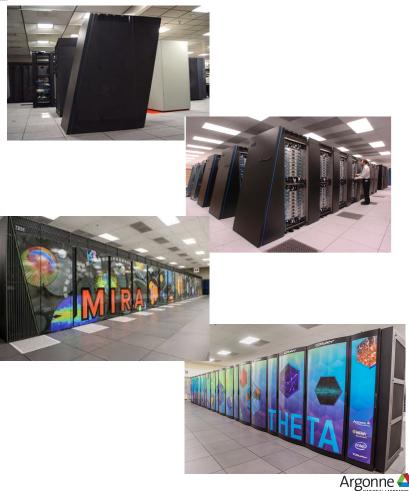


THETA, AND THE FUTURE OF ACCELERATOR PROGRAMMING AT ARGONNE

SCOTT PARKER


Lead, Performance Engineering Team Argonne Leadership Computing Facility

July 29, 2019

ARGONNE HPC TIMELINE

2005:

- Argonne accepts 1 rack (1024 nodes) of Blue Gene/L (5.6 TF)
- **2008**:
 - ALCF accepts 40 racks (160k cores) of Blue Gene/P (557 TF)
- **2012**:
 - 48 racks of Mira Blue Gene/Q (10 PF) in production at ALCF
- **2016**:
 - ALCF accepts Theta (12 PF) Cray XC40 with Xeon Phi (KNL)
- **2021**:
 - One Exaflop Aurora Intel/Cray GPU machine to be delivered

PERFORMANCE FROM PARALLELISM

- · Parallelism across nodes (using MPI, etc.)
- · Parallelism across sockets within a node
- · Parallelism across cores within each socket
- · Parallelism across pipelines within each core (i.e. instruction-level parallelism)
- · Parallelism across vector lanes within each pipeline (i.e. SIMD)
- . Using instructions that perform multiple operations simultaneously (e.g. FMA)

THETA

• System:

- Cray XC40 system
- 4,392 compute nodes/ 281,088 cores
- 11.7 PetaFlops peak performance
- Accepted Fall 2016

Processor:

- Intel Xeon Phi, 2nd Generation (Knights Landing) 7230
- 64 Cores
- 1.3 GHz base / 1.1 GHz AVX / 1.4-1.5 GHz Turbo

Memory:

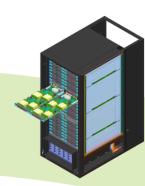
- 892 TB of total system memory
 - 16 GB MCDRAM per node
 - 192 GB DDR4-2400 per node

Network:

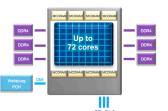
- Cray Aries interconnect
- Dragonfly network topology

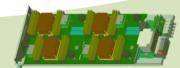
• Filesystems:

- Project directories: 10 PB Lustre file system
- Home directories: GPFS



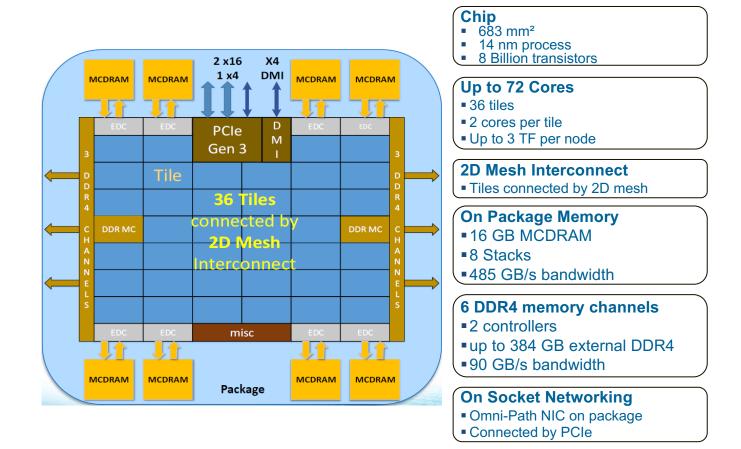
THETA SYSTEM OVERVIEW


System: 24Cabinets 4,392 Nodes, 1152 Switches 12 groups, Dragonfly 11.7 PF Peak 68.6 TB MCDRAM, 823.5 TB DRAM


Cabinet: 3 Chassis 184 Nodes 510.72 TF 3TB MCDRAM, 36TB DRAM

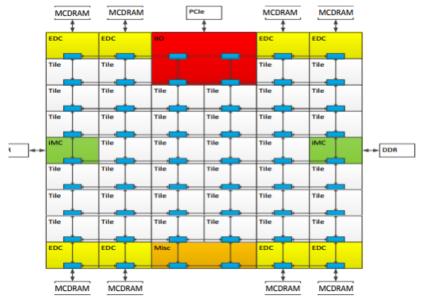
Chassis: 16 Blades 64 Nodes, 16 Switches 170.24 TF 1TB MCDRAM, 12TB DRAM

Node: KNL Socket 2.66 TF 16GB MCDRAM, 192 GB DDR4 (6 channels)


Compute Blade: 4 Nodes/Blade + Aries switch 10.64 TF 64GB MCDRAM, 768GB DRAM 128GB SSD

Sonexion Storage 4 Cabinets Lustre file system 10 PB usable 210 GB/s

KNIGHTS LANDING PROCESSOR


Argonne 스

Knights Landing Features

Feature	Impact
Self Booting	No PCIe bottleneck
Binary Compatible with Xeon	Runs legacy code, no recompile
Atom Based Core Architecture	~3x higher performance than KNC
High. Vector Density	3+ TFlops (DP) Peak per chip
AVX-512 ISA	New 512 bit vector ISA with Masks
Gather/Scatter Engine	Hardware support for gather/scatter
MCDRAM + DDR memory	High bandwidth MCDRAM, large capacity DDR
2D mesh. on-die interconnect	High bandwidth connection between cores and memory
Integrated Omni-path Fabric	Better scalability at lower cost

KNL Mesh Interconnect

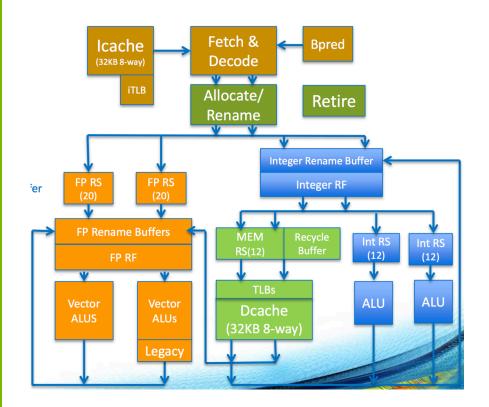
- 2D mesh interconnect connects
 - Tiles (CHA)
 - MCDRAM controllers
 - DDR controllers
 - Off chip I/O (PCIe, DMI)
- YX routing:
 - Go in Y \rightarrow turn \rightarrow Go in X
 - Messages arbitrate on injection and on turn
- Cache coherent
 - Uses MESIF protocol
- Clustering mode allow traffic localization
 - All-to-all, Quadrant, Sub-NUMA

