2] ] += areae[ie] / 4.0 ;
areav[ iv[3] ] += areae[ie] / 4.0 ;

}

v1v0

v2v3

As written, will this code work in parallel?

e

Hands-on
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A C-style serial code for the vertex area

v1v0

v2v3

As written, will this code work in parallel?
No. There is a data race at each vertex.

for (int ie = 0 ; ie < N_elem ; ++ie) {

int* iv = e2v_map(ie);

areav[ iv[0] ] += areae[ie] / 4.0 ;
areav[ iv[1] ] += areae[ie] / 4.0 ;
areav[ iv[2] ] += areae[ie] / 4.0 ;
areav[ iv[3] ] += areae[ie] / 4.0 ;

}

e

Hands-on
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One approach: partition the elements into four 
subsets and run each in parallel

32 32 2

110 0 0

32 32 2

110 0 0

110 0 0

for (int ie = 0 ; ie < N_elem ; ++ie) {

int* iv = e2v_map(ie);

areav[ iv[0] ] += areae[ie] / 4.0 ;
areav[ iv[1] ] += areae[ie] / 4.0 ;
areav[ iv[2] ] += areae[ie] / 4.0 ;
areav[ iv[3] ] += areae[ie] / 4.0 ;

}

No two elements with same 
color share a vertex

Hands-on
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One approach: partition the elements into four 
subsets and run each in parallel

32 32 2

110 0 0

32 32 2

110 0 0

110 0 0

Will the results be reproducible?

for (int ie = 0 ; ie < N_elem ; ++ie) {

int* iv = e2v_map(ie);

areav[ iv[0] ] += areae[ie] / 4.0 ;
areav[ iv[1] ] += areae[ie] / 4.0 ;
areav[ iv[2] ] += areae[ie] / 4.0 ;
areav[ iv[3] ] += areae[ie] / 4.0 ;

}

Hands-on
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One approach: partition the elements into four 
subsets and run each in parallel

32 32 2

110 0 0

32 32 2

110 0 0

110 0 0

Will the results be reproducible?
Yes. The computation for all elements with same color (number) is data parallel.

for (int ie = 0 ; ie < N_elem ; ++ie) {

int* iv = e2v_map(ie);

areav[ iv[0] ] += areae[ie] / 4.0 ;
areav[ iv[1] ] += areae[ie] / 4.0 ;
areav[ iv[2] ] += areae[ie] / 4.0 ;
areav[ iv[3] ] += areae[ie] / 4.0 ;

}

Hands-on
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§ See file: RAJA/exercises /tutorial_halfday/ex3_colored-indexset.cpp 

— It contains C-style sequential and OpenMP variants of the vertex area calculation described 
on the previous slide. They use arrays that enumerate the elements of each color.

§ Exercise: Implement and run a RAJA OpenMP variant of the vertex area calculation 
that uses a RAJA IndexSet containing 4 ListSegments and one call to a RAJA::forall( ) 
method (do the same for CUDA if you can). The file contains the RAJA IndexSet
execution policy types for each case and empty code sections for you to fill in. It also 
has methods you can use to check your work and print results.

Exercise #3: Mesh vertex area using “colored” 
index set

Hands-on
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§ Your code should look like the following, where you have filled in the appropriate segment type and IndexSet
execution policy:

§ The file RAJA/exercises/tutorial_halfday/ex3_colored-indexset_solution.cpp contains a complete 
implementation of the solution to exercise #3. 

Exercise #3 solution
Hands-on

RAJA::TypedIndexSet<SegmentType> colorset;
colorset.push_back( SegmentType(&idx[0][0], idx[0].size()) );
colorset.push_back( SegmentType(&idx[1][0], idx[1].size()) );
colorset.push_back( SegmentType(&idx[2][0], idx[2].size()) );
colorset.push_back( SegmentType(&idx[3][0], idx[3].size()) );

RAJA::forall< EXEC_POL >(colorset, [=] (int ie) {
int* iv = &(e2v_map[4*ie]);
areav[ iv[0] ] += areae[ie] / 4.0 ;
areav[ iv[1] ] += areae[ie] / 4.0 ;
areav[ iv[2] ] += areae[ie] / 4.0 ;
areav[ iv[3] ] += areae[ie] / 4.0 ;

});
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Atomic operations
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int* x = ...
int* y = ...

RAJA::forall< EXEC_POLICY >(RAJA::RangeSegment(0, N), [=] (int i) 
{

RAJA::atomicAdd< ATOMIC_POLICY >(&x[i], 1);  
RAJA::atomicSub< ATOMIC_POLICY >(&y[i], 1);

} );

RAJA provides portable atomic operations

Atomic operations perform updates at specific memory addresses (write or read-modify-write) 
where only one thread or process at a time can do the update.

Atomics
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§ We approximated      using Riemann integration and the following formula:

§ We used a RAJA reduction to accumulate the Riemann sum in parallel.

§ We could also use an atomic operation to prevent multiple threads from attempting to 
write to the memory address of the sum variable at the same time.

Recall exercise #2

𝜋
4 = tan>? 1 = @

A

? 1
1 + 𝑥8 𝑑𝑥

Atomics

𝜋
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using EXEC_POL = RAJA::omp_parallel_for_exec;
using ATOMIC_POL = RAJA::omp_atomic

double* pi = new double[1]; *pi = 0.0;

RAJA::forall< EXEC_POL >(arange, [=] (int i) {

double x = ( double(i) + 0.5 ) * dx;
RAJA::atomicAdd< ATOMIC_POL >(pi, 

dx / (1.0 + x * x));

} );
*pi *= 4.0;

RAJA OpenMP atomic approximation of pi
Atomics

The atomic policy must be compatible with the loop execution policy.
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using EXEC_POL = RAJA::omp_parallel_for_exec;

int *sum = ...;

RAJA::forall< EXEC_POL >(arange, [=] (int i) {

RAJA::atomicAdd< RAJA::builtin_atomic >(sum, 1);

} );

The RAJA “builtin” atomic policy uses compiler 
built-in atomics

Atomics
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using EXEC_POL = RAJA::omp_parallel_for_exec;

int *sum = ...;

RAJA::forall< EXEC_POL >(arange, [=] (int i) {

RAJA::atomicAdd< RAJA::auto_atomic >(sum, 1);

} );

The RAJA “auto” atomic policy will pick the 
correct atomic implementation 

Some may prefer this option for easier portability.

