
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Kokkos: C++ Performance Portability for Production
Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Unclassified Unlimited Release

SAND2019-9040 TR

D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles,
D. Hollman, V. Dang

Cost Of Software

§ Optimistic estimate: 10% of an application needs to get rewritten for adoption
of Shared Memory Parallel Programming Model

§ Typical Apps: 300k – 600k Lines

§ Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k

§ Typical App Port thus 2-3 Man-Years

§ Sandia maintains a couple dozen of those

§ Large Scientific Libraries

§ E3SM: 1,000k Lines x 10% => 5 Man-Years

§ Trilinos: 4,000k Lines x 10% => 20 Man-Years

10 LOC / hour ~ 20k LOC / year

A Vision of the future

3

PIM DDR

L2*

NVRAM

PIM
L1

*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NICL3

4 Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory
- SpMV and GEMM accelerator

Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming
models??

- GPU: CUDA, HIP, SyCL, OpenMP
- CPU: OpenMP, OpenACC
- PIM: ??

SpMV G
E
M
M

Kokkos

ORNL Summit
IBM Power9 / NVIDIA Volta LANL/SNL Trinity

Intel Haswell / Intel KNL
ANL Aurora
Intel Xeon CPUs + Intel Xe Compute

SNL Astra
ARM Architecture

SNL NALU
Wind Turbine CFD

SNL LAMMPS
Molecular Dynamics

UT Uintah
Combustine

ORNL Raptor
Large Eddy Sim

Applications Libraries Frameworks

Outline
§ The Kokkos EcoSystem

§ Core, Kernels and Tools
§ Capabilities

§ Parallel Dispatch
§ Data structures
§ Algorithms

§ Applications
§ Future Developments

§ Latency Optimization
§ Remote Spaces
§ C++ Standard

What is Kokkos?
§ A C++ Programming Model for Performance Portability

§ Implemented as a template library on top of CUDA, OpenMP, ROCm, …

§ Aims to be descriptive not prescriptive

§ Aligns with developments in the C++ standard

§ Expanding solution for common needs of modern science/engineering codes

§ Math libraries based on Kokkos

§ Tools which allow inside into Kokkos

§ It is Open Source

§ Maintained and developed at https://github.com/kokkos

§ It has many users at wide range of institutions.

https://github.com/kokkos

Kokkos EcoSystem

Kokkos Development Team

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Mikael Simberg,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger, J. Wilke, W. McLendon

Kokkos Tools: S. Hammond, C.R. Trott, D. Ibanez, S. Moore; soon: D. Poliakoff
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

§ Dedicated team with a number of staff working most of their time on Kokkos
§ Main development team at Sandia in CCR

Some Kokkos Stats Since 2015
§ 18 Releases Since 2016

§ Only 5 since December 2017

§ 50 Contributors

§ 17 with more than 10 commits

§ 11 with more than 10k lines touched

§ 1345 Issues of which 1134 were resolved

§ 305 bug reports

§ 381 enhancement requests

§ 129 Feature Requests

§ 766 pull requests

§ 19k messages by 150 members on kokkosteam.slack.com (Started in 2017)

Kokkos Core Abstractions
Kokkos

Execution Spaces (“Where”)

Execution Patterns

Execution Policies (“How”)

Memory Spaces (“Where”)

Memory Layouts

Memory Traits (“How”)

Parallel ExecutionData Structures

- CPU, GPU, Executor Mechanism

- parallel_for/reduce/scan, task-spawn

- Range, Team, Task-Graph

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

- Streaming, Atomic, Restrict

Kokkos Kernels
§ BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction

§ Scalar type agnostic, e.g. works for any types with math operators
§ Layout and Memory Space aware

§ Can call vendor libraries when available
§ View have all their size and stride information => Interface is simpler

§ Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

// BLAS
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC);

// Kokkos Kernels
double alpha, beta; View<double**> A,B,C;
gemm('N','N',alpha,A,B,beta,C);

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// Call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle,'N',alpha,A,x,beta,y)

});

Kokkos-Tools Profiling & Debugging
§ Performance tuning requires insight, but tools are different on each platform
§ Insight into
§ KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
§ One common issue abstraction layers obfuscate profiler output

§ Kokkos hooks for passing names on
§ Provide Kernel, Allocation and Region

§ No need to recompile
§ Uses runtime hooks
§ Set via env variable

Kokkos: Capabilities

Kokkos: Applications and Users

Kokkos Based Projects
§ Production Code Running Real Analysis Today

§ We got about 12 or so.

