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Exciting Time to be in HPC…

Exascale Computing Adoption of ML/AI for HPC New Hardware/Software



What we’ll cover today

• Why Arm – what’s so interesting about it?

• Marvell Thunder TX2 overview and comparison with x86_64
• Astra/Vanguard  Program

• ASC mini-app and application performance
• Porting to ARM
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What’s sooooooo Interesting About Arm?

• In many ways not much…
• Its just an instruction set
• As long as it can run Fortan, C and C++ 

we are good right?

• In others ways quite a lot is 
interesting
• Different business model, consortium 

of implementations
• Open for partners to suggest new

instructions
• Broad range of intellectual property 

opportunities
• Broad(er) range if implementations

than say X86, POWER, SPARC etc



What’s sooooooo Interesting About Arm?

• DOE invests more than $100M in the hardware of a typical supercomputer 
(often substantially more than this when the final bill comes in)
• Competition helps to drive down prices and increase innovation
• We want to optimize price/perf for our machines – get the absolute best workload 

performance we can for the best price we can buy hardware

• The future is interesting – Arm is an IP company, not an implementation
• What if we could blend existing Arm IP blocks with our own DOE inspired accelerators?
• Build workload optimized processors and computers that benefit DOE scientists?

• e.g. a machine just for designing new materials but one which is 100X faster than today?
• Arm is an opportunity to engage with a broad range of suppliers and an ecosystem

• Not the only way to do this, can partner with traditional vendors like Intel, IBM, AMD etc
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Arm is Growing in HPC…

7/30/19 Unclassified



NNSA/ASC Vanguard Program
A proving ground for next-generation HPC technologies in support of the 

NNSA mission

http://vanguard.sandia.gov



Astra – the First Petscale Arm based Supercomputer
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Test Beds
• Small testbeds

(~10-100 nodes)
• Breadth of

architectures Key
• Brave users

Vanguard
• Larger-scale experimental 

systems
• Focused efforts to mature 

new technologies
• Broader user-base
• Not Production
• Tri-lab resource but not for 

ATCC runs

ATS/CTS Platforms
• Leadership-class systems 

(Petascale, Exascale, ...)
• Advanced technologies,

sometimes first-of-kind
• Broad user-base
• Production Use

ASC Test Beds Vanguard ATS and CTS Platforms

Greater Scalability, Larger Scale, Focus on Production

Higher Risk, Greater Architectural Diversity

Where Vanguard Fits in our Program Strategy
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NNSA/ASC Advanced Trilab Software Environment (ATSE) Project 

• Advanced Tri-lab Software Environment
• Sandia leading development with input from Tri-lab Arm team
• Will be the user programming environment for Vanguard-Astra
• Partnership across the NNSA/ASC Labs and with HPE

• Lasting value
• Documented specification of:

• Software components needed for HPC production applications
• How they are configured (i.e., what features and capabilities are enabled) and interact
• User interfaces and conventions

• Reference implementation:
• Deployable on multiple ASC systems and architectures with common look and feel
• Tested against real ASC workloads
• Community inspired, focused and supported

ATSE is an integrated software environment for ASC workloads

ATSE
stack
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HPE’s HPC Software Stack
HPE:
• HPE MPI (+ XPMEM)
• HPE Cluster Manager

• Arm:
• Arm HPC Compilers
• Arm Math Libraries
• Allinea Tools

• Mellanox-OFED & HPC-X
• RedHat 7.x for aarch64

ATSE Collaboration with HPE’s HPC Software Stack

ATSE
stack
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SVE Enablement – Next Generation of SIMD/Vector Instructions

• SVE work is underway
• SVE = Scalable Vector Extensions
• Length agnostic vector instructions at an ISA level
• Using ArmIE (fast emulation) and RIKEN GEM5 Simulator
• GCC and Arm toolchains

• Collaboration with RIKEN
• Visited Sandia (participants from SNL, LANL, LLNL, RIKEN)
• Discussion of performance and simulation techniques
• Deep-dive on SVE (GEM5)

• Short term plan
• Use of SVE intrinsics for Kokkos-Kernels SIMD C++/data parallel 

types
• Underpins number of key performance routines for Trilinos

libraries
• Seen large (6X) speedups for AVX512 on KNL and Skylake
• Expect to see similar gains for SVE vector units

• Critical performance enablement for Sandia production codes
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•Workflows leveraging containers and virtual machines

• Support for machine learning frameworks

• ARMv8.1 includes new virtualization extensions, SR-IOV

• Evaluating parallel filesystems + I/O systems @ scale

• GlusterFS, Ceph, BeeGFS, Sandia Data Warehouse, …

• Resilience studies over Astra lifetime

• Improved MPI thread support, matching acceleration

• OS optimizations for HPC @ scale

• Exploring spectrum from stock distro Linux kernel to HPC-tuned Linux 

kernels to non-Linux lightweight kernels and multi-kernels

• Arm-specific optimizations

ATSE
stack

ATSE R&D Efforts – Developing Next-Generation NNSA Workflows
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Marvell Thunder X2
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ThunderX2 - Second Generation High-End Armv8-A Server SoC 