OPENMP OVERHEADS

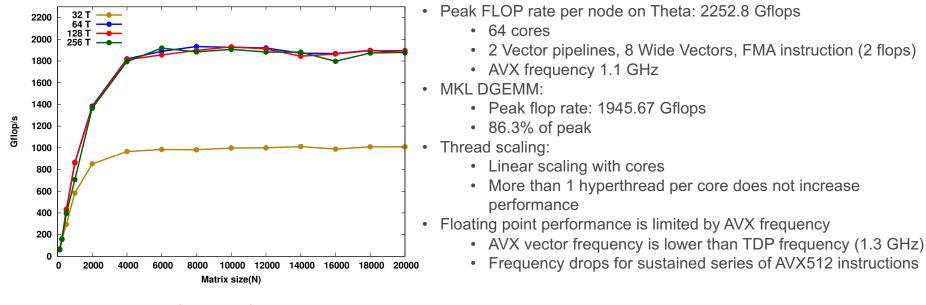
EPCC OpenMP Benchmarks

Threads	Barrier (µs)	Reduction (µs)	Parallel For (µs)
1	0.1	0.7	0.6
2	0.4	1.3	1.3
4	0.8	1.9	1.9
8	1.5	2.7	2.5
16	1.8	5.9	2.9
32	2.8	7.7	4.0
64	3.9	10.4	5.6
128	5.3	13.7	7.3
256	7.8	19.4	10.5

- OpenMP costs related to cost of memory access
 - KNL has no shared last level cache
- Operations can take between 130 25,000 cycles
- Cost of operations increases with thread count
 - Scales as ~C*threads^{1/2}


KNL TILE

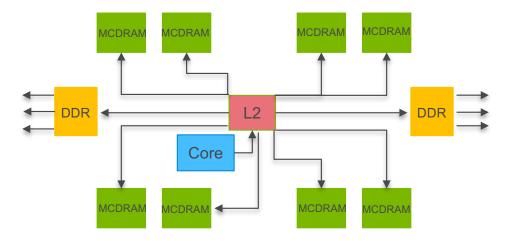
- Two CPUs
- 2 vector units (VPUs) per core
- 1 MB Shared L2 cache
 - Coherent across all tiles (32-36 MB total)
 - 16 Way
 - 1 line read and 1/2 line write per cycle
- Caching/Home agent
 - Distributed tag directory, keeps L2s coherent
 - Implements MESIF cache coherence protocol
 - Interface to mesh


KNL CORE

- Based on Silvermont (Atom)
- Instruction Issue & Execute:
 - 2 wide decode/rename/retire
 - 6 wide execute
- Functional units:
 - 2 Integer ALUs (Out of Order)
 - 2 Memory units (In Order reserve, OoO complete)
 - 2 VPU's with AVX-512 (Out of Order)
- L1 data cache
 - 32 KB, 8 way associative
 - 2 64B load ports, 1 64B write port
- 4 Hardware threads per core
 - 1 active thread can use full resources of core
 - ROB, Rename buffer, RD dynamically partitioned between threads
 - Caches and TLBs shared

DGEMM PERFORMANCE ON THETA

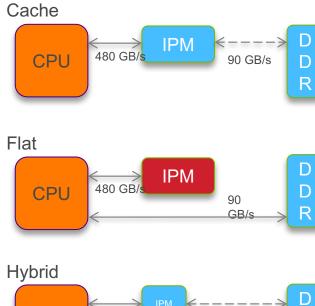
MKL DGEMM Performance

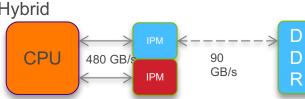

12

MEMORY

- Two memory types
 - In Package Memory (IPM)
 - 16 GB MCDRAM
 - ~485 GB/s bandwidth
 - Off Package Memory (DDR)
 - Up to 384 GB
 - ~90 GB/s bandwidth

One address space


- Minor NUMA effects
- Sub-NUMA clustering mode creates four NUMA domains



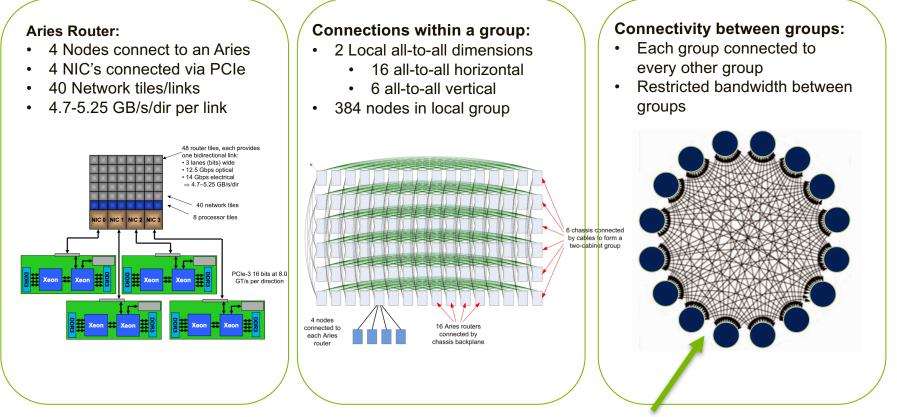
MEMORY MODES - IPM AND DDR SELECTED AT NODE BOOT TIME

- Memory configurations
 - Cached:
 - DDR fully cached by IPM
 - No code modification required
 - Less addressable memory
 - Bandwidth and latency worse than flat mode
 - Flat:
 - Data location completely user managed
 - Better bandwidth and latency
 - More addressable memory
 - Hybrid:
 - 1/4, 1/2 IPM used as cache rest is flat
- Managing memory:
 - jemalloc & memkind libraries
 - numctl command
 - Pragmas for static memory allocations

STREAM TRIAD BENCHMARK PERFORMANCE

- Measuring and reporting STREAM bandwidth is made more complex due to having MCDRAM and DDR
- Memory bandwidth depends on
 - Mode: flat or cache
 - Physical memory: mcdram or ddr
 - Store type: non-temporal streaming vs regular
- Peak STREAM Triad bandwidth occurs in Flat mode with streaming stores:
 - from MCDRAM, 485 GB/s
 - from DDR, 88 GB/s

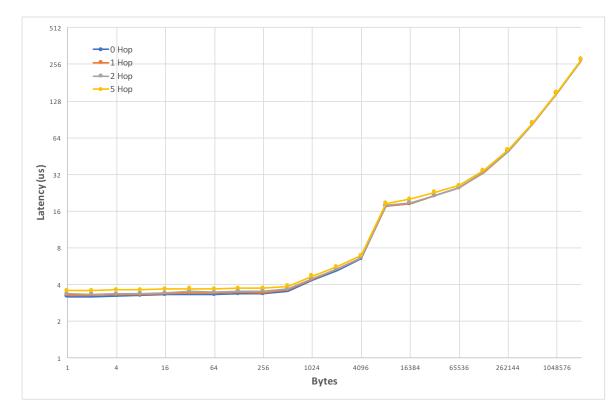
Case	GB/s with SS	GB/s w/o SS
Flat, MCDRAM	485	346
Flat, DDR	88	66
Cache, MCDRAM	352	344
Cache, DDR	59	67



