The Parallel Computing Revolution Is Only Half Over

Rob Schreiber, Cerebras Systems, Inc.

ATPESC, August 1, 2019

What this is?

Computer History Museum Timeline: 1933

2.4 million cores

The pioneers

The parallel computing era

Controversy

Success!

Technology Triumphant

The Crisis

A Pressing Need

A New Era

Parallel computers were once controversial

Amdahl

If the parallel fraction is f then the maximum possible speedup is 1/f

Speedup, efficiency

S(p) = T(1) / T(p)

E(p) = S(p) / p

Mapreduce: Parallelism is easy. Performance is hard

It's the memory and the network

And the algorithm

Dusty Decks

Vendor: "I can build you a machine that is a **billion** times more powerful than the one you used earlier"

Customer: "But will I need to rewrite my code?"

Automatic parallelization

The compiler should create an optimized, parallel implementation of the algorithm in the code

Alan Perlis

Adapting old programs to fit new machines usually means adapting new machines to behave like old ones.

Optimization hinders evolution.

http://www.cs.yale.edu/homes/perlis-alan/quotes.html

Success

Almost all of HPC *machine* performance is due to parallelism

- 1975 2019: 10⁸ flops → 10¹⁷ flops
 - 1 OOM from clock rate
 - 8 OOM from parallelism
- 2 OOM more power required
- 1 OOM more \$ required

Four eras, four exponentials

The past is easy to predict. The future?

Ivan Sutherland, at Caltech, 1977

"The VLSI Revolution is Only Half Over"

Was Sutherland right?

VLSI: Technology Triumphant

After Ivan, What Happened?

1975: HPC is based on high-end technology

Hardware was customized for HPC

1971: Infancy of Silicon Valley, microprocessor

Architectures – no one knew what to do

- SIMD / MIMD
- Shared memory / Distributed memory
- COMA
- Hypercubes
- Transputers
- Message-passing dialects
- Latency tolerance
- From workstations to supercomputers

The confused 80s

1971 – 1990: Micros catch up

- Transistor count doubles every two years.
- 1971 2000 transistors (i4004)
- 1990 1,000,000 transistors (i80486)
- It took 19 years of exponential growth to catch up to old style computers for HPC
- But then...

Killer micros

"No one will survive The Attack of the Killer Micros" *Eugene Brooks, Panel talk at Supercomputing 90.*

Cray Research says it is worried by "killer micros" – compact, extremely fast work stations that sell for less than \$100,000.

John Markoff, in the New York Times, 1991

VLSI and supercomputers after 1990

Then the attack really happens

- A mass market drove investment and innovation
 - Dennard scaling made micros faster, cheaper, same power
 - Commodity pricing killed architectural specialization
- By 2000, all HPC machines are clusters of commodity designs
- AND we knew how to program them (MPI)

From 1990 to 2010

7 OOM, from 0.1 teraflops to 0.1 exaflops Greater than the gains from 1942 (pre-electronic) to 1990

A loss of computer design diversity; the one-size-fits-all processor
The Crisis

Dennard Scaling Ended

... in every technology generation the transistor density doubles, the circuit becomes 40% faster, and power consumption (with twice the number of transistors) stays the same.

• 2005-2007: leaky transistors. V_{dd} stops dropping. Clock rate hits a wall.

Moore's Law limit

"There's no getting around the fact that we build these things out of atoms."

-- Gordon Moore

The transition, to the post-Moore era

A pressing need

Al --- for science too

- Compute demand for DNN training has grown 300,000x since 2012
- Doubling time 3.5mo vs 18 mo (Moore)
- Training a DNN can take weeks

- see, ref https://blog.openai.com/ai-and-compute/

Processor Specialization

	Area (mm^2)	Transistors (billion)	Teraflops
CPU	800	20	1
GPU	500	10	10

First GPGPU. Now, a new class of Al-optimized accelerators

- Purpose-built compute engine
- More parallel compute on each chip

Al-optimized accelerators are here

Compare chips

	Area (mm^2)	Transistors (billion)	Teraflops
CPU	800	20	1
GPU	500	10	10
Al-optimized (Volta, GC, TPU)	800	20	100

Still not enough! Days to train Resnet-50 on Volta

A New Era

Scaling everything else

- Specialized architectures
- A heterogeneous Top 500 list
- Heterogeneous clusters of heterogeneous nodes
- Better algorithms
- The AI revolution
 - In science as well as all other applications of computing
- New memory technology
- Photonics
- 2.5D and 3D interconnects
- Wafer scale
- Quantum
- Other stuff too weird to mention, yet

Chip scaling and feature scaling

When feature size scaling stops, use bigger chips

EE Times, May 24, 2019

Startups Cerebras, Habana, and UpMem will unveil new deep-learning processors. Cerebras will describe a much-anticipated device using wafer-scale integration.

Accelerating AI

- Distributed memory
- Tightly integrated, fine-grain, active messages
- One-clock per hop network latency

Scaling the area too

	Area (mm^2)	Transistors (billion)	Teraflops
CPU	800	20	1
GPU	500	10	10
Al-optimized	800	20	100
Cerebras	> 50X	to be announced	

Cerebras Systems is a stealth mode startup backed by premier venture capitalists and the industry's most successful technologists. We are entrepreneurs dedicated to solving hard problems. We value integrity, passion, problem solving ability, and a sense of humor, and are always looking for extraordinary people to join our team.

