

Summit and Frontier at the Oak Ridge Leadership Computing Facility

Reuben D. Budiardja Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory

July 29, 2019 Argonne Training Program on Extreme-Scale Computing

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Outline

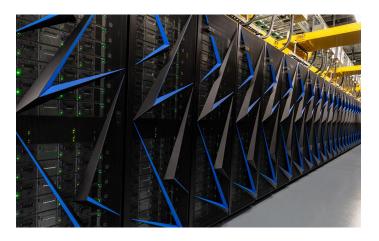
- OLCF Roadmap to Exascale
- Summit Architecture Details
- Summit Programming Environment
- Frontier (Early) Overview

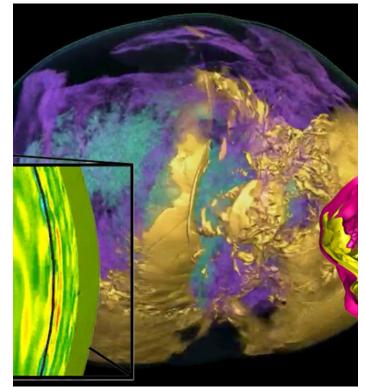
Oak Ridge Leadership Computing Facility (OLCF)

What is the Leadership Computing Facility (LCF)?

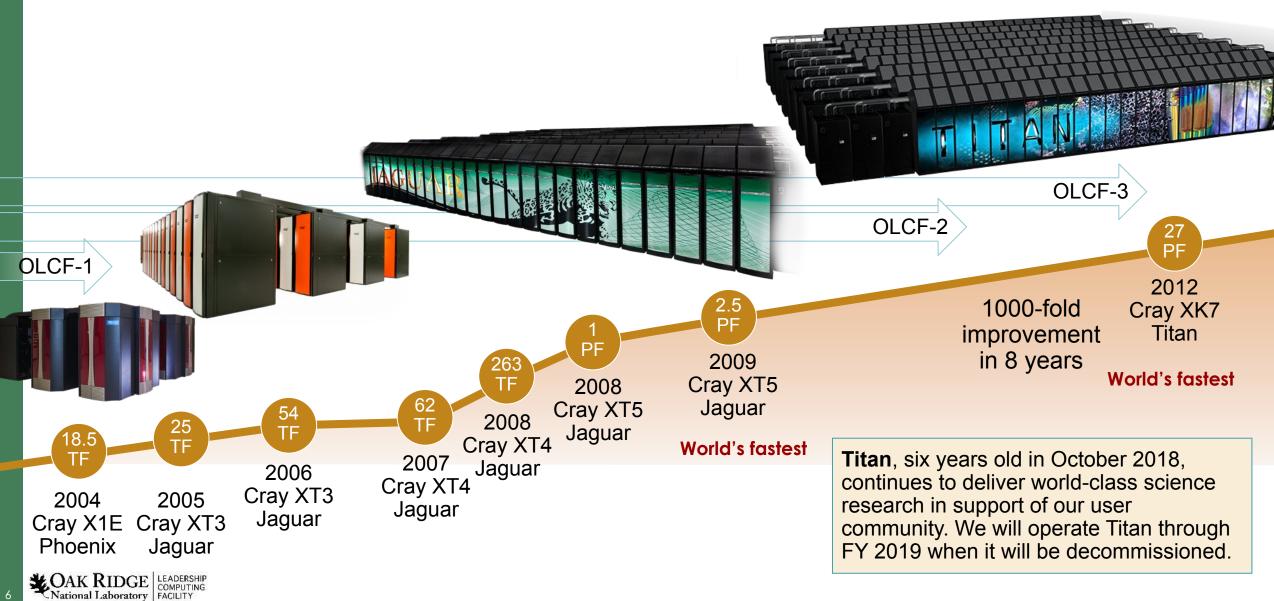
- Collaborative DOE Office of Science
 program at ORNL and ANL
- Mission: Provide the computational and data resources required to solve the most challenging problems.
- 2-centers/2-architectures to address diverse and growing computational needs of the scientific community

- Highly competitive user allocation programs (INCITE, ALCC).
- Projects receive 10x to 100x more resource than at other generally available centers.
- LCF centers partner with users to enable science & engineering breakthroughs (Liaisons, Catalysts).




Oak Ridge Leadership Computing Facility (OLCF) Mission

The OLCF is a DOE Office of Science National User Facility whose mission is to enable breakthrough science by:


- Fielding the most powerful capability computers for scientific research,
- Building the required infrastructure to facilitate user access to these computers,
- Selecting a few time-sensitive problems of national importance that can take advantage of these systems,
- Partnering with these teams to deliver breakthrough science (Liaisons)

OAK RIDGE LEADERSHI National Laboratory FACILITY

ORNL Leadership-class Supercomputers

OLCF Path to Exascale

50–100× application performance of Titan

Competitive procurement asking for: Support for traditional modeling and simulation, high-performance data analysis, and artificial intelligence applications

Peak performance of at least 1300 PF

The Exascale Computing Project has emphasized that Exascale is a measure of application performance, and this RFP reflects that, asking for nominally 50× improvement over Sequoia and Titan.