MEMORY LATENCY

	Cycles	Nano seconds
L1 Cache	4	3.1
L2 Cache	20	15.4
MCDRAM	220	170
DDR	180	138

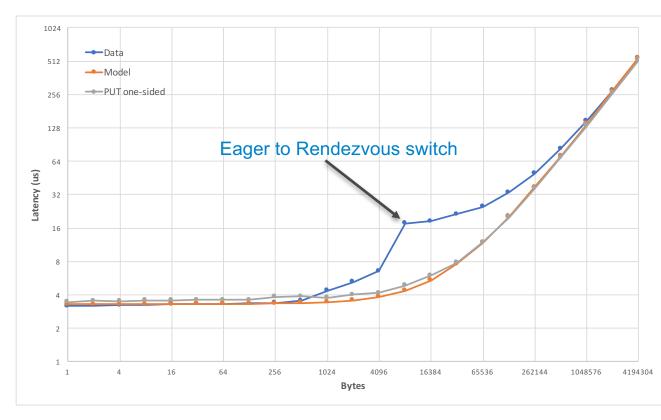
ARIES DRAGONFLY NETWORK



Theta has 12 groups with 12 links between each group

MPI SEND AND RECEIVE LATENCY

OSU PtoP MPI Latency on Theta


- Latency tested for pairs placed different distances or hops apart
 - 0 on same Aries
 - 1 same row/col
 - 2 same groups
 - 5 between groups
- Hop count does not strongly influence latency

MPI SEND AND RECEIVE MODEL

OSU PtoP MPI Latency on Theta

Simple (Hockney) model:

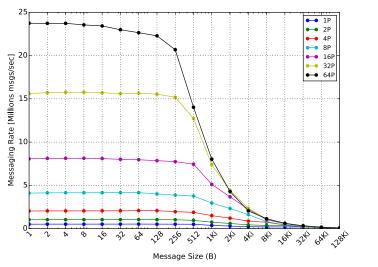
 $T = \alpha + \beta \cdot n$ n = bytes $\alpha = 3.3$ $\beta = 0.0013$

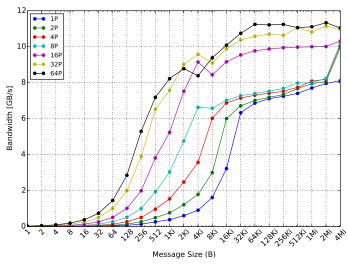
Model fits well for low and high byte counts

Eager to rendezvous protocol switch believed to be producing "bump" in latency

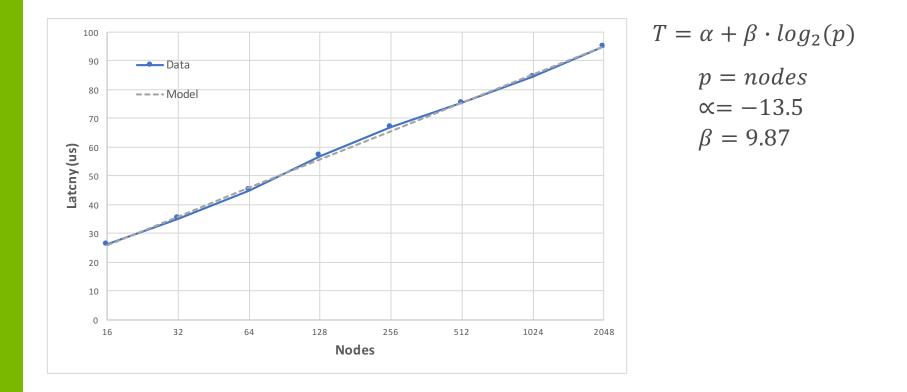
One sided PUT latency results lack "bump" and are close to the model

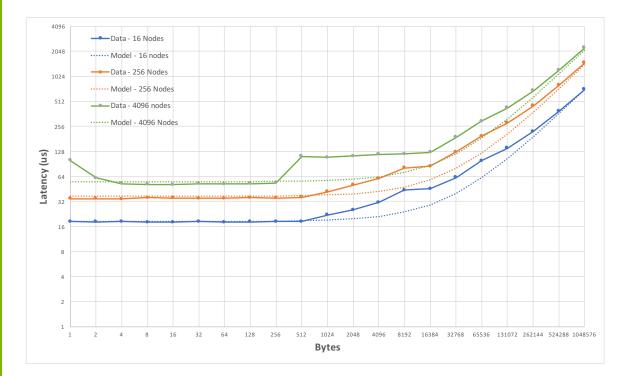
MPI BANDWIDTH AND MESSAGING RATE


OSU PtoP MPI Multiple Bandwidth / Message Rate Test on Theta


Messaging Rate:

- Maximum rate of 23.7 MMPS
 - At 64 ranks per node, 1 byte, window size 128
- Increases generally proportional to core count for small message sizes


- Peak sustained bandwidth of 11.4 GB/s to nearest neighbor
- 1 rank capable of 8 GB/s
- For smaller messages more ranks improve aggregate off node bandwidth



MPI BARRIER MODEL

MPI BROADCAST MODEL

$$T = (\alpha + \beta \cdot n) Log_2(p)$$

$$n = bytes$$

$$p = nodes$$

$$\propto = 4.6$$

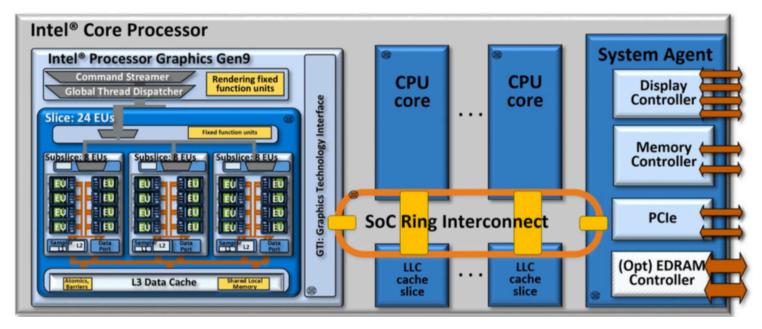
$$\beta = 0.0016$$

Good fit at low and high byte ranges.

Errors centered around point of protocol switch

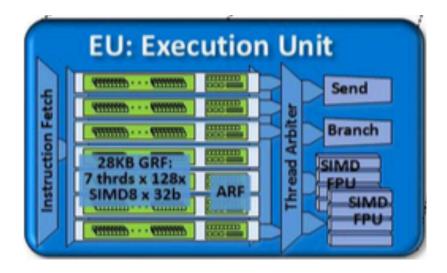
- 1+ ExaFlop system
- Arriving at Argonne in 2021
- Intel Xeon processors + Intel X^e GPUs
- Greater than 10 PB of total memory
- Cray Slingshot network

INTEL GPUS

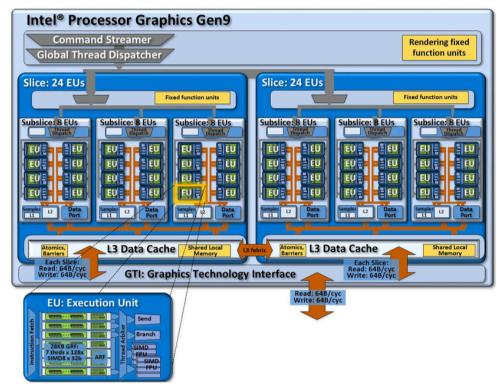

- Intel has been building GPUs integrated with CPUs for over a decade
- Currently released products use the "Gen 9" version
- Soon to be released is "Gen 11"
- After that come the X^e (Gen 12) line of integrated and discrete GPUs

	Memory & I/O interfaces				
Intel [®] Processor Graphics, Gen9	CPU core Sha	CPU core	System Agent w/ display,		
(graphics, compute, & media)	CPU core	CPU core	memory, & I/O controllers		

Architecture components layout for an Intel Core i7 processor 6700K for desktop systems.

