
exascaleproject.org

Introduction to Darshan:
What to do when you aren’t sure what to do

ATPESC 2019

Phil Carns
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
July 28 – August 9, 2019

 2 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Understanding I/O problems in your application

Example questions:

– How much of your run time is spent reading and writing files?

– Does it get better, worse, or the same as you scale up?

– Does it get better, worse, or the same across platforms?

– How should you prioritize I/O tuning for the most impact?

We recommend using a tool called Darshan
as a starting point.

This presentation is a introduction; we’ll see more
detailed examples of Darshan in action later in the day.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 3 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

What is Darshan?

Darshan is a scalable HPC I/O characterization tool. It captures a concise

picture of application I/O behavior with minimal overhead.

• Widely available

– Deployed at most large supercomputing sites

– Including all of the DOE Office of Science facilities that we use for ATPESC training

• Easy to use

– No changes to code or development process

– Negligible performance impact: just “leave it on”

• Produces a summary of I/O activity for every job

– This is a great starting point for understanding your application’s data usage

– Includes histograms, timers, counters, etc.

3

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 4 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

How does Darshan work?

Darshan is primarily intended for MPI applications.* It inserts lightweight
instrumentation when your program is compiled (for static executables) or when
your program is executed (for dynamic executables).

• Records statistics about file accesses

– These statistics are stored independently in bounded, compact memory at each rank

• Aggregates statistics when the application exits

– Collect, filter, compress and write one summary file for the job

• The results are left in a log file that you can inspect with command line tools

– Usually start by generating a summary PDF that plots metrics of interest

* More on this later

4

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 5 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Using Darshan on Theta: make sure the software is loaded

These steps are similar on other platforms; check your site documentation!

Use “module list” to see a
list of software loaded in
your environment.

Darshan is probably
already loaded by default.

If not, just run
“module load darshan”
to get it.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 6 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Using Darshan on Theta: instrument your code

Compile and run
your application!

That’s all there is to it; Darshan does the rest.*

* Well, Ok, one caveat: your application must call
MPI_Finalize() (or your programming language’s
equivalent) to produce a Darshan log.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 7 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Using Darshan on Theta: find your log file
All Darshan logs are
placed in a central
location. This is the path
on Theta. Check your
site documentation!

Go to subdirectory for the
year / month / day your job
executed.

Be aware of time zone (or
just check adjacent days)!
Theta, for example, uses
the GMT time zone and
will roll over to the next
day at 7pm local time.

File name includes your
username, binary name,
and job ID.

Find the one you want,
and copy it somewhere to analyze.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 8 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Using Darshan on Theta: generate summary
On Theta you need to load
the “texlive” module. This
isn’t necessary on other
systems. It’s also not
necessary in the hands-on
examples if you run the
setup script in the
instructions.

Use darshan-job-summary.pl
to process your log.

It will show a few simple
metrics on the command
line (I/O time and bytes
accessed).

The main result is a PDF file
that summarizes your I/O.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 9 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

 Job analysis example

 The summary PDF contains a few pages of graphs and

charts.

 The first page looks like this.

 We’ll highlight some key sections in the next slides.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 10 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

 Job analysis example

The header shows basic information about your job:

 Executable name and date

 Job ID, User ID, number of MPI processes, total execution time

The next lines show an estimate of your I/O performance. It might display one or more of:

 MPI-IO performance (we’ll learn more about this later)

 POSIX performance (open/close/read/write)

 STDIO performance (fopen/fclose/fread/fwrite)

NOTE: STDIO performance
appears low, but that’s
because it didn’t transfer
enough data to sustain
throughput. In this case this
I/O was access to a
configuration file.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 11 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

 Job analysis example

The first graph shows the percentage of
execution time that was spent performing I/O.

If the percentage is low, then maybe I/O
shouldn’t be your top priority for optimization?

The second graph shows how many
times various I/O functions were
called.

Too many opens or stats could be a
warning sign.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 12 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

 Job analysis example

A histogram indicates the distribution of access
sizes.

Recall from introduction: if you see many small
reads or writes (big spikes on the left hand
side), then you are probably not taking
advantages of the file system’s strongest
assets.

A table indicates file counts and sizes for a few
different categories of files opened by your
application.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 13 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

13

A “timespan” graph on the 2nd page shows the

periods of time when the application was reading or

writing.

Remember to contact your site’s support team for help! The Darshan

summary can be a good discussion starter if you aren’t sure what’s happening in

your job or how to improve it..

There are additional graphs in the PDF file with increasingly detailed information

not shown here. You can also dump all data from the log in human-readable text

format using “darshan-parser”.

 Job analysis example

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 14 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Darshan: tips and tricks

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 15 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

What if you are doing shared-file IO?

15

 Your timeline might look like this.

 No per-process information available because the

data was aggregated by Darshan to save

space/overhead.

 It is shown as just one line for “all processes” in

bottom graph.

 Does this matter? The level of detail that you need

depends on what you want to learn about your

application.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 16 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

What if you are doing shared-file IO?

16

 You can optionally set an environment variable in your

job, DARSHAN_DISABLE_SHARED_REDUCTION,

that tells Darshan not to summarize shared file

access.

 Every rank will report it’s own timespans.

 This increases overhead and log size, but can be very

helpful in some cases.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 17 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Detailed trace data

17

 What if that still isn’t enough detail? You can also capture a full trace with

timestamp, offset, and size of every I/O operation on every rank.

 Set the DXT_ENABLE_IO_TRACE environment variable in your job to

enable this feature.

 This causes additional overhead and larger files, but captures precise

access data.

You can dump the trace information with “darshan-dxt-parser.”

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 18 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Detailed trace data

18

 You can also plot trace data using

“dxt_analyzer.py”.

 Example on the left:

– Looks similar to the timespan plots that you

already get in the normal Darshan summary.

– But it plots every individual operation

precisely, rather than just showing ranges of

times that each process was performing I/O.

– Closer inspection of the log can identify

exactly when and where problematic access

patterns were issued.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 19 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Darshan: a recap

• We’ve gone through a lot of Darshan usage tips.

– Probably more detail than you wanted – whoops!

– The important thing is to remember the possibilities; you can refer back to these slides later
for details.

• Key takeaways:

– Tools are available to help you understand how your application accesses data.

– The simplest starting point is Darshan.

– It’s likely already instrumenting your application, or can quickly be made to do so.

– Refer to documentation and site support for help interpreting.

19

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 20 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Darshan: the future

• Darshan is actively supported and updated.

• What can you expect in the future?

– Support for new HPC systems as they are deployed

– Support for more kinds of applications (not just MPI)

– Ability to collect data from applications that crash before MPI_Finalize()

20

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 21 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Darshan hands on exercises

• The hands on exercises include 3 Darshan examples that you can try tonight or
as time permits during the day:

– helloworld: a simple application that you can run to test out the Darshan toolchain.

– warpdrive and fidgetspinner: applications with A and B versions that you can compare to
spot the performance differences (and their cause).

The warpdrive and fidgetspinner examples will be easier to understand after seeing some of
the later presentations that include details about MPI-IO and performance tuning.

Check with the instructors to share what you find!

21

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

exascaleproject.org

Thank you!