-- Design Reviewer

Acid RIDGE

orld's fastest

ORNL Summit System Overview

System Performance

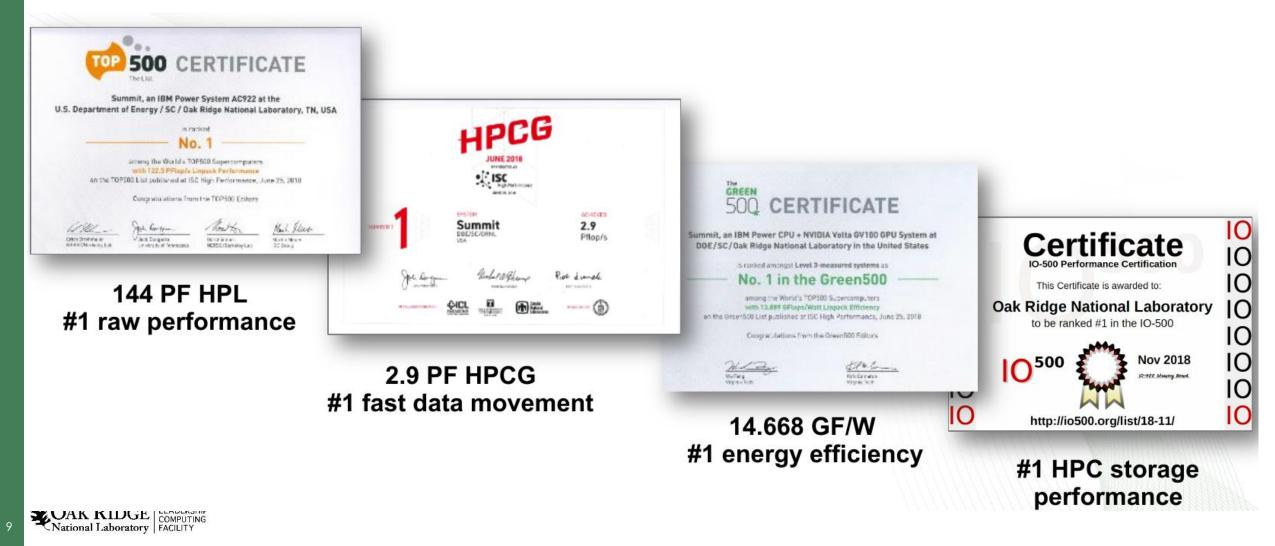
- Peak of 200 Petaflops (FP₆₄) for modeling & simulation
- Peak of 3.3 ExaOps (FP₁₆) for data analytics and artificial intelligence

COAK RIDGE LEADERSHIE National Laboratory

The system includes

- 4,608 nodes
- Dual-rail Mellanox EDR InfiniBand network
- 250 PB IBM file system transferring data at 2.5 TB/s