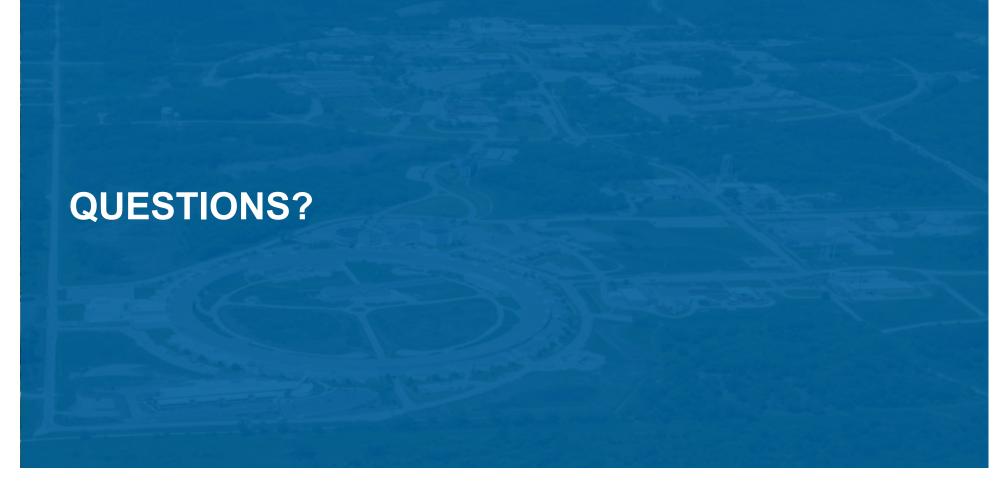

INTEL INTEGRATED GRAPHICS

- Cores, GPU, and memory connected by a ring interconnect
- Same memory used by CPU and GPU
- Shared Last Level Cache
- Peak double precision floating point₂ performance 100-300 GF


THE EXECUTION UNIT (EU)

- The EU executes instruction
- Each EU has 7 threads
- Each thread has 128 32 byte registers
- Issues instructions to four processing units:
 - 2 SIMD FPU
 - Branch
 - Send (memory)

SUBSLICES AND SLICES


- A subslice contains 8 EUs
- A slice contains 3 subslices
- Products available with 1, 2, or 3 slices

HETEROGENOUS SYSTEM PROGRAMMING MODELS

- CUDA
- OpenCL
- HIP
- OpenACC
- OpenMP
- SYCL
- Kokkos
- Raja

www.anl.gov

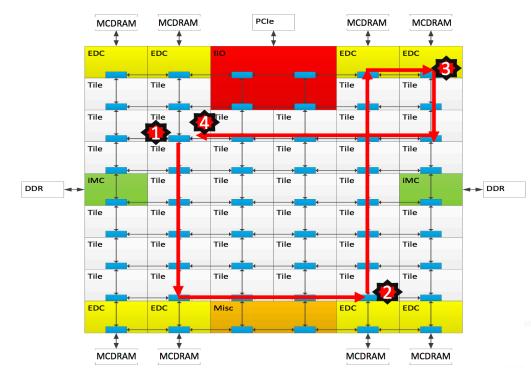
XEON PHI IN THE TOP500

The KNL Xeon Phi Processor is in 7 of the top 20 systems

			Linpack	
Rank	Facility	Architecture	(PF)	Peak (PF)
9	Los Alamos/Sandia	Trinity - Cray XC40, Intel Xeon Phi 7250	14	. 44
10	Berkeley - NERSC	Cori - Cray XC40, Intel Xeon Phi 7250	14	- 28
11	Korea Institute of Science and Technology Inf.	Nurion - Cray CS500, Intel Xeon Phi 7250	14	. 26
12	Joint Center for Advanced High Performance Computing	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250	14	- 25
14	Commissariat a l'Energie Atomique	Tera-1000-2 - Bull Sequana X1000, Intel Xeon Phi 7250	12	. 23
15	Texas Advanced Computing Center	Stampede2 - PowerEdge C6320P/C6420, Intel Xeon Phi 7250	11	18
18	CINECA	Marconi Intel Xeon Phi - CINECA Cluster, Lenovo SD530/S720AP, Intel Xeon Phi 7250	8.4	. 16
21	Argonne National Laboratory	Theta - Cray XC40, Intel Xeon Phi 7230	6.9	12

KNIGHTS LANDING VARIANTS

SKU	Cores	TDP Freq (GHz)	AVX Freq (GHz)	Peak Flops (TFlops)	MCDRAM (GB)	DDR Speed	TDP (Watts)
7210	64	1.3	1.1	2.66	16	2133	215
7230	64	1.3	1.1	2.66	16	2400	215
7250	68	1.4	1.2	3.05	16	2400	215
7290	72	1.5	1.3	3.46	16	2400	245


STREAM TRIAD BENCHMARK PERFORMANCE

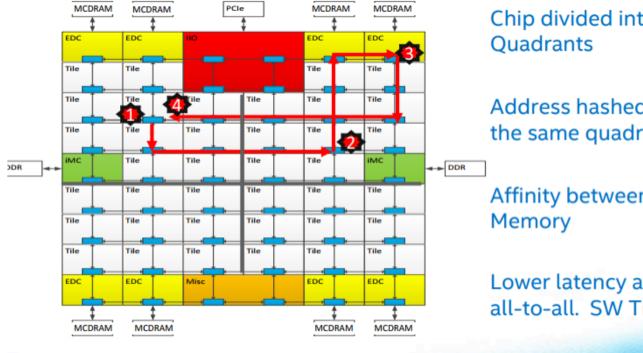
- Cache mode peak STREAM triad bandwidth is lower
 - Bandwidth is 25% lower than Flat mode
 - Due to an additional read operation on write
- Cache mode bandwidth has considerable variability
 - Observed performance ranges from 225-352 GB/s
 - Due to MCDRAM direct mapped cache conflicts
- Streaming stores (SS) :
 - Streaming stores on KNL by-pass L1 & L2 and write to MCDRAM cache or memory
 - Improve performance in Flat mode by 33% by avoiding a read-for-ownership operation
 - Doesn't improve performance in Cache mode, can
 lower performance from DDR

Case	GB/s with SS	GB/s w/o SS
Flat, MCDRAM	485	346
Flat, DDR	88	66
Cache, MCDRAM	352	344
Cache, DDR	59	67

Cluster Modes: All-to-All

Address uniformly hashed across all distributed directories

No affinity between Tile, Directory and Memory


Most general mode. Lower performance than other modes.