§ Production Code or Library committed to using Kokkos and actively porting

§ Somewhere around 30
§ Packages In Large Collections (e.g. Tpetra, MueLu in Trilinos) committed to

using Kokkos and actively porting

§ Somewhere around 50
§ Counting also proxy-apps and projects which are evaluating Kokkos (e.g.

projects who attended boot camps and trainings).

§ Estimate 80-120 packages.

Kokkos Users

Uintah

0

2

4

6

8

10

12

14

16

CPU GPU KNL

T
im

e
pe

r
T

im
es

te
p

[s
]

Reverse Monte Carlo
Ray Tracing 64^3 cells

Original Kokkos

§ System wide many task framework from
University of Utah led by Martin Berzins

§ Multiple applications for combustion/radiation
simulation

§ Structured AMR Mesh calculations
§ Prior code existed for CPUs and GPUs
§ Kokkos unifies implementation
§ Improved performance due to constraints in

Kokkos which encourage better coding practices

Questions: Dan Sunderlan

LAMMPS
§ Widely used Molecular Dynamics

Simulations package

§ Focused on Material Physics

§ Over 500 physics modules

§ Kokkos covers growing subset of those

§ REAX is an important but very complex

potential

§ USER-REAXC (Vanilla) more than

10,000 LOC

§ Kokkos version ~6,000 LOC

§ LJ in comparison: 200LOC

§ Used for shock simulations

0
2
4
6
8

10
12
14
16
18
20

Intel KNL IBM
Power8

NVIDIA
K80

NVIDIA
P100

Ti
m

e
[s

]

Architecture Comparison
Example in.reaxc.tatb / 24k

atoms / 100 steps

Vanilla Kokkos

0

50

100

150

200

8x
 In

tel
 H

SW

8x
 IB

M P
ow

er9

8x
 ARM v8

 TX
2

4x
 N

VID
IA K40

4x
 N

VID
IA P10

0

4x
 N

VID
IA V10

0

Ti
m

e
[s

]

Architecture Comparison
Example in.reaxc.tatb /
196k atoms / 100 steps

Vanilla Kokkos

Questions: Stan Moore

Alexa
§ Portably performant shock

hydrodynamics application
§ Solving multi-material problems for

internal Sandia users
§ Uses tetrahedral mesh adaptation

§ All operations are Kokkos-parallel
§ Test case: metal foil expanding due to

resistive heating from electrical
current.

0
20
40
60
80

100
120
140

Intel
KNL

NVIDIA
K40

NVIDIA
K80

NVIDIA
P100

Intel
Xeon

E7-4870

Intel
KNC

Ti
m

e
in

 s

Best Threaded TimesSingle-Rank

Questions: Dan Ibanez

SPARC
§ Goal: solve aerodynamics problems for

Sandia (transonic and hypersonic) on
‘leadership’ class supercomputers

§ Solves compressible Navier-Stokes equations

§ Perfect and reacting gas models

§ Laminar and RANS turbulence models ->
hybrid RANS-LES

§ Primary discretization is cell-centered finite
volume

§ Research on high-order finite difference and
discontinuous Galerkin discretizations

§ Structured and unstructured grids

4 Sierra nodes (16x V100)
equivalent to ~40 Trinity nodes
(80x Haswell 16c CPU)

Courtesy of: Micah Howard

Sparta: Production Simulation at Scale
§ Stochastic PArallel Rarefied-gas Time-

accurate Analyzer
§ A direct simulation Monte Carlo code
§ Developers: Steve Plimpton, Stan Moore,

Michael Gallis
§ Only code to have run on all of Trinity

§ 3 Trillion particle simulation using
both HSW and KNL partition in a
single MPI run

§ Benchmarked on 16k GPUs on Sierra
§ Production runs now at 5k GPUs

§ Co-Designed Kokkos::ScatterView

0

50

100

150

200

250

300

350

400

450

500

4 8 16 32 64 128 256

Pe
rfo

rm
an

ce
 p

er
 N

od
e/

G
PU

SPARTA Weak Scaling

Haswell KNL V100

Kokkos: Future Developments

DOE Machine Announcements
§ Now publicly announced that DOE is buying both AMD and Intel GPUs

§ Argonne: Cray with Intel Xeon + Intel Xe Compute

§ ORNL: Cray with AMD CPUs + AMD GPUs

§ NERSC: Cray with AMD CPUs + NVIDIA GPUs

§ Have been planning for this eventuality:

§ Kokkos ECP project extended and refocused to include developers at
Argonne and Oak Ridge, staffing is in place