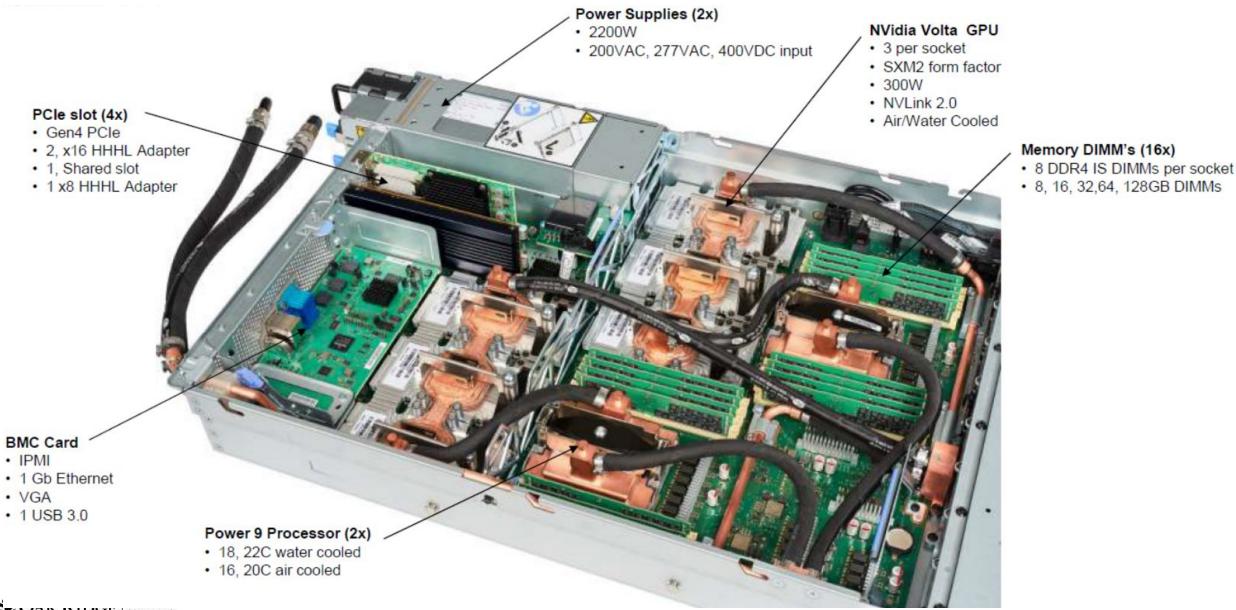
Each node has


- 2 IBM POWER9 processors
- 6 NVIDIA Tesla V100 GPUs
- 608 GB of fast memory (96 GB HBM2 + 512 GB DDR4)
- 1.6 TB of non-volatile memory

Summit Demonstrated Its Balanced Design (2018)

#1 on Top 500, #1 HPCG, #1 Green500, and #1 I/O 500

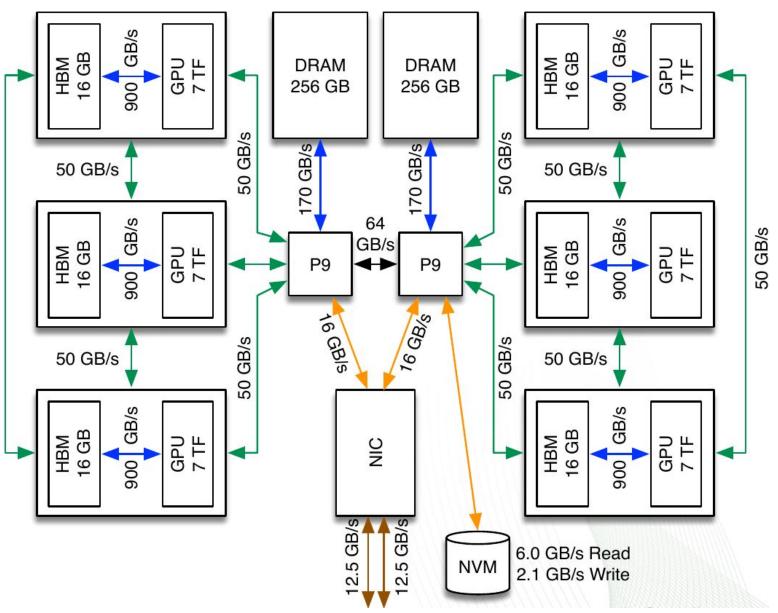
How is Summit different from Titan?


- Many fewer nodes
- Much more powerful nodes
- Much more memory per node and total system memory
- Faster interconnect

COAK RIDGE LEADERSHIP

- Much higher bandwidth between CPUs and GPUs
- Much larger and faster file system
- ~7X more performance for slightly more power (Summit's 8.8 MW vs Titan's 8.2)

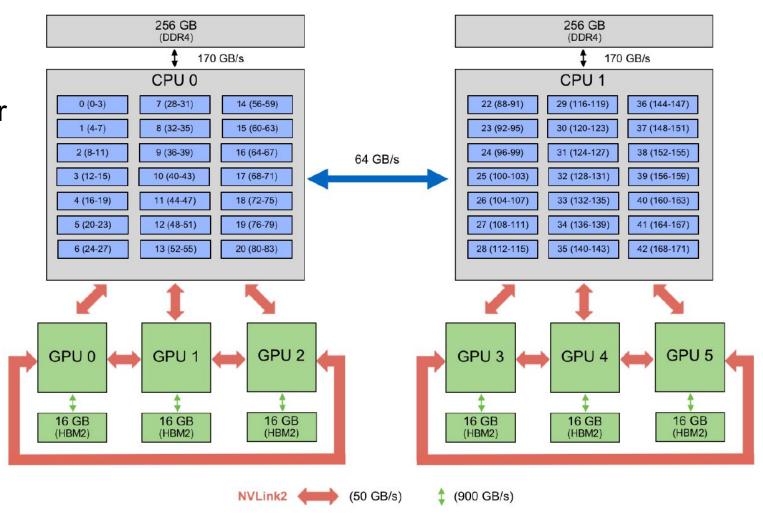
Feature	Titan	Summit
Application Performance	Baseline	5-10x Titan
Number of Nodes	18,688	4,608
Node performance	1.4 TF	42 TF
Memory per Node	32 GB DDR3 + 6 GB GDDR5	512 GB DDR4 + 96 GB HBM2
NV memory per Node	0	1600 GB
Total System Memory	710 TB	>10 PB DDR4 + HBM2 + Non-volatile
System Interconnect	Gemini (6.4 GB/s)	Dual Rail EDR-IB (25 GB/s)
Interconnect Topology	3D Torus	Non-blocking Fat Tree
Bi-Section Bandwidth	112 TB/s	115.2 TB/s
Processors	1 AMD Opteron™ 1 NVIDIA Kepler™	2 IBM POWER9™ 6 NVIDIA Volta™
File System	32 PB, 1 TB/s, Lustre [®]	250 PB, 2.5 TB/s, GPFS™
Power Consumption	9 MW	13 MW