Typical Read L2 miss

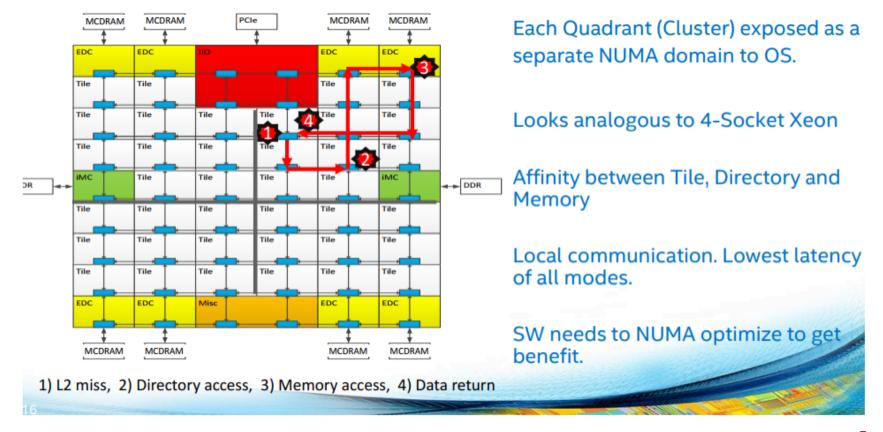
- 1. L2 miss encountered
- 2. Send request to the distributed directory
- 3. Miss in the directory. Forward to memory
- 4. Memory sends the data to the requestor

Argonne 🛆

Cluster Modes: Quadrant

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Chip divided into four virtual


Address hashed to a Directory in the same quadrant as the Memory

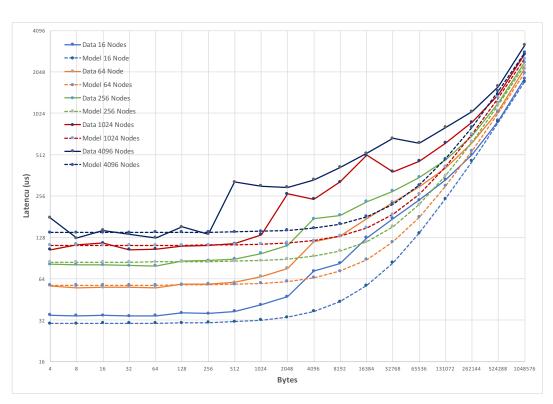
Affinity between the Directory and

Lower latency and higher BW than all-to-all. SW Transparent.

Argonne 스

Cluster Modes: Sub-NUMA Clustering

Argonne 스


Knights Landing Instruction Set

E5-2600 (SNB ¹)	E5-2600v3 E (HSW ¹)	5-2600v4 (BDX ¹)	KNL (Xeon Phi ²)	Future _{Xeon}		
x87/MMX	x87/MMX	x87/MMX	x87/MMX	x87/MMX		
SSE*	SSE*	SSE*	SSE*	SSE*		
AVX	AVX	AVX	AVX	AVX	∢	
	AVX2	AVX2	AVX2	AVX2	Common ISA	
	вмі	ВМІ	ВМІ	вмі	Ī	
	AVX-512F					
	AVX-512CD					
		AVX-512BW				
1 Drovious Cod	o nomo Intol® Vo	0		AVX-512DQ		
	1. Previous Code name Intel® Xeon® processors 2. Xeon Phi = Intel® Xeon Phi™ processor AVX-512VL					
	TSX	Тѕх		тѕх		
	AVX-512PF					
Segment Specific ISA			AVX-512ER			

- KNL implements x86 legacy instructions
 - Don't need to recompile
- KNL introduces AVX-512 instruction
 - 512F foundation
 - 512 bit FP and integer vectors
 - 32 registers and 8 mask register
 - Gather/scatter
 - 512CD conflict detection
 - 512PF gather/scatter prefetch
 - 512ER reciprocal and sqrt estimates
- KNL does not have
 - TSX transactional memory
 - 512BW byte/word (8/16 bit)
 - 512DQ dword/quad-word (32/64b)
 - 512VLO vector length orthogonality

MPI ALLREDUCE MODEL

OSU MPI Allreduce Benchmark

$$T = \gamma + \delta n + (\alpha + \beta n) \log_2(p)$$

$$n = bytes$$

$$p = nodes$$

$$\gamma = -24$$

$$\delta = 0.0012$$

$$\alpha = 13.6$$

$$\beta = 0.00012$$

Good fit at low and high byte ranges.

Errors centered around point of protocol switch

MOST FREQUENTLY CALLED COLLECTIVE ROUTINES

Approximate relative call frequency from ALCF applications workload

	Routine	Relative Call Frequency
	Allreduce	5000
	Bcast	2500
	Barrier	500
	Alltoall	500
_	Alltoallv	250
	Reduce	75
	Allgatherv	25
	Everything else	<1

POWER EFFICIENCY

- Theta #7 on Green500 (Nov. 2016)
- For high compute intensity, 1 thread per core was most efficient
 - Avoids contention with shared resources
- MCDRAM is a 4x improvement over DDR4 in power efficiency

Threads per Core	Time (s)	Power (W)	Efficiency (GF/W)
1	110.0	284.6	4.39
2	118.6	285.4	4.06
4	140.3	295.0	3.32

Memory Type	Bandwidth GB/s	Power (W)	Efficiency (GB/s/W)
MCDRAM	449.5	270.5	1.66
DDR4	87.1	224.4	0.39

BLUE GENE/Q ARCHITECTURE

ALCF SYSTEMS

		123		UNIT OF THE TA
Mira – IBM BG/Q	Cetus – IBM BG/Q	Vesta – IBM BG/Q	Cooley - Cray/NVIDIA	Theta - Cray XC40
 49,152 nodes 786,432 cores 786 TB RAM 10 PF 	 4,096 nodes 65,536 cores 64 TB RAM 836 TF 	 2,048 nodes 32,768 cores 32 TB RAM 419 TF 	 126 nodes (Haswell) 1512 cores 126 Tesla K80 48 TB RAM (3 TB GPU) 	 3,624 nodes (KNL) 231,936 cores 736 TB RAM 10 PF

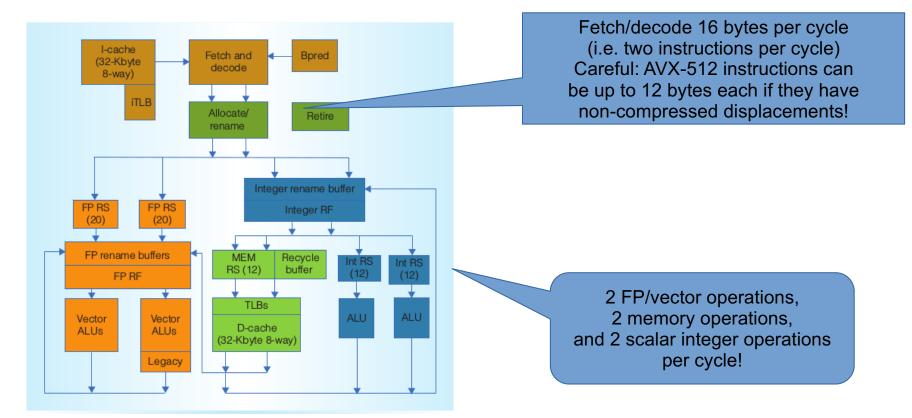
Storage

HOME: 1.44 PB raw capacity

SCRATCH:

- mira-fs0 26.88 PB raw, 19 PB usable; 240 GB/s sustained
- mira-fs1 10 PB raw, 7 PB usable; 90 GB/s sustained
- mira-fs2 (ESS) 14 PB raw, 7.6 PB usable; 400 GB/s sustained (not in production yet)
- theta-fs0 10 PB raw, 8.9 useable, 240 GB/s sustained

TAPE: 21.25 PB of raw archival storage [17 PB in use]



COMPARISON OF THETA (KNL) TO MIRA (BG/Q)

- More local parallelism
 - 64 (KNL) vs 16 (BG/Q)
 - 4 hardware threads on both
- Significantly fewer nodes, 48K -> 3.6K
- Clock speed drops, 1.6 GHz -> 1.1 GHz
- Increased vector length
 - 8 wide vectors (KNL) vs 4 wide vectors (BG/Q)
- Increased node performance
 - 2.4 TF (KNL) vs 0.2 TF (BG/Q)
- Instruction issue
 - Out-of-order (KNL) vs in-order (BG/Q)
 - 2 wide instruction issue on both
 - 2 floating point instructions per cycle (KNL) vs 1 per cycle (BG/Q)
- Memory Hierarchy
 - MCDRAM & DDR (KNL) vs uniform 16 GB DDR (BG/Q)
- Different network topology
 - 5D torus vs Dragonfly
- NIC connectivity
 - PCIe (Aries, Omni-Path) vs direct crossbar connection (BG/Q)

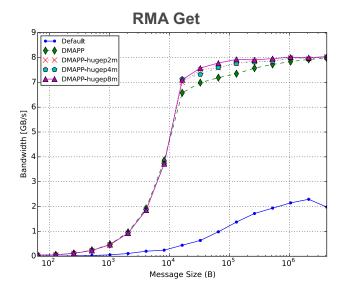
KNL Pipeline

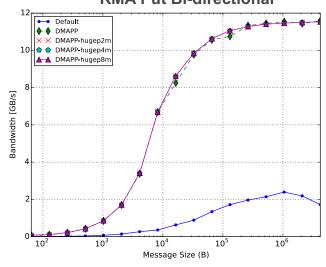
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080

MPI ONE SIDED (RMA)

OSU One Sided MPI Get Bandwidth and Bi-Directional Put Bandwidth

RMA Get


- 2 GB/s using default configuration (uGNI)
- 8 GB/s using RMA over DMAPP
- Huge pages also help.



- 2 GB/s using default configuration (uGNI)
- 11.6 GB/s peak bi-directional bandwidth over DMAPP

Argonne 스

· No significant benefit from huge pages

RMA Put Bi-directional

THETA FILESYSTEMS

- Home (GPFS)
 - Home directories (/home) currently live in /gpfs/theta-fs1/home
- Projects (Lustre)
 - /lus/theta-fs0
 - 10 PB raw, 8.9 PB useable space
 - 240 GB/s sustained
 - Project directories (/projects) currently live in /lus/theta-fs0/projects
 - With large I/O, be sure to consider stripe width
- SSD
 - Theta compute nodes contain a single SSD with a raw capacity of 128 GB
 - A local volume is presented to the user as an ext3 system on top of an LVM volume
 - Userspace applications can access the SSD via standard POSIX APIs
 - The final capacity available to the end user is still TBD

NOTE

- No backups at this time
- No quotas at this time

STREAM TRIAD BENCHMARK PERFORMANCE

- Peak STREAM Triad bandwidth occurs in Flat mode:
 - from MCDRAM, 485 GB/s
 - from DDR, 88 GB/s
- Cache mode bandwidth is 25% lower than Flat mode
 - Due to an additional cache check read operation
- Cache mode bandwidth has considerable variability
 - Observed performance ranges from 225-352 GB/s
 - Due to MCDRAM direct mapped cache page conflicts
- Streaming stores (SS) :
 - Improve performance in Flat mode by 33% by avoiding a read-for-ownership operation
 - Can lower performance from DDR in Cache mode
- Maximum measured single core bandwidth is 14 GB/s
 - Need to use ~half the cores on a node to saturate MCDRAM bandwidth in Flat mode

Case	GB/s with SS	GB/s w/o SS
Flat, MCDRAM	485	346
Flat, DDR	88	66
Cache, MCDRAM	352	344
Cache, DDR	59	67

Memory Modes

MCDRAM as Cache

- Upside
 - No software modifications required
 - Bandwidth benefit (over DDR)
- Downside
 - Higher latency for DDR access
 - i.e., for cache misses
 - Misses limited by DDR BW
 - All memory is transferred as:
 - DDR -> MCDRAM -> L2
 - Less addressable memory

MCDRAM as Flat Mode

- Upside
 - Maximum BW
 - Lower latency

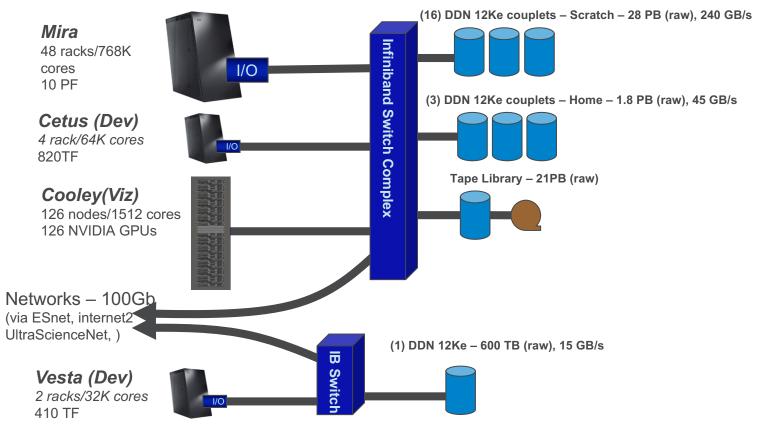
- i.e., no MCDRAM cache misses
- Maximum addressable memory
- Isolation of MCDRAM for highperformance application use only
- Downside
 - Software modifications (or interposer library) required
 - to use DDR and MCDRAM in the same app
 - Which data structures should go where?
 - MCDRAM is a finite resource and tracking it adds complexity