§ HIP backend for AMD, main development at ORNL
§ The current ROCm backend is based on a compiler which is now deprecated …

§ SyCL backend for Intel, main development at ANL

§ OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

Latency Limited Kernels and
Asynchronous Execution

§ Many applications run into latency limits

§ Targeting 1000 timesteps or solver iterations per second

§ Need to optimize for kernels of 20us and less runtime

§ MiniEM: >3000 Kernel calls per solve => 30k/s to achieve 10 solves/s

§ Underlying Programming Models have limits

§ CUDA launch latency 3us (Skylake) to 8us (Power9)
§ Kokkos has additional overhead

§ OpenMP max loop rate about 1us/per loop

§ Allocation rate limited

§ CUDA UVM allocation takes up to 200us!

Approaches to Address This
§ More asynchronous execution to hide launch latency

§ No API change, improve implementation (i.e. limit fences etc.)
§ May need hints from user to use latency instead of throughput opt path

§ Fine Grained Tasking Interface
§ Potentially write big kernels with inner dependencies via tasking

§ Execution Space Instances
§ First step support CUDA streams

§ Fuse Kernels
§ Real fusion is user level, but maybe help with interfaces

§ Kernel Graph Abstraction
§ Exploit CUDA graphs for now

§ Coarse Grained Tasking

Asynchronicity Semantics
§ ParallelReduce/Scan

double result;
// parallel_for is always Synchronous
parallel_for("AsynchronousFor",N,F);
// parallel_reduce with Scalar as result is Synchronous
parallel_reduce("SynchronousSum",N,Fr,result);
// parallel_reduce with Reducer constructed from scalar is synchronous
parallel_reduce("SynchronousMax",N,Fr,Max<double>(result));
// parallel_reduce with any type of View as result is asynchronous
Kokkos::View<double,CudaHostPinnedSpace> result_v("R");
parallel_reduce("AsynchronousSum",N,Fr,result_v);
// Even with unmanaged view, and wrapped into Reducer
Kokkos::View<double,HostSpace> result_hv(&result);
parallel_reduce("AsynchronousMax",N,Fr,Max<double>(result_hv));
// Scans without total result argument are asynchronous
parallel_scan("AsynchronousScan",N,Fs);
// Scans with total result argument same rules as parallel_reduce
parallel_scan("SynchronousScanTotal",N,Fs,result); 0

5
10
15
20
25
30
35
40
45
50

Ti
m

e
in

 u
s

Scalar View

2 Dot Products
CUDA N=100k

Rule of Thumb: Everything is asynchronous unless reducing into a
scalar value!

Improved Fine Grained Tasking
§ Generalization of TaskScheduler abstraction to allow user to

be generic with respect to scheduling strategy and queue
§ Implementation of new queues and scheduling strategies:

§ Single shared LIFO Queue (this was the old implementation)
§ Multiple shared LIFO Queues with LIFO work stealing
§ Chase-Lev minimal contention LIFO with tail (FIFO) stealing
§ Potentially more

§ Reorganization of Task, Future, TaskQueue data structures to
accommodate flexible requirements from the TaskScheduler
§ For instance, some scheduling strategies require additional

storage in the Task 0

1

2

3

4

5

6

7

M
ill

io
n

Ta
sk

s
pe

r S
ec

on
d

Fibonacci 30 (V100)

Old Single Queue New Single Queue

Multi Queue Chase-Leve MQ
Questions: David Hollman

Tasking Example Code
template< typename Scheduler >
struct FibonacciTask {
using sched_type = Scheduler;
using future_type = BasicFuture< long, Scheduler >;
future_type fib_m1, fib_m2;
const long n;

KOKKOS_INLINE_FUNCTION
TestFib(const value_type arg_n)
: fib_m1(), fib_m2(), n(arg_n) {}

KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type & member, value_type & result) {
auto& sched = member.scheduler();
if (n < 2) { result = n; }
else if (!fib_m2.is_null() && !fib_m1.is_null()) { result = fib_m1.get() + fib_m2.get(); }
else {
fib_m2 = task_spawn(TaskSingle(sched, TaskPriority::High), FibonacciTask(n - 2));
fib_m1 = task_spawn(TaskSingle(sched), FibonacciTask(n - 1));

BasicFuture<void, Scheduler> dep[] = { fib_m1, fib_m2 };
BasicFuture<void, Scheduler> fib_all = sched.when_all(dep, 2);

if (!fib_m2.is_null() && !fib_m1.is_null() && !fib_all.is_null()) {
respawn(this, fib_all, TaskPriority::High);