Summit Board (1 node)

Summit Node Schematic

- Coherent memory across entire node
- NVLink v2 fully interconnects three GPUs and one CPU on each side node
- PCIe Gen4 connects NVMe and NIC
- Single shared NIC with dual EDR ports

COAK RIDGE


Summit POWER9 Processors

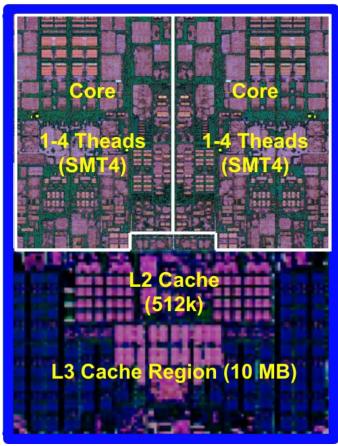
IBM POWER9 Processor

- 22 cores active, 1 core reserved for OS → reduce jitter
- 4 hardware threads (HT) per core
- Three SMT modes: SMT1, SMT2, SMT4. Each thread operates independently.

COAK RIDGE LEADERSHIP

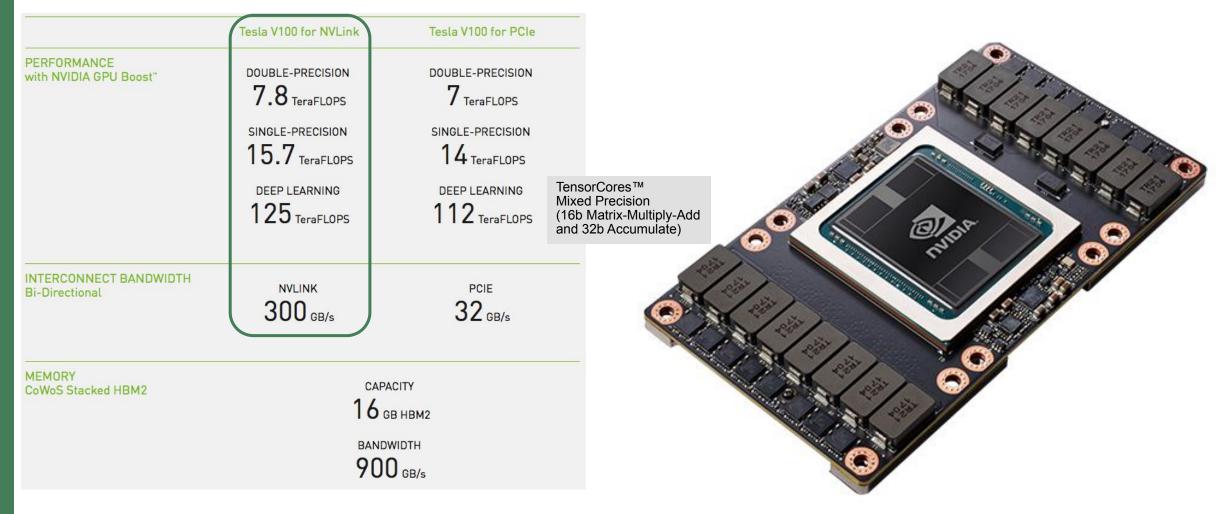
 4 HT shares L1 cache, 8 HT (2 cores) shares L2 and L3 cache

Summit POWER9 Processors (2)


IBM POWER9 Processor

- 22 cores active, 1 core reserved for OS → reduce jitter
- 4 hardware threads (HT) per core
- Three SMT modes: SMT1, SMT2, SMT4. Each thread operates independently.