Atomics
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§ “AtomicRef” supports:
— Arbitrary memory locations
— All RAJA atomic policies

RAJA also has an interface modeled after the 
C++20 std::atomic_ref

double val = 2.0;
RAJA::AtomicRef<double, RAJA::auto_atomic> sum(&val);

sum++;
++sum;
sum += 1.0;

For example:

Result: sum is 5 (= 2 + 1 + 1 + 1).

Atomics
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§ Arithmetic: add, sub

§ Min, max

§ Increment/decrement: inc, dec, including conditional 
comparisons with other values

§ Bitwise-logical: and, or, xor

§ Replace: exchange, compare-and-swap (CAS)

§ C++ std::atomic style interface (RAJA::AtomicRef)

RAJA provides a variety of atomic operations

The RAJA User Guide describes these atomic operations in detail.

Atomics
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RAJA support for atomics

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

= available = in progress = not available (yet)

Atomics
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Exercise #4: atomic histogram
Hands-on

§ You have an integer array of length N, whose element values are in the set {0, 1, 2, …, M-1}, where 
M < N. You want to build a histogram array of length M such that the i-th entry in the array is the 
number of occurrences of the value i in the original array.

§ See file: RAJA/exercises/tutorial_halfday/ex4_atomic-histogram.cpp 

— It contains C-style sequential and OpenMP implementations of the histogram calculation.

§ Exercise: Implement and run RAJA sequential and OpenMP variants of loops to compute 
the histogram array using RAJA::forall methods and RAJA atomic operations (do the 
same for CUDA if you can). The file contains empty code sections for you to fill in and 
methods you can use to check your work and print results.

See https://raja.readthedocs.io/en/v0.9.0/feature/policies.html
for a listing of RAJA loop execution and atomic policies.

https://raja.readthedocs.io/en/v0.9.0/feature/policies.html
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§ Your code should look something like this:

Where the atomic policy type is compatible with the execution policy for each case  
(seq, OpenMP, CUDA).

§ The file RAJA/exercises/tutorial_halfday/ex4_atomic-histogram_solution.cpp 
contains complete implementations of the solution to exercise #4.  It also shows 
variants that use the RAJA auto_atomic policy.

Exercise #4 solution
Hands-on

RAJA::forall< EXEC_POL >(RAJA::RangeSegment(0, N), [=] (int i) {
RAJA::atomicAdd< ATOMIC_POL >(&hist[array[i]], 1);

});
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Scan operations
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§ It is a key primitive to convert serial operations to parallel implementations
— Based on reduction tree and reverse reduction tree
— An example of a computation that looks inherently serial, but for which there exist efficient 

parallel implementations

§ Many useful applications:
— Sorting (radix, quicksort)
— String comparison
— Lexical analysis
— Stream compaction
— Polynomial evaluation
— Solving recurrence relations
— Tree operations
— Histograms
— Parallel work assignment

Scan is an important building block for parallel 
algorithms

Scans

Useful reference:
“Prefix Sums and Their Applications” by Guy E. 
Blelloch
(https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf)

https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
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int* in  = ...;  // input array of length N
int* out = ...;  // output array of length N

RAJA::inclusive_scan< EXEC_POL >(in, in + N, out);

RAJA::exclusive_scan< EXEC_POL >(in, in + N, out);

Parallel prefix sum is the most common scan

Output array contains partial sums of input array.

In  : 8  -1  2  9  10  3  4  1  6  7 (N=10)

Out (inclusive)  : 8  7  9  18  28  31  35  36  42  49

Out (exclusive)  : 0  8  7  9  18  28  31  35  36  42 

Example:

Scans

Note: Exclusive scan 
shifts the result array 
one slot to the right.
The first entry of an 
exclusive scan is the 
identity of the scan 
operator; here it is “+”.
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int* arr = ...;  // in/out array of length N

RAJA::inclusive_scan_inplace< EXEC_POL >(arr, arr + N);

RAJA::exclusive_scan_inplace< EXEC_POL >(arr, arr + N);

RAJA also provides “in-place” scan operations

“In-place” scans return result in input array.

Scans
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RAJA::exclusive_scan< exec_pol >(in, in + N, out,
RAJA::operators::minimum<int>{} );

RAJA provides different operators to use in scans

If no operator is given, “plus” is the default (prefix-sum).

In  : 8  -1  2  9  10 -3  4  1  6  7

Out : 2147483648  8 -1 -1 -1 -1 -3 -3 -3 -3

Scans

What is the first value in the result of this scan?
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RAJA::exclusive_scan< exec_pol >(in, in + N, out,
RAJA::operators::minimum<int>{} );

RAJA provides different operators to use in scans

If no operator is given, “plus” is the default (prefix-sum).

In  : 8  -1  2  9  10 -3  4  1  6  7

Out : 2147483648  8 -1 -1 -1 -1 -3 -3 -3 -3

Scans

What is the first value in the result of this scan?

It is the “identity” of the minimum operator.
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RAJA support for scans

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

= available = in progress = not available (yet)

Scans
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§ The line-of-sight problem: given an observation point at X on a terrain map, and a set of 
points along a ray starting at X, find which points on the terrain are visible from X.

§ For example, the blue point at Y1 is visible from the black point at X, but the red point at 
Y2 is not

Exercise #5: the line-of-sight problem
Hands-on

X Y1 Y2

alt
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§ The line-of-sight problem: given an observation point at X on a terrain map, and a set of 
points along a ray starting at X, find which points on the terrain are visible from X.

§ A point at Y on the ray is visible from the point at X if and only if no other point on the 
terrain between the points X and Y has a greater vertical angle from X than Y.

Exercise #5: the line-of-sight problem
Hands-on

X Y1 Y2

𝜃? 𝜃8

alt Point at Y1 (blue) can be seen 
from the point at X and point at 
Y2 (red) cannot. Although the 
point at Y2 has a higher altitude 
than the point at Y1, it has a 
smaller vertical angle.
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§ A point at Y on the ray is visible from the point at X if and only if no other point on the terrain 
between the points X and Y has a greater vertical angle from X than Y.

Exercise #5: the line-of-sight problem
Hands-on

§ Let ‘altX’ be the altitude at point X and a vector ‘alt’ 
be defined so that alt[i] is the altitude at point Yi.

§ Let the vector ‘dist’ be defined so that dist[i] is the 
horizontal distance between point X and point Yi.

§ We compute an angle vector ‘ang’ that holds the 
vertical angle at each point computed as:
— ang[ i ] = tan-1 ( (alt[ i ] – altX)/dist[i] )

§ A max scan on the angle vector tells us if the point Yi
is visible from X:
— If ang[ i ] >= ang_max[i], then Yi is visible, else Yi

is not visible.

