D\ . : : 1 : National
) -] Exceptional service in the national interest ationa

— Laboratories

Unclassified Unlimited Release
D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles,

Christian R. Trott, - Center for Computing Research
D. Hollman, V. Dang Sandia National Laboratories/NM

8. DEP 7w

(3)ENERGY #V.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-9040 TR

~ Cost Of Software .

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of an application needs to get rewritten for adoption
of Shared Memory Parallel Programming Model

= Typical Apps: 300k — 600k Lines
= Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k
= Typical App Port thus 2-3 Man-Years

= Sandia maintains a couple dozen of those
= Large Scientific Libraries
= E3SM: 1,000k Lines x 10% => 5 Man-Years
= Trilinos: 4,000k Lines x 10% => 20 Man-Years

~ A Vision of the future

4 Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

- SpMV and GEMM accelerator

-

E

mml

Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming

models??
- GPU: CUDA, HIP, SyCL, OpenMF
- CPU: OpenMP, OpenACC
- PIM: ?7?

~ Applications Libraries Frameworks

- wdsimm
W5 45 B
A T o0 K)
Te WOEE r
- 0 L
0 o

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

SNL NALU
Wind Turbine CFD

ORNL Raptor
Large Eddy Sim

Kokkos

TR T

ORNL Summit a SNL Astra
IBM Power9 / NVIDIA Volta LANL/SNL Trinity ANL Aurora ARM Architecture

Intel Haswell / Intel KNL Intel Xeon CPUs + Intel Xe Compute

e AM 9) (

Fa

Outline rh) i

= The Kokkos EcoSystem

= Core, Kernels and Tools
= Capabilities
= Parallel Dispatch
= Data structures
= Algorithms
= Applications
= Future Developments
= Latency Optimization
= Remote Spaces
= C++ Standard

" What is Kokkos? i

= A C++ Programming Model for Performance Portability

= Implemented as a template library on top of CUDA, OpenMP, ROCm, ...
= Aims to be descriptive not prescriptive
= Aligns with developments in the C++ standard
= Expanding solution for common needs of modern science/engineering codes
= Math libraries based on Kokkos
= Tools which allow inside into Kokkos
= |tis Open Source
= Maintained and developed at https://github.com/kokkos

= |t has many users at wide range of institutions.

https://github.com/kokkos

~ Kokkos EcoSystem)
)

Kokkos
Tools

Science and Engineering Applications

Trilinos

Kokkos EcoSystem

Kokkos Kernels

Kokkos Core

F(okkos Remote Spaces

” Kokkos Development Team R

~
L kokkos
ﬁg Alamos Argon ne o ﬁglt]igir?al %OAK RIDGE \‘0‘0 CSCS

NATIONAL LABORATORY NATIONAL LABORATORY Laboratories National Laboratory ~

EST.1943

= Dedicated team with a number of staff working most of their time on Kokkos
= Main development team at Sandia in CCR

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon
Kokkos Tools: S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

~ Some Kokkos Stats Since 2015) e

= 18 Releases Since 2016

= Only 5 since December 2017
50 Contributors

= 17 with more than 10 commits

= 11 with more than 10k lines touched

1345 Issues of which 1134 were resolved
= 305 bug reports
= 381 enhancement requests
= 129 Feature Requests

766 pull requests

19k messages by 150 members on kokkosteam.slack.com (Started in 2017)

_ Kokkos Core Abstractions) s,

Parallel Execution

Data Structures

Memory Spaces (“Where”)
- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism

Execution Spaces (“Where”)

Memory Layouts Execution Patterns

- Row/Column-Maijor, Tiled, Strided - parallel_for/reduce/scan, task-spawn
Memory Traits ("How”) Execution Policies (“How”)
- Streaming, Atomic, Restrict - Range, Team, Task-Graph

Fa

Kokkos Kernels) i

BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
= Scalar type agnostic, e.g. works for any types with math operators
= Layout and Memory Space aware