OAK RIDGE

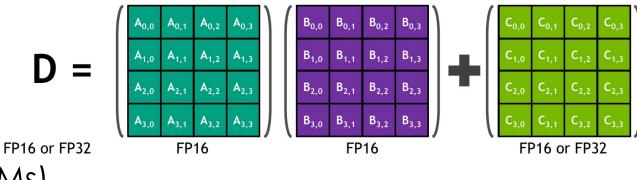

National Laboratory FACILITY

 4 HT shares L1 cache, 8 HT (2 cores) shares L2 and L3 cache

2 POWER9 cores

Summit GPUs: 27,648 NVIDIA Volta V100s

Note: The performance numbers are peak and not representative of Summit's Volta



Summit GPUs: 27,648 NVIDIA Volta V100s (2)

Tensor cores on V100:

National Laboratory

- Tensor cores do mixed precision multiply add of 4x4 matrices
- 640 Tensor cores (8 on each 80 SMs)
- Up to 125 Half Precision (FP₁₆) TFlops
- Requires application to figure out if/when utilizing mixed/reduce precision is possible
 - e.g. see Haidar et al (ICL at UTK), SC18 paper
 - CoMet Comparative Genomics application (2018 ACM Gordon Bell Prize winner), achieving 2.36 ExaOps (mixed-precision) on Summit

D = AB + C

Stream Benchmark: Summit (vs. Titan)

• A simple synthetic benchmark program that measures achievable memory bandwidth (in GB/s) under OpenMP threading.

System Cores	Peak (Summit) 44	Titan 16	System	Peak (Summit)	Titan
Сору	274.6	34.9	Сору	789	181
Scale	271.4	35.3	Scale	788	181
Add	270.6	33.6	Add	831	180
Triad	275.3	33.7	Triad	831	180
Peak (theoretical)	340	51.2	Peak (theoretical)	900	250
Fraction of Peak	82%	67%	Fraction of Peak	92%	72%

DRAM Bandwidth

GDDR Bandwidth

- For Peak (Summit):
- GCC compiler
- Best result in 1000 tests
- Runtime variability up to 9%

NVLink Bandwidth

National Laboratory

 Measured the achieved CPU-GPU NVLink rates with a modified BandwidthTest from NVIDIA CUDA Samples using multiple MPI process evenly spread between the sockets.

MPI Process Count	1	2	3	4	5	6	Peak (6)
Host to Device	45.93	91.85	137.69	183.54	229.18	274.82	300
Device to Host	45.95	91.90	137.85	183.80	225.64	268.05	300
Bi-Directional	85.60	172.59	223.54	276.34	277.39	278.07	600

NVLink Rates with MPI Processes (GB/s)

- Ultimately limited by the CPU memory bandwidth
- 6 ranks driving 6 GPUs is an expected use case for many applications

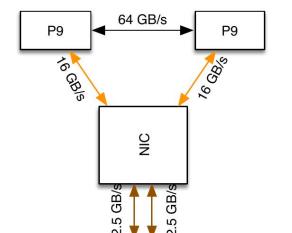
NVLink Bandwidth (2)

 Measured the achieved NVLink transfer rates between GPUs, both within a socket and across them, using p2pBandwidthLatencyTest from NVIDIA CUDA Samples. (Peer-to-Peer communication turned on).

Socket	0	1	Cross	Peak
Uni-Directional	46.33	46.55	25.89	50
Bi-Directional	93.02	93.11	21.63	100

NVLink Rates for GPU-GPU Transfers (GB/s)

 Cross-socket bandwidth is much lower than that between GPUs attached to the same CPU socket



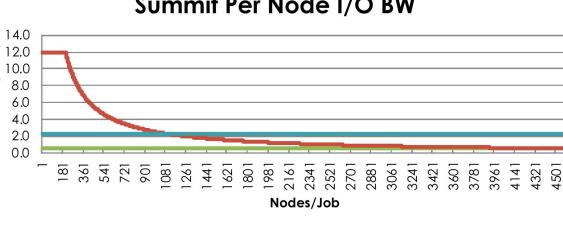
Summit Network

- Mellanox EDR Network with non-blocking fat-tree topology
 - Bisection bandwidth 115 TB/s
 - 2 physical ports per node (4 virtual) at 25 GB/s
 - must use both sockets to get full bandwidth
 - Set to minimize latency by default (tune-able)
- Adaptive routing

allreduce

- Enable bypassing congestions
- Out of order packets on the network
- Packets are load balanced at each switch
- Scalable Hierarchical Aggregation (and) Reduction Protocol
 - SHARP: network builds trees in switches to accelerate some collective operations
 - Supported collectives (small <=2048): barrier, broadcast, reduce,

Summit Parallel File System and Burst Buffers (NVME)


(GB/s)

- Alpine "SpectrumScale" File system: lacksquare
 - 12-14 GB/s per node, 2.5 TB/s aggregate
 - Full system job: ~550 MB/s per node
 - Every node has access to the same space \rightarrow can support multiple modes. single-shared file, file per rank, etc.
- Node Local NVME:

21

Vational Laboratory FACILITY

- Samsung PMI1725A: Write 2.1 GB/s, 🛓 Read 5.5 GBs
- Scales linearly with job size
- Shared only by ranks on a node,
- Must drain to PFS at the end of a job (using tools or 'manually')