Image reference:
“Prefix Sums and Their Applications” by Guy E. Blelloch
(https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf)

https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
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Exercise #5: the line of sight problem
Hands-on

§ See file: RAJA/exercises/ex5_line-of-sight.cpp

— It contains a C-style sequential code that implements the line-of-sight algorithm on the 
previous slide.

§ Exercise: Implement and run sequential and OpenMP variants of the algorithm using 
RAJA scan operations to compute the max angle scan vector and RAJA::forall loops to 
determine which points are visible (do the same for CUDA if you can). The file contains 
empty code sections for you to fill in and methods you can use to check your work and 
print results.

See https://raja.readthedocs.io/en/v0.9.0/feature/scan.html
for a listing of RAJA scan execution policies and operators.

https://raja.readthedocs.io/en/v0.9.0/feature/scan.html
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§ Your code should look something like this (where you have filled in the execution policy):

§ The file RAJA/exercises/tutorial_halfday/ex5_line-of-sight_solution.cpp contains complete 
implementations of the solution to exercise #5.

Exercise #5 solution
Hands-on

RAJA::inclusive_scan< EXEC_POL >(ang, ang+N, ang_max,
RAJA::operators::maximum<double>{});

RAJA::forall< EXEC_POL >(RAJA::RangeSegment(0, N), [=] (int i) {
if ( ang[i] >= ang_max[i] ) {

visible[i] = 1;
} else {

visible[i] = 0;
}

});
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Views and Layouts
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§ They are most naturally thought of as multi-dimensional arrays, but for efficiency in 
C/C++, they are usually allocated as 1-d arrays.

§ Here, we manually convert 2-d indices (row, col) to pointer offsets

Matrices and tensors are ubiquitous in 
scientific computing

View/Layout

for (int row = 0; row < N; ++row) {
for (int col = 0; col < N; ++col) {

for (int k = 0; k < N; ++k) {
C[col + N*row] += A[k + N*row] * B[col + N*k];

}

}
} C-style matrix multiplication
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RAJA Views and Layouts simplify  
multi-dimensional indexing patterns
§ A RAJA View wraps a pointer to enable indexing following a Layout pattern

double* A = new double[ N * N ];

const int DIM = 2;
RAJA::View< double, RAJA::Layout<DIM> > Aview(A, N, N);

View/Layout
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RAJA Views and Layouts simplify  
multi-dimensional indexing patterns
§ A RAJA View wraps a pointer to enable indexing that follows a Layout pattern

§ This leads to data indexing that is more intuitive and less error-prone

double* A = new double[ N * N ];

const int DIM = 2;
RAJA::View< double, RAJA::Layout<DIM> > Aview(A, N, N);

View/Layout

for (int k = 0; k < N; ++k) {
Cview(row, col) += Aview(row, k) * Bview(k, col);

}
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RAJA Views and Layouts support any number 
of dimensions

double* A = new double[ N0 * ... * Nn ];

const int DIM = n + 1;
View< double, Layout<DIM> > Aview(A, N0, ..., Nn);

// iterate over nth index and hold others fixed
for (int i = 0; i < Nn; ++i) {
Aview(i0, i1, ..., i) = ...;

}

// iterate over jth index and hold others fixed
for (int j = 0; j < Nj; ++j) {
Aview(i0, i1, ..., j, ..., iN) = ...;

}

Stride-1 data access

Data access stride is
Nn * … * N(j+1) 

The right-most index is stride-1 using the default Layout<DIM>.

View/Layout
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std::array<RAJA::idx_t, 3> perm {{1, 2, 0}};

RAJA::Layout< 3 > perm_layout =
RAJA::make_permuted_layout( {{5, 7, 11}}, perm);

RAJA provides methods to make layouts
for other indexing patterns
§ A “permuted layout” changes the striding order

View/Layout

This gives a 3-d layout with indices permuted:
• Index ‘0’ has extent 5 and stride 1
• Index ‘2’ has extent 11 and stride 5
• Index ‘1’ has extent 7 and stride 55 (= 5 * 11)
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std::array<RAJA::idx_t, 3> perm {{1, 2, 0}};

RAJA::Layout< 3 > perm_layout =
RAJA::make_permuted_layout( {{5, 7, 11}}, perm);

RAJA::View< double,
RAJA::Layout<3, int> > Bview(B, perm_layout);

// Equivalent to indexing as: B[i + j*5*11 + k*5] 
Bview(i, j, k) = ...; 

A permuted layout changes the striding order 

3-d layout with indices permuted:
• Index ‘0’ has extent 5 and stride 1
• Index ‘2’ has extent 11 and stride 5
• Index ‘1’ has extent 7 and stride 55 (= 5 * 11)

View/Layout

A default layout uses the “identity” permutation (i.e., {0, 1, 2}).
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double* C = new double[11];

RAJA::OffsetLayout<1> offlayout = 
RAJA::make_offset_layout<1>( {{-5}}, {{5}} ); 

RAJA::View< double, RAJA::OffsetLayout<1> > Cview(C,  
offlayout);

for (int i = -5; i < 6; ++i) {
CView(i) = ...;

}

An offset layout applies offsets to indices

A 1-d layout with index offset and extent 11 [-5, 5].
-5 is subtracted from each loop index to access data.

Offset layouts are useful for index space subset operations such as halo regions.

View/Layout
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§ All Layout objects have a permutation. So there is no ``RAJA::PermutedLayout`` type. 
For example,

§ An offset layout has a ``RAJA::Layout`` and offset data. So ``RAJA::OffsetLayout`` is a 
distinct type. For example,

Important notes about RAJA Layout types
View/Layout

RAJA::Layout< NDIMS > perm_layout =
RAJA::make_permuted_layout( ... );

RAJA::OffsetLayout< NDIMS > offset_layout =
RAJA::make_offset_layout( ... );

RAJA::OffsetLayout< NDIMS > perm_offset_layout =
RAJA::make_permuted_offset_layout( ... );
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Offset layout quiz…

RAJA::OffsetLayout<2> offset_layout = 
RAJA::make_offset_layout<2>( {{-1, -5}}, {{2, 5}} ); 

View/Layout

• What index space does this layout represent?
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Offset layout quiz…

RAJA::OffsetLayout<2> offset_layout = 
RAJA::make_offset_layout<2>( {{-1, -5}}, {{2, 5}} ); 

View/Layout

• What index space does this layout represent?