A BRIEF HISTORY OF THE BLUE GENE

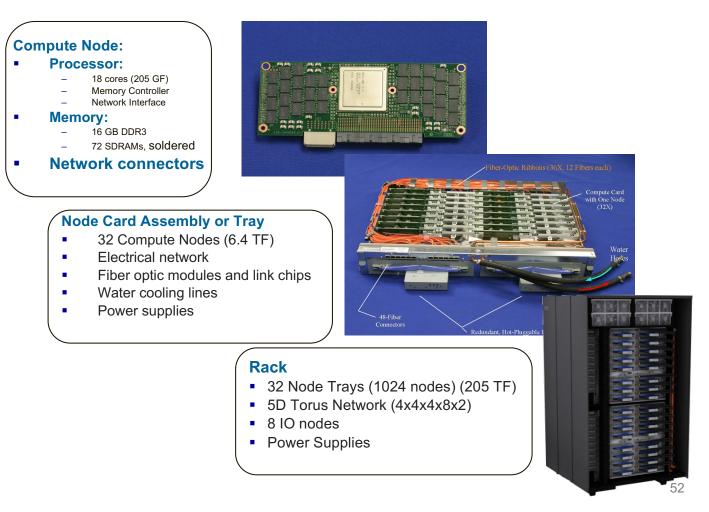
- In 1999 IBM began a \$100 million research project to explore a novel massively parallel architecture
- Initial target was protein folding applications
- Design evolved out of the Cyclops64 and QCDOC architectures
- First Blue Gene/L prototype appeared at #73 on the Top500 on 11/2003
- Blue Gene/L system took #1 on Top500 on 11/2004 (16 Racks at LLNL)
- In 2007 the 2nd generation Blue Gene/P was introduced
- In 2012 the 3rd generation Blue Gene/Q was introduced
- Since being released 14 years ago, on the Top500 list:
 - A Blue Gene was #1 on half of the lists
 - On average 3 of the top 10 machines have been Blue Gene's
- The Blue Gene/Q:
 - Currently #4 on the Top500 (LLNL, 96 racks, 20PF)
 - Also holds #9 (ANL), #19 (Juelich), #21 (LLNL- Vulcan)

BLUE GENE DNA AND THE EVOLUTION OF MANY CORE

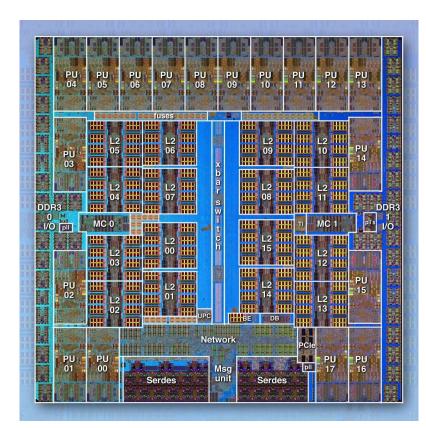
- Leadership computing power
 - Leading architecture since introduction, #1 half Top500 lists over last 10 years
 - On average over the last 12 years 3 of the top 10 machine on Top 500 have been Blue Genes
- Low speed, low power
 - Embedded PowerPC core with custom SIMD floating point extensions
 - Low frequency (L 700 MHz, P 850 MHz, Q 1.6 GH) (KNL 1.1 GHz)
- Massive parallelism:
 - Multi/Many core (L 2, P 4, Q 16) (KNL 68)
 - Many aggregate cores (L 208k, P 288k, Q 1.5M) (KNL 650k)
- Fast communication network(s)
 - Low latency, high bandwidth, network (L & P 3D Torus, Q 5D Torus) (KNL Dragonfly)
- Balance:
 - Processor, network, and memory speeds are well balanced
- Minimal system overhead
 - Simple lightweight OS (CNK) minimizes noise
- Standard Programming Models
 - Fortran, C, C++, & Python languages supported
 - Provides MPI, OpenMP, and Pthreads parallel programming models
- System on a Chip (SoC) & Custom designed Application Specific Integrated Circuit (ASIC)
 - All node components on one chip, except for memory
 - Reduces system complexity and power, improves price / performance
- High Reliability:
 - Sophisticated RAS (reliability, availability, and serviceability)
- Dense packaging
 - 1024 nodes per rack for Blue Gene


ALCF BG/Q SYSTEMS

- Mira BG/Q system
 - 49,152 nodes / 786,432 cores
 - 768 TB of memory
 - Peak flop rate: 10 PF
 - Linpack flop rate: 8.1 PF
- Cetus & Vesta (T&D) BG/Q systems
 - 4K & 2k nodes / 64k & 32k cores
 - 64 TB & 32 TB of memory
 - 820TF & 410TF peak flop rate
- Storage
 - Scratch: 28.8 PB raw capacity, 240 GB/s bw (GPFS)
 - Home: 1.8 PB raw capacity, 45 GB/s bw (GPFS)



ALCF BG/Q SYSTEMS



Argonne 스

BLUE GENE/Q COMPONENTS

BLUEGENE/Q COMPUTE CHIP

- Chip 360 mm² Cu-45 technology (SOI)

18 Cores

- 16 compute cores
- 17th core for system functions (OS, RAS)
- plus 1 redundant processor
- L1 I/D cache = 16kB/16kB

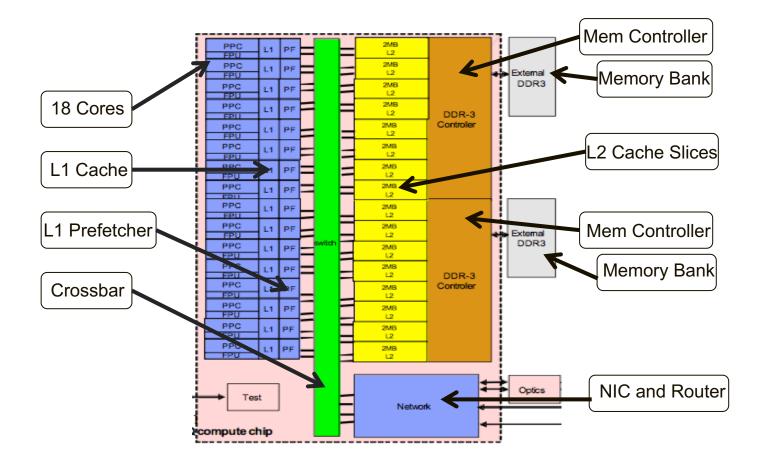
Crossbar switch

- Each core connected to shared L2
- Aggregate read rate of 409.6 GB/s

Central shared L2 cache

- 32 MB eDRAM
- 16 slices

Dual memory controller


- 16 GB external DDR3 memory
- 42.6 GB/s bandwidth

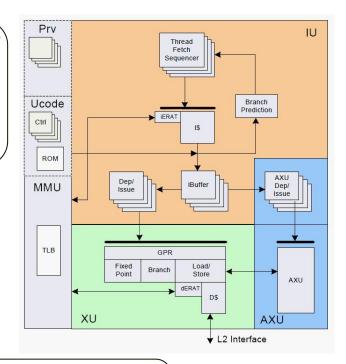
On Chip Networking

- Router logic integrated into BQC chip
- DMA, remote put/get, collective operations
- 11 network ports

BG/Q CHIP, ANOTHER VIEW

Argonne 스

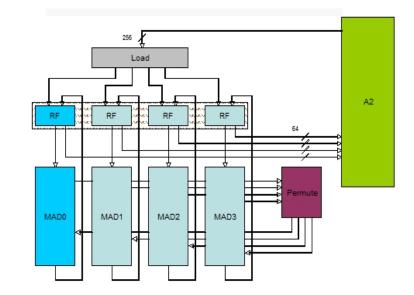
BG/Q Core

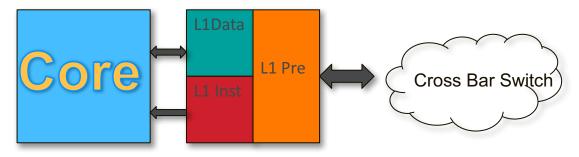

- Full PowerPC compliant 64-bit CPU, PowerISA v.206
 - Plus QPX floating point vector instructions
- Runs at 1.6 GHz
- In-order execution
- 4-way Simultaneous Multi-Threading
- Registers: 32 64-bit integer, 32 256-bit floating point