PFS Min 🛛 🗕 PFS Max 💷 NVM e

Summit Per Node I/O BW

Summit Programming Environment

Summit Compilers and Programming Model

All compilers (except Clang) support C, C++ and Fortran

Compiler	CUDA (C)	CUDA Fortran	OpenMP 4.5 (offload)	OpenMP (CPU)	OpenACC
PGI	\checkmark	\checkmark		\checkmark	\checkmark
GCC	\checkmark		v (*)	\checkmark	\checkmark
IBM XL	\checkmark	\checkmark	\checkmark	\checkmark	
LLVM (C & C++)	\checkmark		\checkmark	\checkmark	

*: functional only

Summit Debugger and Performance Tools

			Performance Tools	Titan	Summit
Debugger	Titan	Summit	Open SpeedShop	Yes	Yes
DDT	Yes	Yes	TAU	Yes	Yes
cuda-gdb, -memcheck	Yes	Yes	CrayPAT	Yes	No
Valgrind, memcheck, helgrind	Yes	Yes	Reveal	Yes	No
pdb	No	Yes	HPCToolkit (IBM)	No	Yes
		HPCToolkit (Rice)	Yes	Yes	
The majority of tools available on Titan are also available on Summit. A few transitions may be necessary.			VAMPIR	Yes	Yes
			nvprof	Yes	Yes
			gprof	Yes	Yes

Summit Numerical Library

Library	OSS or Proprietary	CPU Node	CPU Parallel	GPU
IBM ESSL	Proprietary	\checkmark		\checkmark
FFTW	OSS	\checkmark	\checkmark	\checkmark
ScaLAPACK	OSS	\checkmark	\checkmark	
PETSc	OSS	\checkmark	\checkmark	
Trilinos	OSS	\checkmark	\checkmark	*
BLAS-1, -2, -3	Proprietary (thru ESSL)	\checkmark		\checkmark
NVBLAS	Proprietary			\checkmark
cuBLAS	Proprietary			\checkmark
cuFFT	Proprietary			\checkmark
cuSPARSE	Proprietary			\checkmark
cuRAND	Proprietary			\checkmark
Thrust	Proprietary			\checkmark

25

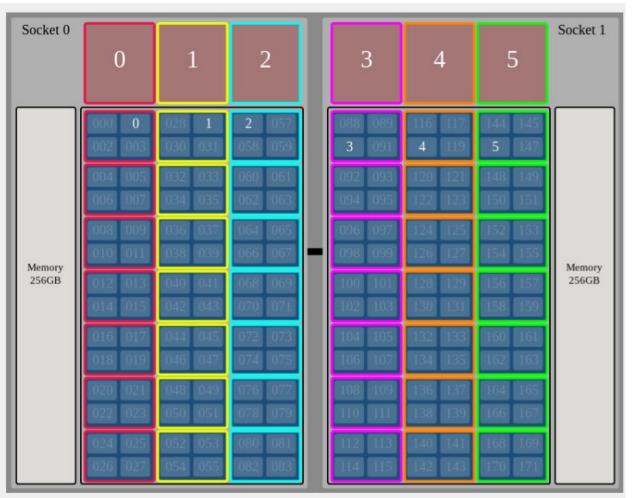
Summit Job Launcher: jsrun

- jsrun provides abstraction of a node with a concept of 'resource set'
 - motivated by the fact that Summit has powerful nodes
- Resource set:

al Laboratory

- sub group of resources (GPUs, CPUs) within a node
- using cgroup under the hood
- executes <N> MPI processes (with threads) and manages placement
- Node-sharing (e.g. multiple executables) is possible within a job (i.e. one user):
 - Multiple Programs Multiple Data (MPMD)
 - concurrently execute compute intensive GPU-only job with CPU-only data analysis / visualization

Programming Multiple GPUs


- Multiple paths, with different levels of flexibility and sophistication, e.g.:
 - Simple model: 1 MPI or 1 thread per GPU
 - Sharing GPU: multiple MPIs or threads share a GPU
 - Single MPI using multiple GPUs
 - Expose the node-level parallelism directly: multiple processes multiple GPUs
- Exposing more (node-level) parallelism is key to scalable applications from petascale-up

One GPU per MPI Rank

- 1 MPI rank per GPU \rightarrow bind each rank to specific GPU
- "Titan-like" model
- MPI rank can use threads (e.g. OpenMP or Pthreads) to utilize more of the CPU cores
 - CPU is only small percentage (~3 %) of the total Flops

1 GPU per MPI rank, 6 MPI ranks per node, 1 thread per MPI rank

Summit Compute Node (IBM Power System AC922)

export OMP_NUM_THREADS=1 jsrun --nrs X --tasks_per_rs 1 --cpu_per_rs 7 --gpu_per_rs 1 --rs_per_host 6 --bind packed:7 <exec>

One GPU Shared by Multiple MPI ranks

- Multiple MPI ranks shared a single GPU
 - Using CUDA MPS (Multi-Process Service)
- Useful to increase GPU utilization, i.e. if a single MPI rank cannot fully occupy a GPU
- Can be more prone to comm. congestion
 using threads is an alternative