Can call vendor libraries when available

View have all their size and stride information => Interface is simpler

// BLAS // Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; double *xA, *B, *C; double alpha, beta; View<doublexx> A,B,C;
dgemm('N', 'N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N', 'N',alpha,A,B,beta,C);

Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

parallel_for("NestedBLAS", TeamPolicy<>(N,AUT0), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// Call BLAS using parallelism in this team (e.g. CUDA block)

gemv(team_handle, 'N',alpha,A, x,beta,y)

};

_Kokkos-Tools Profiling & Debugging h

Sandia
Laboratories

= Performance tuning requires insight, but tools are different on each platform

= Insightinto

= KokkosTools: Provide common set of basic tools + hooks for 3rd party tools

= One common issue abstraction layers obfuscate profiler output

m KOkkOS hOOkS for passing names on # Basic Hotspots Hotspots by CPU Usage viewpoint (change)

& Analysis Target Analysis Type| |2 Collection Log| | il Summary

& Bottom-up

| PrOVide Kernel, Allocation and Region Grouping: ‘FrameDomaln/Frame/Function/CaII Stack

CPU Tir
* No need to recompile Frame Domain, Erame / Function /Call | e Time by Utlizatin
. @die @Poor [JOk [Ideal [Over |Imbala
u U ses ru nt| me h (0]0) kS VEaraIIelFor.AXPB a7ees__ N 057
1 1.615s (1) 0.17
. . b3 1.593s 0.18
= Set via env variable s . o
P[No frame domain - Outside any frame] 0.0795| 1.34
D ParallelReduce.Dot 1.952s [N 0.53
D ParallelFor.Z4mainEUIRKIE_ 2.168s [[N 0.17

Kokkos: Capabilities

F 3
=+
1!

Kokkos: Applications and Users

~ Kokkos Based Projects rh

= Production Code Running Real Analysis Today
= We got about 12 or so.

= Production Code or Library committed to using Kokkos and actively porting
= Somewhere around 30

= Packages In Large Collections (e.g. Tpetra, MuelLu in Trilinos) committed to
using Kokkos and actively porting

= Somewhere around 50

= Counting also proxy-apps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

= Estimate 80-120 packages.

> |
.. Kokkos Users -) i
) i Pacific oSt

g Laboratories
Los Alameos ARL &
NJ STATE:

-~ National Laboratory NATIONAL LABORATORY

% O0akRiDcE Argonne & L
U

.S.NAV. p

EsgﬁRéL ‘\'0‘ CSCS
THE LABORATORY
U™ g

IJ JULICH T|.|T|
. Forschungszentrum TECHN|SCHE
Max-Planck-Institut B b N
fir Plasmaphysik Y] (® Rensselaer B

BERKELEY LAB

~ Uintah) i

= System wide many task framework from Reverse Monte Carlo
University of Utah led by Martin Berzins Ray Tracing 643 cells

= Multiple applications for combustion/radiation 16
simulation = 14
= Structured AMR Mesh calculations %:2
= Prior code existed for CPUs and GPUs £ s
= Kokkos unifies implementation % j I
= |mproved performance due to constraints in E 5 II I
Kokkos which encourage better coding practices 0
CPU GPU KNL

. m Original = Kokkos
Questions: Dan Sunderlan

W LAM M PS Questions: Stan Moore

Widely used Molecular Dynamics
Simulations package

= Focused on Material Physics
= QOver 500 physics modules
= Kokkos covers growing subset of those

= REAX s an important but very complex
potential

= USER-REAXC (Vanilla) more than
10,000 LOC

= Kokkos version ~6,000 LOC
= |Jin comparison: 200LOC
= Used for shock simulations

r]'lml

Architecture Comparison
Example in.reaxc.tatb /
196k atoms / 100 steps

200

50... ‘ Il
0
Q
P S

S Q° £ SRS
S @\Q ® ©

DX
Cb+ Cb'\" b‘+ b“\‘é b"\‘é

mVanilla ®Kokkos

Py Sandia
.. Alexa rh) e

= Portably performant shock Best Threaded TimesSingle-Rank

140
120

= Solving multi-material problems for 128

internal Sandia users 60
: = 40

= Uses tetrahedral mesh adaptation 20 [
0

S Intel NVIDIA NVIDIA NVIDIA Intel Intel
Questions: Dan Ibanez KNL K40 K80 P100 Xeon KNC

E7-4870

hydrodynamics application

S

Time in

= All operations are Kokkos-parallel

= Test case: metal foil expanding due to
resistive heating from electrical
current.