Functional Units:

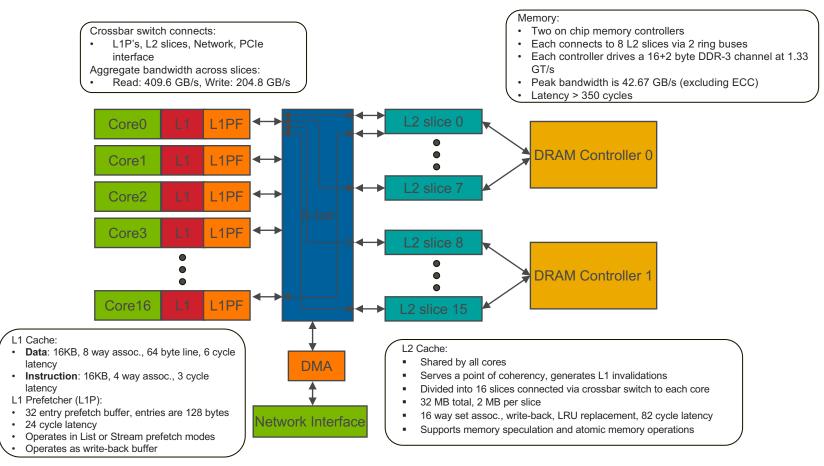
- IU instructions fetch and decode
- XU Branch, Integer, Load/Store instructions
- AXU Floating point instructions
 - Standard PowerPC instructions
 - QPX 4 wide SIMD
- MMU memory management (TLB)

Instruction Issue:


- 2-way concurrent issue if 1 XU + 1 AXU instruction
- A given thread may only issue 1 instruction per cycle
- Two threads may each issue 1 instruction each cycle


QPX OVERVIEW

- Unique 4 wide double precision SIMD instructions extending standard PowerISA with:
 - Full set of arithmetic functions
 - Load/store instructions
 - Permute instructions to reorganize data
- Standard 64 bit floating point registers are extended to 256 bits
- FPU operates on:
 - Standard scalar PowerPC FP instructions
 - 4 wide SIMD instructions
 - 2 wide complex arithmetic SIMD arithmetic
- 4 wide FMA (mult-add) instructions allow 8 flops/inst
- Attached to AXU port of A2 core
- A2 issues one instruction/cycle to AXU
- 6 stage pipeline
- Compiler can generate QPX instructions
- Intrinsic functions mapping to QPX instructions allow easy QPX programming


L1 CACHE & PREFETCHER

- Each Core has it's own L1 cache and L1 Prefetcher
- L1 Cache:
 - Data: 16KB, 8 way set associative, 64 byte line, 6 cycle latency
 - Instruction: 16KB, 4 way set associative, 3 cycle latency
- L1 Prefetcher (L1P):
 - 1 prefetch unit for each core
 - 32 entry prefetch buffer, entries are 128 bytes, 24 cycle latency
 - Operates in List or Stream prefetch modes
 - Operates as write-back buffer

BG/Q MEMORY HIERARCHY

Argonne 🛆

THE BG/Q NETWORK

•5D torus network:

- -Achieves high nearest neighbor bandwidth while increasing bisectional bandwidth and reducing hops vs 3D torus -Allows machine to be partitioned into independent sub machines
 - No impact from concurrently running codes.
- -Hardware assists for collective & barrier functions over COMM_WORLD and rectangular sub communicators -Half rack (midplane) is 4x4x4x4x2 torus (last dim always 2)

•No separate Collectives or Barrier network:

-Single network used for point-to-point, collectives, and barrier operations

Additional 11th link to IO nodes

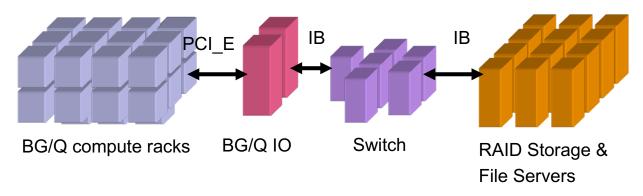
- Two type of network links
 - Optical links between midplanes
 - Electrical inside midplane

NETWORK PERFORMANCE

• Nodes have 10 links with 2 GB/s raw bandwidth each

- Bi-directional: send + receive gives 4 GB/s
- 90% of bandwidth (1.8 GB/s) available to user

Hardware latency


- ~40 ns per hop through network logic
- Nearest: 80ns
- Farthest: 3us (96-rack 20PF system, 31 hops)

Network Performance

- Nearest-neighbor: 98% of peak
- Bisection: > 93% of peak
- All-to-all: 97% of peak
- Collective: FP reductions at 94.6% of peak
- Allreduce hardware latency on 96k nodes ~ 6.5 us
- Barrier hardware latency on 96k nodes ~ 6.3 us

BG/Q IO

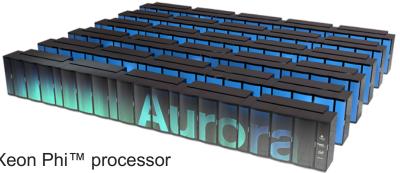
IO is sent from Compute Nodes to IO Nodes to storage network

- IO Nodes handle function shipped IO calls to parallel file system client
- IO node hardware is identical to compute node hardware
- IO nodes run Linux and mount file system
- Compute Bridge Nodes use 1 of the 11 network links to link to IO nodes
- IO nodes connect to 2 bridge nodes
- IO nodes are not shared between compute partitions

BLUE GENE/Q SOFTWARE HIGH-LEVEL GOALS & PHILOSOPHY

- Facilitate extreme scalability
 - Extremely low noise on compute nodes running CNK OS
- High reliability: a corollary of scalability
- Familiar programming modes such as MPI and OpenMP
- Standards-based when possible
- Open source where possible
- Facilitate high performance for unique hardware:
 - Quad FPU, DMA unit, List-based prefetcher
 - TM (Transactional Memory), SE (Speculative Execution)
 - Wakeup-Unit, Scalable Atomic Operations
- Optimize MPI and native messaging performance
- Optimize libraries
- Facilitate new programming models

COOLEY


- System:
 - 126 nodes/1512 cores
 - 293 TF
- Processor:
 - Haswell E5-2620v3 processors
 - 2 per node
 - 6 cores per processor
 - 2.4 GHz
- GPUS:
 - 126 NVIDIA Telsa K80 GPUs
- Memory:
 - 384 GB per CPU
 - 2x12 GB per GPU
- Network:
 - FDR Infiniband interconnect

AURORA – COMING 2018

- Over 13X Mira's application performance
- Over 180 PF peak performance
- More than 50,000 nodes with 3rd Generation Intel® Xeon Phi[™] processor
 - codename Knights Hill, > 60 cores
- Over 7 PB total system memory
 - High Bandwidth On-Package Memory, Local Memory, and Persistent Memory
- Ind Generation Intel® Omni-Path Architecture with silicon photonics in a dragonfly topology
- More than 150 PB Lustre file system capacity with > 1 TB/s I/O performance