COAK RIDGE

29

7 MPI ranks share a GPU, 21 MPI ranks per node

Summit Compute Node (IBM Power System AC922)

export OMP_NUM_THREADS=1

jsrun --nrs X --tasks_per_rs 7 --cpu_per_rs 7 --gpu_per_rs 1
--rs_per_host 6 --bind packed:1 <exec>

One GPU per MPI Rank (2)

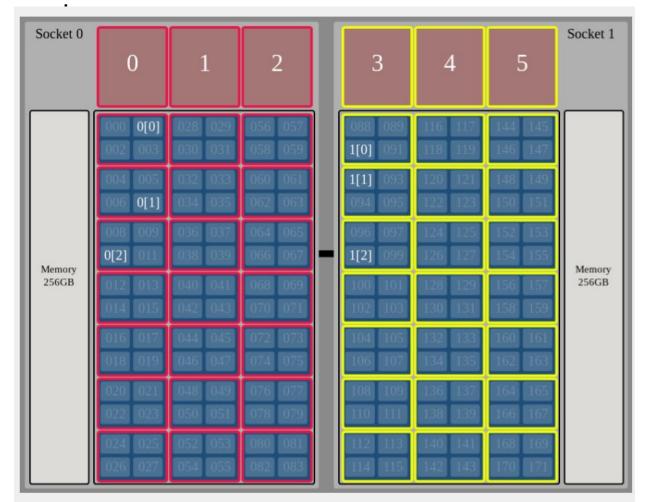
- Expect this to be the most commonly used approach
- Pros:
 - straightforward migration from Titan
 - No extra coding for code that does not handle multiple GPU
- Cons:

National Laboratory FACILITY

30

- Assumes similar amount of work among all ranks
- May leaves some cores or GPUs unused

1 GPU per MPI rank, 6 MPI ranks per node, 7 threads per MPI rank


Summit Compute Node (IBM Power System AC922)

export OMP_NUM_THREADS=7

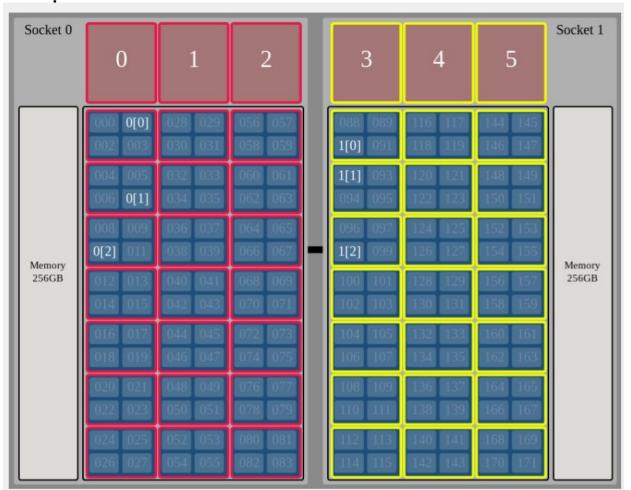
jsrun --nrs X --tasks_per_rs 1 --cpu_per_rs 7 --gpu_per_rs 1 --rs_per_host 6 --bind packed:7 <exec>

Multiple GPUs per MPI Rank

- Bind 3 6 GPUs per MPI rank, e.g.:
 - 2 ranks per node
 - 1 rank per node
- Using programming model constructs to offload to a specific GPU
- Multiple approaches
 possible

3 GPU per MPI rank, 2 MPI ranks per node, 3 threads per MPI

Summit Compute Node (IBM Power System AC922)


export OMP_NUM_THREADS=3 jsrun --nrs X --tasks_per_rs 1 --cpu_per_rs 21 --gpu_per_rs 3 --rs_per_host 2 --bind packed:7 <exec>

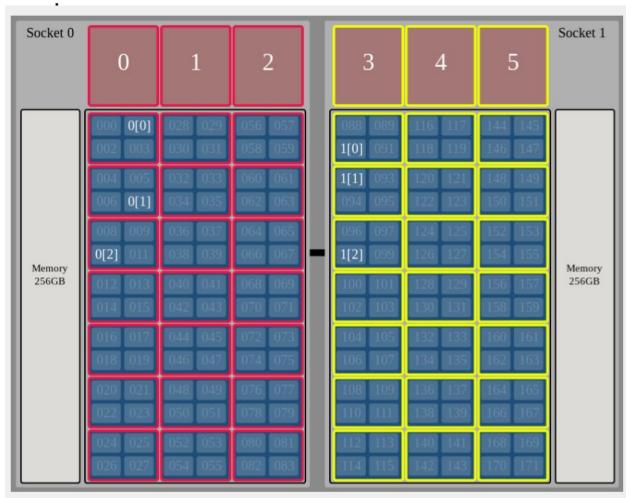
Multiple GPUs per MPI Rank, Explicit Control