Py

SPARC - =
ha Courtesy of: Micah Howard) Natona
= Goal: solve aerodynamics problems for S oo sote
Sandia (transonic and hypersonic) on - fe rsaman s
1l L N L e | ww ATS-2/v100

‘leadership’ class supercomputers
= Solves compressible Navier-Stokes equations

= Perfect and reacting gas models

log, Time per Time Step [s]
R

= Laminar and RANS turbulence models ->
hybrid RANS-LES N |

" Primary discretization is cell-centered finite - - S S —
VO I u m e Number of Compute Nodes or GPUs

= Research on high-order finite difference and 4 Sierra nodes (16x V100)
discontinuous Galerkin discretizations equivalent to ~40 Trinity nodes

80x Haswell 16¢c CPU
= Structured and unstructured grids (80x w)

= Sparta: Production Simulation at Scale @,

= Stochastic PArallel Rarefied-gas Time-

accurate Analyzer SPARTA Weak Scaling
. . . 500
= Adirect simulation Monte Carlo code o = =
= Developers: Steve Plimpton, Stan Moore, & 400
. . 3 350
Michael Gallis 2 300
.. 8 250
= Only code to have run on all of Trinity 3 200 A :
= 3 Trillion particle simulation using 5 Egk —8— —o
both HSW and KNL partition in a £ 5
single MPI run " 8 16 32 64 128 256
= Benchmarked on 16k GPUs on Sierra —A—Haswell =KL =8=V100

= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView

Kokkos: Future Developments

” DOE Machine Announcements)i

= Now publicly announced that DOE is buying both AMD and Intel GPUs
= Argonne: Cray with Intel Xeon + Intel Xe Compute
= ORNL: Cray with AMD CPUs + AMD GPUs
= NERSC: Cray with AMD CPUs + NVIDIA GPUs

= Have been planning for this eventuality:

= Kokkos ECP project extended and refocused to include developers at
Argonne and Oak Ridge, staffing is in place

= HIP backend for AMD, main development at ORNL
" The current ROCm backend is based on a compiler which is now deprecated ...

= SyCL backend for Intel, main development at ANL
= OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

™ Latency Limited Kernels and e
Asynchronous Execution

= Many applications run into latency limits

= Targeting 1000 timesteps or solver iterations per second

= Need to optimize for kernels of 20us and less runtime

= MiniEM: >3000 Kernel calls per solve => 30k/s to achieve 10 solves/s
= Underlying Programming Models have limits

= CUDA launch latency 3us (Skylake) to 8us (Power9)
= Kokkos has additional overhead

= OpenMP max loop rate about 1us/per loop
= Allocation rate limited
= CUDA UVM allocation takes up to 200us!

L Approaches to Address This) i,

= More asynchronous execution to hide launch latency

= No APl change, improve implementation (i.e. limit fences etc.)

= May need hints from user to use latency instead of throughput opt path
* Fine Grained Tasking Interface

= Potentially write big kernels with inner dependencies via tasking
= Execution Space Instances

= First step support CUDA streams
= Fuse Kernels

= Real fusion is user level, but maybe help with interfaces
= Kernel Graph Abstraction

= Exploit CUDA graphs for now
= Coarse Grained Tasking

~ Asynchronicity Semantics)

= ParallelReduce/S
S .u e/Scan 2 Dot Products
ouble result;