} else { Kokkos::abort("TestFib insufficient memory"); }
}

}

Scheduler obtained from arguments: task could be a lambda

Spawn child tasks

Make compound dependency

Respawn task with new deps

If dependencies are not NULL this is respawn

CUDA Stream Interop
§ Initial step to full coarse grained tasking

§ Discuss in more detail in future directions
§ For now: make Kokkos dispatch use user CUDA streams

§ Allows for overlapping kernels: best for large work per iteration, low count

// Create two Cuda instances from streams
cudaStream_t stream1,stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
Kokkos::Cuda cuda1(stream1), cuda2(stream2);

// Run two kernels which can overlap
parallel_for("F1",RangePolicy<Kokkos::Cuda>(cuda1,N),F1);
parallel_for("F2",RangePolicy<Kokkos::Cuda>(cuda2,N),F2);
fence();

CUDA Graphs
Host Launch 3-10us

Device Grid Setup 1us

Compute Kernel

Launch 3 Kernels

CUDA graphs: launch multiple kernels as one

§ CUDA has interface to record Kernel launches, and then dispatch in bulk
§ Can resolve dependencies according to streams

// Start by initating stream capture
cudaStreamBeginCapture(stream1);
// Build stream work as usual A<<< ..., stream1 >>>();
cudaEventRecord(e1, stream1); B<<< ..., stream1 >>>();
cudaStreamWaitEvent(stream2, e1); C<<< ..., stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(stream1, e2); D<<< ..., stream1 >>>();
// Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);

cudaGraphInstantiate(&instance, graph);
// Launch executable graph 100 times
for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

Kokkos Options To Leverage Graphs
§ InterOp option: make the CUDA API capture Kokkos parallel_for etc. correct
§ Capture in a coarse grained scope:

§ Problem: what if I want an MPI call in this loop?

Kokkos::View<double> reduce_result("red");
auto graph = Kokkos::capture_kernel_graph([=] () {

Kokkos::parallel_for("A",N,KOKKOS_LAMBDA(const int i) {...});
Kokkos::parallel_reduce("A",N,

KOKKOS_LAMBDA(const int i, double& r) {...},reduce_result);
Kokkos::parallel_for("A",N,KOKKOS_LAMBDA(const int i) {

double r = reduce_result();
...

});
});

for(int i=0;i<10;i++) {
Kokkos::execute_graph(graph);
graph.fence();

}

0

100

200

300

400

500

600

X86

Pow
er

Pow
er

+C
LB

T
im

e
(u

s)

3 Kernels 10
ReExecutes

Raw CUDA Graph

Coarse Grained Tasking
§ Somewhat awkward to capture the whole region
§ Expressing dependencies indirectly just via ExecSpace instances is suboptimal

§ Make parallel dispatch return ”futures” and execution policies consume
dependencies instead

§ Could build graph under the hood and submit upon fence?
§ What about eager execution?
§ Insert MPI via host_spawn?

auto fut_1 = parallel_for(RangePolicy<>(“Funct1”, 0, N), f1);
auto fut_2a = parallel_for(RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);
auto fut_2b = parallel_for(RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);
auto fut_3 = parallel_for(RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);

f1

f2a f2b

f3

Kokkos Remote Spaces: PGAS Support
§ PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of “super-node” architectures
§ Example DGX2

§ First “super-node”

§ 300GB/s per GPU link

§ Idea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View
§ View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

§ Operator a(i,j,k) returns:

V100 V100 V100 V100

V100 V100 V100 V100

N
VS

w
itc

h V100V100V100V100

V100V100V100V100

N
VS

w
itc

h

template<>
struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}
int pe; double* ptr;
void operator = (double val) { shmem_double_p(ptr,val,pe); }

};

PGAS Performance Evaluation: miniFE

0

1000

2000

3000

4000

5000

6000

100^3 200^3 400^3

Th
ro

ug
hp

ut

CGSolve Performance

MPI SHMEM
SHMEM-Inline SHMEM-Index

§ Test Problem: CG-Solve
§ Using the miniFE problem N^3
§ Compare to optimized CUDA
§ MPI version is using overlapping
§ DGX2 4 GPU workstation
§ Dominated by SpMV (Sparse Matrix

Vector Multiply)
§ Make Vector distributed, and store

global indicies in Matrix
§ 3 Variants

§ Full use of SHMEM
§ Inline functions by ptr mapping

§ Store 16 pointers in the View
§ Explicit by-rank indexing

§ Make vector 2D
§ Encode rank in column index

Warning: I don’t think this is a viable thing in the next
couple years for most of our apps!!