- OpenMP + OpenACC:
 - launch 1 OpenMP threads per GPU
 - Within each thread set acc_set_device_num()
- OpenMP 4.5:
 - use device_num() clause
- CUDA:
 - use cudaSetDevice() routine

3 GPU per MPI rank, 2 MPI ranks per node, 3 threads per MPI

Summit Compute Node (IBM Power System AC922)

export OMP_NUM_THREADS=3 jsrun --nrs X --tasks_per_rs 1 --cpu_per_rs 21 --gpu_per_rs 3 --rs_per_host 2 --bind packed:7 <exec>



Multiple GPUs per MPI Rank, Implicit Control

- OpenMP and OpenACC:
 - Eventually, compiler + runtime could break up large tasks across multiple GPU automatically
- Task-based execution models are available / under development
- Use Multi-GPU-aware libraries: - cuBLASS, cuFFT
- Still need to be careful with process placement

National Laboratory FACILITY

3 GPU per MPI rank, 2 MPI ranks per node, 3 threads per MPI

Summit Compute Node (IBM Power System AC922)

export OMP NUM THREADS=3 jsrun --nrs X --tasks per rs 1 --cpu per rs 21 --gpu per rs 3 --rs per host 2 --bind packed:7 <exec>

DIRECTION OF DISCOVERY

ORNL's exascale supercomputer designed to deliver world-leading performance in 2021.

Frontier Overview

- Partnership between ORNL, Cray, and AMD
- Frontier will be delivered in 2021
- Peak performance greater than
 1.5 EF
- More than 100 Cray Shasta cabinets

National Laboratory FACILIT

 connected by Slingshot[™] network with adaptive routing, QOS, and congestion control

Frontier Node Architecture

- An AMD EPYC^(TM) processor with four Radeon Instinct^(TM) GPU accelerators purpose-built for exascale computing
- Fully connected with high-speed AMD
 Infinity Fabric links
- Coherent memory across the node
- 100 GB/s injection bandwidth
- Near-node NVM storage

National Laboratory

System Comparisons: Titan, Summit, and Frontier

System Specs	Titan	Summit	Frontier
Peak	27 PF	200 PF	~1.5 EF
# cabinets	200	256	Similar foot print
Node	1 AMD Opteron CPU 1 NVIDIA K20X Kepler GPU	2 IBM POWER9™ CPUs 6 NVIDIA Volta GPUs	1 AMD EPYC CPU (HPC and AI Optimized) 4 AMD Radeon Instinct GPUs
On-node interconnect	PCI Gen2 No coherence across the node	NVIDIA NVLINK Coherent memory across the node	AMD Infinity Fabric Coherent memory across the node
System Interconnect	Cray Gemini network 6.4 GB/s	Mellanox Dual-port EDR IB network 25 GB/s	Cray four-port Slingshot network 100 GB/s
Topology	3D Torus	Non-blocking Fat Tree	Dragonfly
Storage	32 PB, 1 TB/s, Lustre Filesystem	250 PB, 2.5 TB/s, IBM Spectrum Scale™ with GPFS™	2-4x performance and capacity of Summit's I/O subsystem.
Near-node NVM (storage)	No	Yes	Yes

Programming Environment and Migration Path

	Summit	Frontier
Compilers	GCC, IBM XL, PGI	GCC, Cray (CCE), AMD ROCm,
	CUDA C / C++	HIP C/C++
	OpenACC	OpenMP 5.x
Programming Model	OpenMP	OpenMP 5.x
r rogrammig modor	Fortran with CUDA C/C++	Fortran with HIP C/C++
	CUDA Fortran	Fortran with HIP C/C++, OpenMP 5.x

Summit is a premier development platform for Frontier

Programming Environment and Migration Path (2)

- HIP (heterogenous-compute Interface for Portability) is an API developed by AMD for portable code on AMD and NVIDIA GPU
 - uses CUDA or ROCm under the hood
- The API is very similar to CUDA
- AMD has developed a "hipify" tool to convert from CUDA to HIP
- HIP will be available on Summit soon

Acknowledgments

- Entire OLCF team, particularly
 - Judy Hill, Wayne Joubert, Bronson Messer, Matt Norman, Chris Fuson, Tom Papatheodore, Chris Zimmer, Jack Morrison
- A lot more info on Summit:
 - Summit user guide: <u>https://www.olcf.ornl.gov/for-users/system-user-guides/summit/</u>
 - OLCF training archive: <u>https://www.olcf.ornl.gov/for-users/training/training-archive/</u>

This work was performed under the auspices of the U.S. DOE by Oak Ridge Leadership Computing Facility at ORNL under contracts DEAC05-00OR22725