// parallel_for is always Synchronous CUDA N=100k
parallel_for("AsynchronousFor",N,F); 50
// parallel_reduce with Scalar as result is Synchronous

parallel_reduce("SynchronousSum",N,Fr, result); 45
// parallel_reduce with Reducer constructed from scalar is synchronous 40
parallel_reduce("SynchronousMax",N, Fr,Max<double>(result)); 35
// parallel_reduce with any type of View as result is asynchronous 2 a0
Kokkos: :View<double,CudaHostPinnedSpace> result_v('"R"); c
parallel_reduce("AsynchronousSum",N,Fr,result_v); © 25
// Even with unmanaged view, and wrapped into Reducer £ 20
Kokkos::View<double,HostSpace> result_hv(&result); =
parallel_reduce("AsynchronousMax",N,Fr,Max<double>(result_hv)); 15
// Scans without total result argument are asynchronous 10
parallel_scan("AsynchronousScan",N,Fs); 5
Rule of Thumb: Everything is asynchronous unless reducingintoa | ©
scalar value! m Scalar mView

_ Improved Fine Grained Tasking) i

= Generalization of TaskScheduler abstraction to allow user to Fibonacci 30 (V100)

be generic with respect to scheduling strategy and queue .

= Implementation of new queues and scheduling strategies:

»

= Single shared LIFO Queue (this was the old implementation)
= Multiple shared LIFO Queues with LIFO work stealing

(@)

N

= Chase-Lev minimal contention LIFO with tail (FIFO) stealing

= Potentially more
= Reorganization of Task, Future, TaskQueue data structures to
accommodate flexible requirements from the TaskScheduler
= Forinstance, some scheduling strategies require additional I I

storage in the Task

w

M|II|on Tasks per Second
N

Questlons DaV|d HO”man mOld Single Queue mNew Single Queue

m Multi Queue m Chase-Leve MQ

Tasking Example Code W=

template< typename Scheduler >
struct FibonacciTask {
using sched_type = Scheduler;
using future_type = BasicFuture< long, Scheduler >;
future_type fib_ml, fib_m2;
const long n;

Scheduler obtained from arguments: task could be a lambda]

Spawn child tasks]

KOKKOS_INLINE_FUNCTION
TestFib(const value_type arg_n)
: fib_m1(), fib_m2(), n(arg_n) {}

Make compound dependency]

KOKKOS_INLINE_FUNCTION
void operator()(typename sched typ embg@” type & membg
h ler

0oL type & result Respawn task with new deps]

auto m

if (n<2) A result =n; }
else if 'fib m2.is null B ib ml.is g
else {
Fib_m2
[fib_ml

Pe0))|

, TaskPriorit Weeigh bonaccilTask(n - 2));
FibonacciTaskCE 1));

result = fib_ml) + fib_m2.get(); }

task_spawn(Ta
task_spawn(TaskSigg

ing e (_g@Med
sched),

[BasicFuture<void, Scheduler> dep[] = { fib_m1, fip Y

BasicFuture<void, Scheduler> fib_all = sched.uwas®all(dep, 2); If dependencies are not NULL this is respawn]

if (!fib m2.is null() && !fib ml.is/MRCL() && !fib_all.is_null()) {
respawn(this, fib all, TaskPriority::High
} else { Kokkos::abort("TestFib insufficient memory"); }

}

b
I —— — —— ———

~ CUDA Stream Interop) i

= |nitial step to full coarse grained tasking
= Discuss in more detail in future directions
= For now: make Kokkos dispatch use user CUDA streams

= Allows for overlapping kernels: best for large work per iteration, low count

// Create two Cuda instances from streams
cudaStream_t streaml,stream2;
cudaStreamCreate(&streaml);
cudaStreamCreate(&stream2);

Kokkos::Cuda cudal(streaml), cuda2(stream2);

// Run two kernels which can overlap
parallel_for("F1",RangePolicy<Kokkos::Cuda>(cudal,N),F1);

parallel_for("F2",RangePolicy<Kokkos::Cuda>(cuda2,N),F2);
fence();