The 2-d index space [-1, 2] X [-5, 5].
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Offset layout quiz…

RAJA::OffsetLayout<2> offset_layout = 
RAJA::make_offset_layout<2>( {{-1, -5}}, {{2, 5}} ); 

View/Layout

• What index space does this layout represent?

• Which index is stride-1?

The 2-d index space [-1, 2] X [-5, 5].
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Offset layout quiz…

RAJA::OffsetLayout<2> offset_layout = 
RAJA::make_offset_layout<2>( {{-1, -5}}, {{2, 5}} ); 

View/Layout

• What index space does this layout represent?

• Which index is stride-1?

The 2-d index space [-1, 2] X [-5, 5].

Index ‘1’ (right-most) is stride-1 (default permutation).
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Offset layout quiz…

RAJA::OffsetLayout<2> offset_layout = 
RAJA::make_offset_layout<2>( {{-1, -5}}, {{2, 5}} ); 

View/Layout

• What index space does this layout represent?

• Which index is stride-1?

• What is the stride of index ‘0’?

The 2-d index space [-1, 2] X [-5, 5].

Index ‘1’ (right-most) is stride-1 (default permutation).
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Offset layout quiz…

RAJA::OffsetLayout<2> offset_layout = 
RAJA::make_offset_layout<2>( {{-1, -5}}, {{2, 5}} ); 

View/Layout

• What index space does this layout represent?

• Which index is stride-1?

• What is the stride of index ‘0’?

The 2-d index space [-1, 2] X [-5, 5].

Index ‘1’ (right-most) is stride-1 (default permutation).

Index ‘0’ has stride 11 (since index 1 has extent 11, [-5, 5]).
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Let’s try a permuted offset layout…
std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = 

RAJA::make_permuted_offset_layout<2>( {{-1, -5}}, {{2, 5}}, perm );

View/Layout

• What index space does this layout represent?
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Let’s try a permuted offset layout…
View/Layout

• What index space does this layout represent?

The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = 

RAJA::make_permuted_offset_layout<2>( {{-1, -5}}, {{2, 5}}, perm );
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Let’s try a permuted offset layout…
View/Layout

• What index space does this layout represent?

• Which index is stride-1?

The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = 

RAJA::make_permuted_offset_layout<2>( {{-1, -5}}, {{2, 5}}, perm );
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Let’s try a permuted offset layout…
View/Layout

• What index space does this layout represent?

• Which index is stride-1?

The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

Index ‘0’ has stride-1 (due to the permutation).

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = 

RAJA::make_permuted_offset_layout<2>( {{-1, -5}}, {{2, 5}}, perm );
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Let’s try a permuted offset layout…
View/Layout

• What index space does this layout represent?

• Which index is stride-1?

• What is the stride of index ‘1’?

The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

Index ‘0’ has stride-1 (due to the permutation).

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = 

RAJA::make_permuted_offset_layout<2>( {{-1, -5}}, {{2, 5}}, perm );
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Let’s try a permuted offset layout…

Index ‘1’ has stride 4 (since index ‘0’ has extent 4, [-1, 2]).

View/Layout

• What index space does this layout represent?

• Which index is stride-1?

• What is the stride of index ‘1’?

The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

Index ‘0’ has stride-1 (due to the permutation).

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = 

RAJA::make_permuted_offset_layout<2>( {{-1, -5}}, {{2, 5}}, perm );
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RAJA::Layout<3> layout(5, 7, 11);

RAJA layout methods convert between multi-
dimensional indices and linear indices

A 3-d layout with extents 5, 7, 11.

View/Layout
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RAJA::Layout<3> layout(5, 7, 11);

// Convert i=2, j=3, k=1 to linear index
int lin = layout(2, 3, 1);

RAJA layout methods convert between multi-
dimensional indices and linear indices

A 3-d layout with extents 5, 7, 11.

View/Layout

What is the value of “lin”?
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RAJA::Layout<3> layout(5, 7, 11);

// Convert i=2, j=3, k=1 to linear index
int lin = layout(2, 3, 1);

RAJA layout methods convert between multi-
dimensional indices and linear indices

A 3-d layout with extents 5, 7, 11.

View/Layout

What is the value of “lin”?

lin = 188 (= 1 + 3 * 11 + 2 * 11 * 7)
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RAJA::Layout<3> layout(5, 7, 11);

// Convert linear index 191 to 3d (i,j,k) index
layout.toIndices(191, i, j, k);

RAJA layout methods convert between multi-
dimensional indices and linear indices

A 3-d layout with extents 5, 7, 11.

View/Layout

What is the 3d index tuple (i, j, k)?
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RAJA::Layout<3> layout(5, 7, 11);

// Convert linear index 191 to 3d (i,j,k) index
layout.toIndices(191, i, j, k);

RAJA layout methods convert between multi-
dimensional indices and linear indices

A 3-d layout with extents 5, 7, 11.

View/Layout

What is the 3d index tuple (i, j, k)?

(i, j, k) = (2, 3, 4)

191 (= 4 + 3 * 11 + 2 * 11 * 7)
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RAJA support for views and layouts

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

= available = in progress = not available (yet)

View/Layout



LLNL-PRES-781841

17
4

Exercise #6: 5-point stencil
Hands-on

§ Consider a simple “five-point stencil” computation on a 2-dimensional cartesian mesh.

§ Suppose the “A” matrix has an entry for each element on the mesh interior:

and the “B” matrix has an entry each element on the mesh interior plus a “halo” layer     
1 element wide around the interior:

𝐴F,H = 𝐵F,H + 𝐵F>?,H + 𝐵FJ?,H + 𝐵F,H>? + 𝐵F,HJ?

i-1       i i+1

j-1

j+1

j

𝑖, 𝑗 ∈ 0, … , 𝑁 ×{0, …𝑀}

𝑖, 𝑗 ∈ −1,… , 𝑁 + 1 ×{−1,… ,𝑀 + 1}
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Exercise #6: 5-point stencil
Hands-on

§ That is, B has a value for each element on the 
mesh to the right and A has a value for each 
element in the grey interior region.

§ We want to write the stencil computation as a 
nested loop (i, j) and use RAJA Views to write the 
loop body “naturally” as:

Aview(i, j) = Bview(i, j) + Bview(i-1, j) + Bview(i+1, j) +
Bview(i, j-1) + Bview(i, j+1)

§ That is, so it looks like this:

…

…

-1 0 N N+1

-1

0

M

M+1

𝐴F,H = 𝐵F,H + 𝐵F>?,H + 𝐵FJ?,H + 𝐵F,H>? + 𝐵F,HJ?
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Exercise #6: 5-point stencil
Hands-on

§ The file RAJA/exercises/ex6_stencil-offset-layout.cpp contains C-style sequential 
implementations of the 5-point stencil computation.
— Part A: Assumes that the column (j-loop) indexing is stride-1.