7/30/19 Unclassified

Up to 32 custom Armv8.1 cores, up to 2.5GHz

Full OoO, 1, 2, 4 threads per core

1S and 2S Configuration

Up to 8 DDR4-2667 Memory Controllers, 1 & 2 DPC

Up to 56 lanes of PCIe, 14 PCIe controllers

Full SoC: Integrated SATAv3 USB3 and GPIOs

Server class RAS & Virtualization

Extensive Power Management

LGA and BGA for most flexibility

40+ SKUs (75W – 180W)
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Marvell 
ThunderX2

Haswell E5-2698 
v3

Broadwell E5-
2695

Skylake Gold 
6152

Cores/Socket 32 (max 4 HT) 16 (2 HT) 22 (2 HT) 22 (2 HT)

L1 Cache/Core 32KB I/D (8-way) 32KB I/D (8-way) 32KB I/D (8-way) 32KB I/D (8-way)

L2 Cache/Core 256KB (8-way) 256 KB (8-way) 256 KB (8-way) 1 MB (16-way)

L3 Cache/Socket 32 MB 40 MB 33 MB 30.25 MB

#Memory 

Channels/Socket

8 DDR4 4 DDR4 4 DDR4 6 DDR4

Base Clock Rate 2.2 GHz 2.3 GHz 2.2 GHz 2.1 GHz

Vector/SIMD

Length

128b (NEON) 256b (AVX2) 256b (AVX2) 512b (AVX512)

ThunderX2 Comparison with Xeon Processors
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Roofline Comparison
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STREAM Triad Bandwidth
• ThunderX2 provides highest 

bandwidth of all processors
• Vectorization makes no discernable 

difference to performance at large 
core counts
• Around 10% higher with NEON at 

smaller core counts (5 – 14)

• Significant number of kernels in HPC 
are bound by the rate at which they 
can load/store to memory (“memory 
bandwidth bound”)
• Makes high memory bandwidth

desireable
• Ideally want to get to these bandwidths 

without needing to vectorize
7/30/19 Unclassified
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Cache Performance

• Haswell has highest per-core 
bandwidth (read and write) at L1, 
slower at L2.
• Skylake redesigned cache sizes 

(larger L2, smaller L3) shows up in 
graph
• Higher performance for certain work-

set sizes (typical for unstructured 
codes)

• TX2 more uniform bandwidth at 
larger scale (see less asymmetry 
between read/write)
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Higher is better

Larger L2 capacity
for Skylake
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DGEMM Compute Performance

• ThunderX2 has similar 
performance at scale to Haswell
• Roughly twice as many cores (TX2)
• Half the vector width (TX2 vs. HSW)

• See strata in Intel MKL results, 
usually a result of matrix-size 
kernel optimization
• ARM PL provides smoother 

performance results (essentially 
linear growth)
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Floating Point Performance Sanity Check: HPL 
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• ThunderX2 has about half the floating point capacity of comparable Xeon 
CPUs
• Xeon 8180 vs. ThunderX2 • HPL.dat

163840 Ns

256 NBs

0 PMAP process mapping (0=Row-,1=Column-
major)

7 Ps

8 Qs

1 PFACTs (0=left, 1=Crout, 2=Right)

2 RFACTs (0=left, 1=Crout, 2=Right)

0 BCASTs 
(0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)

0 DEPTHs (>=0)

2 SWAP (0=bin-exch,1=long,2=mix)

64 swapping threshold

2.00E+03

8.82E+02

4.99E+02

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

Xeon 8180 SMT=2+Turbo SMT=4 w/o
Turbo

GF
LO

PS

HPL | N=163840 (200GB)



Results from using Astra and other TX2 Platforms

Applications
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GUPS Random Access

• Running all processors in SMT-1 

mode, SMT(>1) is usually better 

performance

• Expect SMT2/4 on TX2 to give better 

numbers

• Usually more cores gives higher 

performance (more load/store 

units driving requests).

• Typical for TLB performance to be a 

limiter

• Need to consider larger pages for 

future runs
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Higher is better
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LULESH Hydrodynamics Mini-App

• Typically fairly intensive L2 
accesses for unstructured mesh 
(although LULESH is regular 
structure in unstructured format)
• Expect slightly higher 

performance with SMT(>1) 
modes for all processesors
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Higher is better
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XSBench Cross-Section Lookup Mini-App

• Two level random-like access into 
memory, look-up in first table and 
then use indirection to reach 
second lookup
• Means random access but is more 

like search so vectors can help

• See gain on Haswell and Skylake 
which both have vector-gather 
support
• No support for gather in NEON
• XSBench is mostly read-only 

(gather)
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Branson Mini-App and Benchmark

7/30/19 Unclassified

• Monte Carlo based Radiation transport 
mini-app

• Lots of time spent in math intrinsics (exp, 
log, sin, cos).  Benefits from ARM 
optimized math intrinsics

• Poor memory locality, benefits some from 
large pages

• Doesn’t vectorize 

• Random number generator not yet 
optimized for ARM

• On a per node basis, TX2 is on par with 
SKL-gold

• Need to improve vectorizability
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EMPIRE on Astra