Fa

CUDA Graphs)

Launch 3 Kernels

CUDA graphs: launch multiple kernels as one - Device Grid Setup 1us

- |l . Compute Kernel

= CUDA has interface to record Kernel launches, and then dispatch in bulk

= Can resolve dependencies according to streams

// Start by initating stream capture
cudaStreamBeginCapture(stream1);

/I Build stream work as usual A<<< ..., stream1 >>>();
cudaEventRecord(e1, stream1); B<<< ..., stream1 >>>();
cudaStreamWaitEvent(stream2, e1); C<<< ..., stream2 >>>();
cudaEventRecord(e2, stream?2);
cudaStreamWaitEvent(stream1, e2); D<<< ..., stream1 >>>();
/I Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);

cudaGraphlnstantiate(&instance, graph);

/I Launch executable graph 100 times

for(int i=0; i<100; i++)
cudaGraphLaunch(instance, stream);

 Kokkos Options To Leverage Graphs @&,

= InterOp option: make the CUDA API capture Kokkos parallel for etc. correct

= Capture in a coarse grained scope: 3 Kernels 10
Kokkos: :View<double> reduce_result("red"); ReExecutes
auto graph = Kokkos::capture_kernel_graph([=] () {

Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) {...}); 600

Kokkos::parallel_reduce("A",N, 500
KOKKOS_LAMBDA(const int i, double& r) {...},reduce_result);

Kokkos: :parallel_for("A",N,KOKKOS_LAMBDA(const int i) { @ 400

double r = reduce_result(); o 300

b £ 200
}); 100 I I I

for(int i=0;i<10;i++) {
Kokkos: :execute_graph(graph); _\396
graph.fence(); QO Y
} N
. . . O
= Problem: what if | want an MPI call in this loop? <
mRaw mCUDA Graph

o

” Coarse Grained Tasking)

= Somewhat awkward to capture the whole region

= Expressing dependencies indirectly just via ExecSpace instances is suboptimal
= Make parallel dispatch return “futures” and execution policies consume

dependencies instead

auto fut_1 = parallel for(RangePolicy<>(“Functl”, @, N), f1);

auto fut_2a = parallel for(RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);

auto fut_2b = parallel for(RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);

auto fut_3 = parallel for(RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);

= Could build graph under the hood and submit upon fence?
= What about eager execution?
= |nsert MPI via host_spawn?

~ Kokkos Remote Spaces: PGAS Support [,

» PGAS Models may become more viable for HPC with both changes in network
architectures and the emergence of “super-node” architectures

 Example DGX2 VI00 V100 V100 V100 £ VI00 Vi V100 V100
= First “super-node” T
i~ :7
Vieo vioo Vio0 vioo = vico Vvi00 Vvioo Vioo

= 300GB/s per GPU link
» |dea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

» View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

P . template<>
|
Operator a(i,3,k) returns: struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}

int pe; double* ptr;

void operator = (double val) { shmem double p(ptr,val,pe); }
}s

= PGAS Performance Evaluation: miniFE @&,

n Test Problem: CG-Solve CGSolve Performance

Using the miniFE problem NA3 6000
= Compare to optimized CUDA

|

= MPI version is using overlapping - 5000 %
= DGX2 4 GPU workstation 3_4000 %
= Dominated by SpMV (Sparse Matrix = 3000 \
Vector Multiply) 3 \

= Make Vector distributed, and store = 2000 \
global indicies in Matrix = \
. 1000 &

Warning: | don’t think this is a viable thing in the next
couple years for most of our apps!!