— Part B: Assumes that the row (i-loop) indexing is stride-1.
— Note that the manual index offset arithmetic in the inner loop bodies is different!

§ Exercise: Implement and run sequential variants of parts A and B using RAJA Views. Note that 
you are to fill in empty code sections inside C-style for-loops. The goal of this exercise is for you to 
learn the mechanics of creating and using RAJA Layouts and Views. The file contains methods 
you can use to check your work and print results.

§ Note: because you are using RAJA Views, the loop bodies look the same in each case; like this:

Aview(i, j) = Bview(i, j) + Bview(i-1, j) + Bview(i+1, j) +
Bview(i, j-1) + Bview(i, j+1)
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§ For part B, your construction of RAJA Views should look like this:

§ The file RAJA/exercises/ex6_stencil-offset-layout_solution.cpp  contains complete implementations 
of the solution to parts A and B of exercise #6. 

Exercise #6 solution
Hands-on

std::array<RAJA::idx_t, DIM> perm {{1, 0}}; // 'i' index (position zero)
// is stride-1

RAJA::OffsetLayout<DIM> pB_layout =
RAJA::make_permuted_offset_layout( {{-1, -1}}, {{Nc_tot-2, Nr_tot-2}}, 

perm );

RAJA::Layout<DIM> pA_layout = 
RAJA::make_permuted_layout( {{Nc_int, Nr_int}}, perm );

RAJA::View<int, RAJA::OffsetLayout<DIM>> pBview(B, pB_layout);
RAJA::View<int, RAJA::Layout<DIM>> pAview(A, pA_layout);
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Complex Loops and 
Advanced RAJA Features
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Nested Loops
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Let’s look at matrix multiplication…

C = A * B, where A, B, C are N x N matrices

for (int row = 0; row < N; ++row) {
for (int col = 0; col < N; ++col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {
dot += A[k + N*row] * B[col + N*k];

}
C[col + N*row] = dot;

}
}

C-style 
nested 
loops

Nested loops
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For a RAJA implementation, we could use 
nested ‘forall’ statements…

RAJA::forall< exec_policy_row >( row_range, [=](int row) {

RAJA::forall< exec_policy_col >( col_range, [=](int col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {

dot += A(row, k) * B(k, col);
}
C(row, col) = dot;

} );
} );

Note: we use RAJA Views in this example 
to simplify multi-dimensional indexing.

Nested loops
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§ Each loop level is treated as an independent entity
— So parallelizing the row and column loops together is hard

§ We can parallelize the outer row loop (OpenMP, CUDA, etc.)
— But then, each thread executes all code in the inner two loops sequentially

§ Parallelizing the inner column loop introduces unwanted synchronization
— Launch a new parallel computation for each row

§ Loop interchange and other transformations require changing the source code 
of the kernel (which breaks RAJA encapsulation)

…but, this doesn’t work well 

We don’t recommend using RAJA::forall for nested loops!!

Nested loops
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using namespace RAJA; 
using KERNEL_POL = KernelPolicy< 

statement::For<1, exec_policy_row,
statement::For<0, exec_policy_col,
statement::Lambda<0>

>
>

>;

RAJA::kernel<KERNEL_POL>( RAJA::make_tuple(col_range, row_range),
[=](int col, int row ) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {
dot += A(row, k) * B(k, col);

}
C(row, col) = dot;

} );

The RAJA::kernel API is designed for composing 
and transforming complex parallel kernels

Note: lambda expression for inner 
loop body is same as before.

Nested loops
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The RAJA::kernel interface has four basic
concepts

1. Kernel execution template (‘RAJA::kernel’)

2. Kernel execution policies (in ‘KERNEL_POL’)

3. Kernel iteration spaces (e.g., ‘RangeSegments’)

4. Kernel body (lambda expressions)

§ These are analogous to RAJA::forall

Nested loops
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using namespace RAJA; 
using KERNEL_POL = KernelPolicy< 

statement::For<1, exec_policy_row,
statement::For<0, exec_policy_col,

statement::Lambda<0>
>

>
>;

RAJA::kernel<KERNEL_POL>( RAJA::make_tuple(col_range, row_range),
[=](int col, int row ) {

// ...

} );

Each loop level has an iteration space
and loop variable

The order (and types) of tuple items and lambda arguments must match.

Nested loops
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using namespace RAJA; 
using KERNEL_POL = KernelPolicy< 

statement::For<1, exec_policy_row,
statement::For<0, exec_policy_col,

statement::Lambda<0>
>

>
>;

RAJA::kernel<KERNEL_POL>( RAJA::make_tuple(col_range, row_range),
[=](int col, int row ) {

// ...

} );

Each loop level has an execution policy

‘0’ à col
‘1’ à row

Integer template parameter in each ‘For’ statement 
indicates the iteration space tuple item it applies to.

Nested loops
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using KERNEL_POL = KernelPolicy< 
statement::For<1, exec_policy_row,

statement::For<0, exec_policy_col,
...

>;

using KERNEL_POL = KernelPolicy< 
statement::For<0, exec_policy_col,

statement::For<1, exec_policy_row,
...

>;

To reorder the loops, we change the execution 
policy, not the algorithm code

Outer row loop (1), 
inner col loop (0)

Outer col loop (0), 
inner row loop (1)

'For’ statements 
are swapped.

This is analogous to swapping for-loop order in a C-style implementation.

Nested loops
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§ A KernelPolicy is built from “Statements” and “StatementLists”

— A Statement is an action: execute a loop, invoke a lambda, synchronize threads, etc. ,

— A StatementList is an ordered list of Statements processed as a sequence; e.g., 

RAJA::KernelPolicy constructs comprise a 
simple DSL that relies only on standard C++11 support

A RAJA::KernelPolicy type is a StatementList.

For<0, exec_policy0,
Lambda<0>,
For<2, exec_policy2,

Lambda<1>
>

>

Lambda<0>For<0, exec_pol, ...> CudaSyncThreads

Nested loops
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§ We will describe how to use several of them in this tutorial.

