Argonne Training Program on Extreme-Scale Computing (ATPESC)

Introduction to ATPESC

Michael E. Papka Argonne Leadership Computing Facility Argonne National Laboratory

Q Center, St. Charles, IL (USA) July 29, 2019

Argonne A

(intel)

Filling in for Pete Beckman

Watch Pete's Videos

Pete's Advice

- Put phones away
- Ignore email for a few weeks
- Dive into the material presented / experiment
- Have fun ...

Agenda

Argonne First Digital Computer

AVIDAC, Argonne's first digital computer, began operation in January 1953. It was built by the Physics Division for \$250,000.

Established Advanced Research Computing Facility (ARCF)

Continued Deployment of Computing Advances

EXASCALE COMPUTING PROJECT

Fast Forward to Today

Mira IBM BG/Q 49,152 nodes 786,432 cores 768 TiB RAM Peak flop rate: 10 PF Cetus IBM BG/Q 4,096 nodes 65,536 cores 64 TiB RAM Peak flop rate: 836 TF

Tape

- The ALCF has three 10,000-slot libraries using LTO 6 tape technology.
- Hardware compression for an effective capacity of 36-60 PB.

Theta Cray XC40 4,392 nodes 281,088 cores 892 TiB RAM Peak flop rate: 11.69 PF

Cooley Cray/NVIDIA 126 nodes 1512 Intel Haswell CPU cores 126 NVIDIA Tesla K80 GPUs 48 TB RAM / 3 TB GPU Iota Intel/Cray XC40 44 nodes 2,816 cores 8.9 TiB RAM Peak flop rate: 117 TF

Firestone IBM Power8 2 nodes + K80 GPU 20 cores 128 GB RAM *Hybrid CPU/GPU* Storage Capability Disk

- Mira: ~27 PB of GPFS file system capacity with performance of 240 GB/s on the largest file system (19PB).
- Theta: ~18 PB of GPFS/Lustre file system capacity; 9PB is GPFS and 9.2PB is Lustre.

High Level View of Aurora

• Aurora is an Intel/Cray machine

- The system is to be delivered to Argonne in 2021
 - Limited availability to applications in 2021
 - Expect broader availability to applications in 2022
- Aurora will be a Exa-scale system
 - Will have a peak performance of over 1 ExaFlop/s in Double-Precision
 - Much higher than 1 ExaFlop/s in Half-Precision
 - Target for applications performance is an 50x speedup over Titan/Sequoia

Aurora Hardware Overview

Compute Node and Memory

- Processor
 - Future Intel[®] Xeon[®] Scalable Processor

- Accelerator
 - New Intel[®] X^e Compute Architecture

Aurora Hardware)verview

Platform, Fabric and I/O

- Compute Platform
 - Cray Shasta next generation supercomputing platform
- System Interconnect
 - Cray Slingshot interconnect
- I/O system
 - Intel's DAOS (Distributed Application Object Storage)
 - Traditional parallel filesystem augments DAOS (bulk storage, legacy support) Argonne

Performance Development

Top500.org

QUESTIONS?

Michael E. Papka papka@anl.gov

EXASCALE