= Aligning Kokkos with the C++ Standard @&,

= Long term goal: move capabilities from Kokkos into the ISO standard

= Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

Propose for C++

Kokkos Legacy C++ Standard

Implemented legacy
capabilities in terms of Back port to compilers we got
new C++ features C++ Backport

" C++ Atomic Ref DR

= atomic_ref<T> in C++20

= Provides atomics with all capabilities of atomics in Kokkos
= Atomic ops on “POD” types with operators

= Wrap non-atomic object
= atomic_ref(a[i])+=5.0; instead of atomic_add(&ali],5.0);

" C++ MDSpan) i

= Provides customization points which allow all things we can do with Kokkos::View

= Better design of internals though! => Easier to write custom layouts. ©
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks ©
= More verbose interface though ®
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= 4 Template Parameters
= Scalar Type
= Extents ->rank and compile timensions
= Layout
= Accessor -> return type of operator, storage handle, and access function

View<intkx[5],LayoutLeft,MemoryTraits<Atomic>>

basic_mdspan<int,extents<dynamic_extent,dynamic_extent,5>, layout_left,accessor_atomic<int>>

~ C++ MDSpan) i

= How to get MemorySpaces?
= accessor_memspace<int,CudaSpace>
= mdspan is non-owning?
= Derive Kokkos View from MDSpan
= store the extra reference count handle
= Provide allocating constructors
= QOr: use accessor with shared_ptr as data handle ...
= What about subviews?
= subspan is part of the proposal
= https://github.com/ORNL/cpp-proposals-pub/tree/master/P0009

https://github.com/ORNL/cpp-proposals-pub/tree/master/P0009

" C++ BLAS)

= Sandia leads a proposal supported by various parties (including Intel, NVIDIA,

AMD and ARM)
= Goals: scalar agnostic, layout aware, support parallelism
= Approach:

= Mdspan (and mdarray) as arguments
= Model after C++ parallel algorithms

Ily=3.0*A*Xx;

matrix_vector product(par, scaled_view(3.0, A), X, y);
INy=3.0"A*x+2.0"y;

matrix_vector product(par, scaled_view(3.0, A), x, scaled_view(2.0, y), y);
/l'y = transpose(A) * x;

matrix_vector product(par, transpose_view(A), X, y);

~ How To Expose Special Function Units? ()i,

T ibraries!

= Easy to use for applications

= Connect with memory info
= |s the data accessible and the correct layout?

= KokkosKernels has interface with all necessary information
= Matrix in main GPU memory
= RHS vector created on the fly in scratch memory

= LHS vector in Host accessible memory

View<doub lexx,CudaSpace> A = /*...%x/;
View<doublex,CudaHostPinnedSpace> y = /*...%/;
View<doublex,Cuda::scratch_memory_space> X = /*...%/;

gemv(y,A,x); /* Execute in Cuda Space since it can access all data. *x/

~ Key Things to Help Compilers/Runtimes [,

= Encode information at compile time (as part of the type system)
= Where does data life.
= How do you access it.
= Properties of algorithms.
= Be descriptive — not prescriptive
= Say what you want to happen and give properties (see above)
= Let the compiler/runtime figure out how to use that info
= Provide graceful fallbacks and defaults
= Make it possible to provide incrementally more information

" That’s Great But | Don’t Trust TPLs)i

= Good News! We are working on contributing to the C++ standard!
= Executors for heterogeneous environements (C++23)

= Control where and how stuff executes

= Property mechanism to provide more information

= Hierarchical executors for supporting hierarchical hardware (C++26)
= MDSpan for multi-dimensional arrays with accessors (C++23)

= Templated on scalar, extents, layout and accessor

basic_mdspan<double,extents<dynamic_extent, 8>, layout_left,basic_accessor<double>>

= Extent accessors to provide typesafe info about storage place

basic_mdspan<double,extents<8,4>, layout_right,memspace_accessor<double, HBM>>

= BLAS support in the works: allows SpMV or GEMM accelerator support (C++23)
S

Py Sandia
L Summary) e

= Production Quality: Extensive Testing and wide usage enables good user
experience

= Multi-Institution Developer Team: 4 National Labs + Swiss National
Supercomputing Center support Kokkos directly

= Growing Userbase: More than 100 projects using Kokkos, many codes
available online

= Not just the Programming Model: Tools and math library integration provide
the basis for complex projects

Sandia
@ National
Laboratories