§ See the RAJA User Guide for a complete listing of available statement types 
and what they do

RAJA provides a variety of RAJA::statement 
types 

Nested loops
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Loop Tiling
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Loop tiling enables accessing data in chunks

0 1 4 87 9652 3 1110 12 13 14

Tile of size 3

§ Helps ensure data used in a loop stays in a cache until it is reused 

§ Different levels of memory may be used, tile size is a performance tuning parameter

Loop Tiling
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0 1 4 87 9652 3 1110 12 13 14

Tile of size 3

// outer loop over tiles
for (int i = 0; i < N_tile; ++i) {

// inner loop inside a tile
for (int ti = 0; ti < TILE_DIM; ++ti) {
//global index
int id = i * TILE_DIM + ti;

}
}

// standard loop
for (int id = 0; id < N; ++id) {

}

Loop tiling enables accessing data in chunks
Loop Tiling

Tile size is a performance tuning parameter.
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Tiling can improve the performance of many 
algorithms
§ Constructing a matrix transpose is an example

§ Decompose a matrix into a collection of tiles, then transpose data within a tile

𝑎AA 𝑎A? 𝑎A8 𝑎AT
𝑎?A 𝑎?? 𝑎?8 𝑎?T
𝑎8A 𝑎8? 𝑎88 𝑎8T
𝑎TA 𝑎T? 𝑎T8 𝑎TT

𝑎AA 𝑎?A
𝑎A? 𝑎??

A 𝑨𝑻

Loop Tiling
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§ Loop tiling improves spatial and temporal locality of data access

A 𝑨𝑻

𝑎AA 𝑎A? 𝑎A8 𝑎AT
𝑎?A 𝑎?? 𝑎?8 𝑎?T
𝑎8A 𝑎8? 𝑎88 𝑎8T
𝑎TA 𝑎T? 𝑎T8 𝑎TT

𝑎AA 𝑎?A
𝑎A? 𝑎??
𝑎A8 𝑎?8
𝑎AT 𝑎?T

Loop TilingTiling can improve the performance of many 
algorithms

Tile data may be stored in CPU stack or GPU shared memory for improved performance.
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C-style matrix transpose without storing local tile

AT (c, r) = A(r, c), A is Nr x Nc matrix, AT is Nc x Nr matrix

for (int br = 0; br < Ntile_r; ++br) {   // outer loops over tiles
for (int bc = 0; bc < Ntile_c; ++bc) {

for (int tr = 0; tr < TILE_SZ; ++tr) {  // inner loops over a tile
for (int tc = 0; tc < TILE_SZ; ++tc) {

int col = bc * TILE_SZ + tc; // Matrix column index
int row = br * TILE_SZ + tr; // Matrix row index

if (row < N_r && col < N_c) { At(col, row) = A(row, col); }

}
}

}
}

Note: in general, bounds check is needed to prevent 
indexing out of bounds.

Loop Tiling
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using namespace RAJA;

using KERNEL_POL =
KernelPolicy<

statement::Tile<1, statement::tile_fixed<TILE_SZ>, seq_exec, // tile rows
statement::Tile<0, statement::tile_fixed<TILE_SZ>, seq_exec, // tile cols

...
>

>
>;

RAJA tiling policies have analogous structure
Loop Tiling

‘Tile’ statement types indicate tile structure for each for loop.
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using namespace RAJA;

using KERNEL_POL =
KernelPolicy<

statement::Tile<1, statement::tile_fixed<TILE_SZ>, seq_exec, // tile rows
statement::Tile<0, statement::tile_fixed<TILE_SZ>, seq_exec, // tile cols

statement::For<1, seq_exec, // rows in tile
statement::For<0, seq_exec, // cols in tile

statement::Lambda<0> // At(col, row) = A(row, col)

>
>

>
>

>;

Loop Tiling
RAJA tiling policies have analogous structure

Nested loop constructs inside tile statements 
are same as non-tiled case.

Note that global indices are calculated automatically.
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§ See file: RAJA/exercises/tutorial_halfday/ex7_tiled-matrix-tranpose.cpp 

— It contains a C-style sequential implementation of a tiled matrix transpose. It also contains a RAJA tiling policy 
for a matrix transpose

§ Exercise: Implement the matrix transpose kernel using the RAJA kernel API. 
Use the provided policy to execute the kernel. Try modifying the policy to use OpenMP 
threads (do the same for CUDA if you can). The  file contains empty code sections 
indicated by comments for you to fill in and methods you can use to check your work and 
print results.

Exercise #7: Tiled matrix transpose
Hands-on

Notes: 
• Bounds check not needed. RAJA tiling statements ‘mask’ out-of-bounds indices.
• Global indices are passed into a lambda. No need to compute manually.
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§ Your code should look like the following, where you have provided a kernel using the 
RAJA kernel API

§ The file RAJA/exercises/tutorial_halfday/ex7_tiled-matrix-transpose_solution.cpp 
contains complete implementations of the solution to exercise #7. 

Exercise #7 Solution
Hands-on

kernel<KERNEL_POL>( make_tuple(col_range, row_range), [=] 
(int col, int row) {
At(col, row) = A(row, col)

});
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Local Data
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§ To this point, we have considered perfectly nested loops; i.e., loop nests with 
no intervening code between loops

Many algorithms require non-perfectly 
nested loops to improve performance

Local Data

for (int row = 0; row < N; ++row) {
for (int col = 0; col < N; ++col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {

dot += A(row, k) * B(k, col);
}
C(row, col) = dot;

}
}

Recall the matrix 
multiplication example
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§ To this point, we have considered perfectly nested loops; i.e., loop nests with 
no intervening code between loops

Many algorithms require non-perfectly 
nested loops to improve performance

Local Data

for (int row = 0; row < N; ++row) {
for (int col = 0; col < N; ++col) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {

dot += A(row, k) * B(k, col);
}
C(row, col) = dot;

}
} How can we write this as a unified RAJA kernel 

that is portable?

Recall the matrix 
multiplication example
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We use lambda statements to indicate 
intervening code between loops
for (int row = 0; row < N; ++row) {

for (int col = 0; col < N; ++col) {

double dot = 0.0;

for (int k = 0; k < N; ++k) {
dot += A(row, k) * B(k, col);

}

C(row, col) = dot;

}
}

RAJA::Kernel<
For<2, exec_policy1,

For<1, exec_policy0,
Lambda<0>
For<0, exec_policy2,

Lambda<1>
>,
Lambda<2>

>
>

>

Composing policies like this can help you do architecture-specific optimizations in a portable way.    

Local Data
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RAJA::kernel_param takes an additional tuple
for thread-local variables and kernel-local arrays

Here, all lambdas have the same args, but not all args must be used. 
RAJA provides other statement types to make this cleaner.