Trinity HSW 32 MPI x 1 OMP Astra TX2 56 MPI x 1 OMP

Strong and weak scaling studies for EMPIRE-PIC for awesome blob test case

Missing Trinity XL mesh 512 and 4096 node results because of MueLu FPE
Missing Astra XL mesh 2048 node results because of MueLu FPE

Work by Paul Lin7/30/19 Unclassified



EMPIRE on Astra

• TX2 node has ~2x memory bandwidth and 1.75x cores (56 vs. 32) of Trinity HSW 
node

• (HSW time)/(TX2 time) > 1 means TX2 is faster
• Strong scaling for awesome blob small mesh (1-8 nodes), strong scaling for 

medium mesh (8-64 nodes), strong scaling for large mesh (64-512)
• (HSW time)/(TX2 time) for linear solve not great, low 

computation/communication regime

(Good)

7/30/19 Unclassified Work by Paul Lin



• TX2 node has ~2x memory bandwidth and 1.75x cores (56 vs. 32) of Trinity HSW 

node

• (HSW time)/(TX2 time) > 1 means TX2 is faster

• Strong scaling for awesome blob medium mesh (1-8 nodes), strong scaling for 

large mesh (8-64 nodes)

• (HSW time)/(TX2 time) for linear solve definite better than previous slide, due 

to increased computation/communication

EMPIRE on Astra

(Good)

7/30/19 Unclassified Work by Paul Lin



xRAGE

7/30/19 Unclassified

• Eulerian-based
hydrodynamics/radiation
transport application
• Uses adaptive mesh 

refinement
• Significant amount of

gather/scatter
• Does not currently benefit 

from AVX2/512 
vectorization
• Memory bound
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PARTISN

7/30/19 Unclassified

• Neutron transport code –
deterministic SN method
• Sensitive to cache 

performance, not typically 
memory bound
• Vectorizes well for avx512, 

NEON
• Can be run mixed 

MPI/OpenMP
• Limited by cache BW on

TX2 and front end stalls
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PARTISN can benefit from 4 SMTs/core

7/30/19 Unclassified

• Example of code with 
significant front end stalls
• Taucommander indicates 

high rate of branch 
misprediction in the sweep 
kernel

Cray XC50  - CCE 9.0 compiler



RIKEN Fiber Benchmarks – Compiler Performance Comparison

7/30/19 Unclassified

• Comparison of Cray 8/9 
compilers against Allinea19 
using Riken Fiber benchmarks
• Results are mixed, no clear 

winner in terms of compilers
• Takeaway is to try to build your 

app with several compilers

Cray XC50  - CCE 9.0 compiler
Lo

w
er

 is
 b

et
te

r



Early Results from Astra

7/30/19 Unclassified

System has been online for around two weeks , incredible team working round the 
clock, already running full application ports and many of our key frameworks

Baseline: Trinity ASC Platform (Current Production), dual-socket Haswell

CFD Models Hydrodynamics Molecular DynamicsMonte Carlo

1.60X 1.45X 1.30X 1.42X

Linear Solvers

1.87X



Porting to ARM

7/30/19 Unclassified



Sanity Checks 

• See if your software has already been ported to aarch64:
• www.gitlab.com/arm-hpc/packages/wikis
• See if its available via Spack https://github.com/spack/spack

• Don’t use old compilers:
• GCC 8.2 or newer, 9.1 better
• Allinea armflang/armclang 19.0 or newer
• If you’re package relies on some system packages in performance critical areas, may 

want to build your own versions.  Libraries that come with base release are not 
optimized for Thunderx2

• If your application has lots of dependencies, this may be a good time to learn 
how to use Spack
• Checkout training material at https://gitlab.com/arm-hpc/training

7/30/19 Unclassified

http://www.gitlab.com/arm-hpc/packages/wikis
https://github.com/spack/spack
https://gitlab.com/arm-hpc/training
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Porting Cheat Sheet

Ensure all dependencies have been ported.
•Arm HPC Packages Wiki: https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages

Update or patch autotools and libtool as needed
•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -O config.guess
•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -O config.sub
•sed -i -e 's#wl=""#wl="-Wl,"#g' libtool
•sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

Update build system to use the right compiler and architecture
•Check #ifdef in Makefiles.  Use other architectures as a template.

Use the right compiler flags
•Start with -mcpu=native -Ofast

Avoid non-standard compiler extensions and language features  
•Arm compiler team is actively adding new “unique” features, but it’s best to stick to the standard.

Update hard-wired intrinsics for other architectures
•https://developer.arm.com/technologies/neon/intrinsics
•Worst case: default to a slow code.

Update, and possibly fix, your test suite
•Regression tests are a porter’s best friend.
•Beware of tests that expect exactly the same answer on all architectures!

Know architectural features and what they mean for your code
•Arm’s weak memory model.
•Division by zero is silently zero on Arm.

https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages
https://developer.arm.com/technologies/neon/intrinsics


Questions?
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