Aligning Kokkos with the C++ Standard
§ Long term goal: move capabilities from Kokkos into the ISO standard

§ Concentrate on facilities we really need to optimize with compiler

Kokkos

C++ Standard

C++ Backport

Kokkos Legacy

Propose for C++

Back port to compilers we got

Move accepted features
to legacy support

Implemented legacy
capabilities in terms of
new C++ features

C++ Atomic Ref
§ atomic_ref<T> in C++20

§ Provides atomics with all capabilities of atomics in Kokkos
§ Atomic ops on “POD” types with operators

§ Wrap non-atomic object

§ atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

C++ MDSpan
§ Provides customization points which allow all things we can do with Kokkos::View
§ Better design of internals though! => Easier to write custom layouts. J
§ Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks J
§ More verbose interface though L
§ We hope will land early in the cycle for C++23 (i.e. early in 2020)
§ 4 Template Parameters

§ Scalar Type
§ Extents -> rank and compile timensions
§ Layout
§ Accessor -> return type of operator, storage handle, and access function

View<int**[5],LayoutLeft,MemoryTraits<Atomic>>
=
basic_mdspan<int,extents<dynamic_extent,dynamic_extent,5>,layout_left,accessor_atomic<int>>

C++ MDSpan

§ How to get MemorySpaces?

§ accessor_memspace<int,CudaSpace>

§ mdspan is non-owning?

§ Derive Kokkos View from MDSpan

§ store the extra reference count handle

§ Provide allocating constructors

§ Or: use accessor with shared_ptr as data handle …

§ What about subviews?

§ subspan is part of the proposal

§ https://github.com/ORNL/cpp-proposals-pub/tree/master/P0009

https://github.com/ORNL/cpp-proposals-pub/tree/master/P0009

C++ BLAS
§ Sandia leads a proposal supported by various parties (including Intel, NVIDIA,

AMD and ARM)
§ Goals: scalar agnostic, layout aware, support parallelism
§ Approach:

§ Mdspan (and mdarray) as arguments
§ Model after C++ parallel algorithms

// y = 3.0 * A * x;
matrix_vector_product(par, scaled_view(3.0, A), x, y);
// y = 3.0 * A * x + 2.0 * y;
matrix_vector_product(par, scaled_view(3.0, A), x, scaled_view(2.0, y), y);
// y = transpose(A) * x;
matrix_vector_product(par, transpose_view(A), x, y);

How To Expose Special Function Units?

§ Easy to use for applications
§ Connect with memory info

§ Is the data accessible and the correct layout?
§ KokkosKernels has interface with all necessary information

§ Matrix in main GPU memory
§ RHS vector created on the fly in scratch memory
§ LHS vector in Host accessible memory

Libraries!

View<double**,CudaSpace> A = /*...*/;
View<double*,CudaHostPinnedSpace> y = /*...*/;
View<double*,Cuda::scratch_memory_space> x = /*...*/;
gemv(y,A,x); /* Execute in Cuda Space since it can access all data. */

Key Things to Help Compilers/Runtimes
§ Encode information at compile time (as part of the type system)

§ Where does data life.
§ How do you access it.
§ Properties of algorithms.

§ Be descriptive – not prescriptive
§ Say what you want to happen and give properties (see above)
§ Let the compiler/runtime figure out how to use that info

§ Provide graceful fallbacks and defaults
§ Make it possible to provide incrementally more information

That’s Great But I Don’t Trust TPLs
§ Good News! We are working on contributing to the C++ standard!

§ Executors for heterogeneous environements (C++23)

§ Control where and how stuff executes

§ Property mechanism to provide more information

§ Hierarchical executors for supporting hierarchical hardware (C++26)

§ MDSpan for multi-dimensional arrays with accessors (C++23)

§ Templated on scalar, extents, layout and accessor

§ Extent accessors to provide typesafe info about storage place

§ BLAS support in the works: allows SpMV or GEMM accelerator support (C++23)

basic_mdspan<double,extents<dynamic_extent,8>,layout_left,basic_accessor<double>>

basic_mdspan<double,extents<8,4>,layout_right,memspace_accessor<double,HBM>>

Summary
§ Production Quality: Extensive Testing and wide usage enables good user

experience
§ Multi-Institution Developer Team: 4 National Labs + Swiss National

Supercomputing Center support Kokkos directly
§ Growing Userbase: More than 100 projects using Kokkos, many codes

available online
§ Not just the Programming Model: Tools and math library integration provide

the basis for complex projects