RAJA::kernel_param < KERNEL_POL >(
RAJA::make_tuple(col_range, row_range, dot_range),

RAJA::tuple<double>{0.0}, // thread local variable for 'dot'

[=] (int /*col*/, int /*row*/, int /*k*/, double& dot) { // lambda 0
dot = 0.0;

},

[=] (int col, int row, int k, double& dot) {             // lambda 1
dot += A(row, k) * B(k, col);

},

[=] (int col, int row, int /*k*/, double& dot) {         // lambda 2
C(row, col) = dot;

}
);

Local Data
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using KERNEL_POL =
RAJA::KernelPolicy<
statement::For<1, exec_policy_row,
statement::For<0, exec_policy_col,

statement::Lambda<0>, // lambda 0: dot = 0.0
statement::For<2, RAJA::seq_exec, 
statement::Lambda<1> // lambda 1: dot += ...

>,
statement::Lambda<2> // lambda 2:

//   C(row, col) = dot;

>
> 

>;

Use the execution policy to compose statements 
that define the kernel execution pattern

Nested statements are analogous to nested for-loops and other statements in a C-style loop nest.

Local Data
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using KERNEL_POL =
RAJA::KernelPolicy<

statement::Collapse<RAJA::omp_parallel_collapse_exec, 
RAJA::ArgList<1, 0>, // row, col

statement::Lambda<0>,             // dot = 0.0 
statement::For<2, RAJA::seq_exec, 

statement::Lambda<1> // dot += ...
>, 
statement::Lambda<2>              // C(row, col) = dot;

> 
>;

Other policies: collapse loops in an OpenMP 
parallel region

This policy distributes iterations in loops 
‘1’ and ‘0’ across CPU threads.

Local Data
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using KERNEL_POL =
RAJA::KernelPolicy<

statement::CudaKernel<
statement::For<1, RAJA::cuda_block_x_loop, // row

statement::For<0, RAJA::cuda_thread_x_loop, // col
statement::Lambda<0>, // dot = 0.0
statement::For<2, RAJA::seq_exec,

statement::Lambda<1>        // dot += ...
>,
statement::Lambda<2> // set C(row, col) = ...

>
>

>
>;

Other policies: launch loops as a CUDA kernel

This policy distributes ‘row’ indices over CUDA thread 
blocks and ‘col’ indices over threads in each block.

Local Data
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Back to the matrix transpose loop tiling example…

for (int br = 0; br < Ntile_r; ++br) {   // Outer loops over tiles
for (int bc = 0; bc < Ntile_c; ++bc) {

int Tile[TILE_SZ][TILE_SZ];

for (int tr = 0; tr < TILE_SZ; ++tr) {     // Read a tile of ‘A’
for (int tc = 0; tc < TILE_SZ; ++tc) {
if (row < N_r && col < N_c) { Tile[tr][tc] = A(row, col); }

}
}

for (int tc = 0; tc < TILE_SZ; ++tc) {     // Write a tile of ‘At’
for (int tr = 0; tr < TILE_SZ; ++tr) {
if (row < N_r && col < N_c) { At(col, row) = Tile[tr][tc]; }

}
}

// etc.

C-style 
‘tiled’ loop 

nest

Often, local array usage can improve memory access efficiency.

Local Data
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Note: different parallel strategies have different 
access requirements for local data

Parfor (int br = 0; br < Ntile_r; ++br) {
for (int bc = 0; bc < Ntile_c; ++bc) {

// Thread-private array
int Tile[TILE_DIM][TILE_DIM];

for (int tr = 0; tr < TILE_DIM; ++tr) {
for (int tc = 0; tc < TILE_DIM; ++tc) {
Tile[tr][tc] = A(row, col);

}
}

// ...
}

}

for (int br = 0; br < Ntile_r; ++br) {
for (int bc = 0; bc < Ntile_c; ++bc) {

// Shared array
int Tile[TILE_DIM][TILE_DIM];

Parfor (int tr = 0; tr < TILE_DIM; ++tr) {
for (int tc = 0; tc < TILE_DIM; ++tc) {
Tile[tr][tc] = A(row, col);

}
}

// ...
}

}

Local Data

When outer loop is parallel, tile data 
should be private to each thread

When inner loop is parallel, tile data 
should be shared between threads
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RAJA’s LocalArray type is used to manage these 
cases in a portable manner
using namespace RAJA;
using TILE_MEM = LocalArray<int, Perm<0, 1>, SizeList<TILE_SZ, TILE_SZ>>;

TILE_MEM TileArray;

Local Data

The LocalArray type defines a multi-dimensional array of 
fixed size that can be used to create a local array in a kernel.
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RAJA’s LocalArray type is used to manage these 
cases in a portable manner
using namespace RAJA;
using TILE_MEM = LocalArray<int, Perm<0, 1>, SizeList<TILE_SZ, TILE_SZ>>;

TILE_MEM TileArray;

using EXEC_POL = KernelPolicy<
statement::Tile<1, statement::tile_fixed<TILE_SZ>, loop_exec,
statement::Tile<0, statement::tile_fixed<TILE_SZ>, loop_exec,

statement::InitLocalMem<tile_mem_policy, ParamList< # >,
. . .
>

>
>

>;

Local Data

The local array is initialized for use in a kernel using the ‘InitLocalMem’ 
statement. The initialization requires a memory policy and binds the 

local array object to a slot in the parameter tuple (#).
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RAJA provides several memory policy types for 
local arrays.

RAJA::cpu_tile_mem – Allocates memory on the CPU stack

RAJA::cuda_shared_mem – Allocates memory in CUDA shared memory (sharable 
across threads in a CUDA thread block

RAJA::cuda_thread_mem – Allocates memory local to a CUDA thread

Local Data
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using namespace RAJA;
using TILE_MEM = LocalArray<int, Perm<0, 1>, SizeList<TILE_SZ, TILE_SZ>>;
TILE_MEM TileArray;

RAJA::kernel_param<EXEC_POL>(
RAJA::make_tuple(RAJA::RangeSegment(0, N_c), RAJA::RangeSegment(0, N_r)),

RAJA::make_tuple((int)0, (int)0, TileArray),

[=](int col, int row, int tx, int ty, TILE_MEM& TileArray) {
TileArray(ty, tx) = Aview(row, col);

},

[=](int col, int row, int tx, int ty, TILE_MEM& TileArray) {
Atview(col, row) = TileArray(ty, tx);

}
);

The kernel for the matrix transpose with local 
array uses the RAJA::LocalArray type…

Lambda args are:
• Global indices
• Local tile indices
• LocalArray for 

tile data

Local Data

Local indices tx, ty are first two 
entries in param tuple
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§ See file: RAJA/exercises/tutorial_halfday/ex8_matrix-transpose-local-array.cpp 

— It contains a C-style sequential implementation of the matrix transpose which stores tile data in a local array. 
Additionally, a RAJA sequential kernel version is provided which stores tile data in a RAJA local array.

§ Exercise: Implement the RAJA policy for the OpenMP RAJA kernel variant of matrix 
transpose which stores tile data in a RAJA local array (do the same for CUDA if you can). 
The  file contains empty code sections indicated by comments for you to fill in and 
methods you can use to check your work and print results.

Exercise #8: Matrix transpose with a local array
Hands-on

Notes: 
• You will need both the local tile index as well as the global index.
• ‘ForICount’ statements generate local tile indices passed to lambdas in 

kernel. ‘Param’ statements identify index args.
• The `InitLocalMemory` statement may be used to initialize an array within 

a RAJA kernel. 
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(See file RAJA/exercises/tutorial_halfday/ex8_matrix-transpose-local-array_solution.cpp)

Exercise #8 Solution for OpenMP Hands-on

using namespace RAJA;
using RAJA::statement;
using EXEC_POL = KernelPolicy< Tile<1, tile_fixed<TILE_DIM>, omp_parallel_for_exec,

Tile<0, tile_fixed<TILE_DIM>, loop_exec,

InitLocalMem<cpu_tile_mem, ParamList<2>, // local array is                  
// param tuple

ForICount<1, Param<0>, loop_exec,        // item 2
ForICount<0, Param<1>, loop_exec,

Lambda<0>
>

>,
ForICount<0, Param<1>, loop_exec,

ForICount<1, Param<0>, loop_exec,
Lambda<1>

>
>
>  // InitLocalMem

>  // Tile<0...
>  // Tile<1...

>; // KernelPolicy
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RAJA support for complex loops

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

= available = in progress = not available

Complex loops
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Application considerations
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Consider your application’s characteristics and 
constraints when deciding how to use RAJA in it
§ Profile your code to see where performance is most important

— Do a few kernels dominate runtime?  No one kernel takes a significant fraction of runtime?

— Can you afford to maintain multiple, (highly-optimized) architecture-specific versions of 
important kernels?

— Do you require a truly portable, single source implementation?

Apps
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Consider your application’s characteristics and 
constraints when deciding how to use RAJA in it
§ Construct a taxonomy of algorithm patterns/loop structures in your code

— Is it amenable to grouping into classes of RAJA usage; e.g., execution policies?

— If you have a large code with many kernels, it will be easier to port to RAJA if you define 
policy types in a header file and apply each to many loops

Apps
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Consider your application’s characteristics and 
constraints when deciding how to use RAJA in it
§ Consider developing a lightweight wrapper layer around RAJA

— How important is it that you preserve the look and feel of your code? 

— How comfortable is your team with software disruption and using C++ templates?

— Is it important that you limit implementation details to your CS/performance tuning experts?

Apps
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RAJA promotes flexibility via type parameterization 
Apps

§ Define type aliases in header files 
— Easy to explore implementation choices in a large code base
— Reduces source code disruption
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using ELEM_LOOP_POLICY = ...; // in header file

RAJA::forall<ELEM_LOOP_POLICY>( /* do elem stuff */ );

§ Define type aliases in header files 
— Easy to explore implementation choices in a large code base
— Reduces source code disruption

§ Assign execution policies to “loop/kernel classes”
— Easier to search execution policy parameter space

RAJA promotes flexibility and tuning
via type parameterization 

Application developers must determine an appropriate “loop taxonomy” and policy 
selection for their code.

Apps
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§ RAJA (like any programming model) is an enabling technology – not a panacea

— Loop characterization and performance tuning are manual processes

• Good tools are essential…

— Memory motion and access patterns are critical. Pay attention to them!

• True for CPU code as well as GPU code

Performance portability takes effort
Apps



LLNL-PRES-781841

22
4

§ Application coding styles may need to change regardless of 
programming model (e.g., GPU execution)

— Change algorithms to ensure correct parallel execution

— Recast some patterns as reductions, scans, etc.

— Move variable declarations to innermost scope to avoid threading 
issues

— Virtual functions and C++ STL are problematic for GPU execution

Performance portability takes effort

Simpler is almost always better – use simple types and arrays.

Apps
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Wrap-up
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RAJA features are supported for a
variety of programming model back-ends

Seq SIMD OpenMP
(CPU)

OpenMP
(target)

CUDA TBB HIP

Simple loops

Reductions

Segments & 
Index sets

Atomics

Scans

Complex Loops

Layouts & Views

= available = in progress = not available

Wrap up
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§ Complete working example codes are available in the RAJA source 
repository
— https://github.com/LLNL/RAJA
— Many similar to the examples we presented today 
— Look in the “RAJA/examples” directory

§ The RAJA User Guide
— Topics we discussed today, configuring & building RAJA, etc.
— Available at http://raja.readthedocs.org/projects/raja (also linked on the RAJA 

GitHub project)

Materials that supplement this tutorial
are available

Wrap up

https://github.com/LLNL/RAJA
http://raja.readthedocs.org/projects/raja/
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§ The RAJA Performance Suite 
— Algorithm kernels in RAJA and baseline (non-RAJA) forms
— Sequential, OpenMP (CPU), OpenMP target, CUDA variants
— We use it to monitor RAJA performance and assess compilers
— Essential for our interactions with vendors
— Benchmark for CORAL and CORAL-2 systems
— https://github.com/LLNL/RAJAPerf

Related software is also available
Wrap up

https://github.com/LLNL/RAJAPerf
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§ CHAI
— Provides automatic data copies to different memory spaces behind an array-

style interface
— Designed to work with RAJA
— Could be used with other lambda-based C++ abstractions
— https://github.com/LLNL/CHAI

More related software…
Wrap up

https://github.com/LLNL/CHAI
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Again, we would appreciate your feedback…

§ If you have comments, questions, suggestions, etc., please talk to one 
of us

§ You are welcome to join our Google Group linked to our Github
repository home page (https://github.com/LLNL/RAJA)

§ Or contact us via our team email list: raja-dev@llnl.gov

Wrap up

mailto:raja-dev@llnl.gov
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Thank you for your attention and participation

Questions? 

Wrap up
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