
exascaleproject.org

I/O Architectures and Technology

ATPESC 2019

Glenn K. Lockwood
National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

Q Center, St. Charles, IL (USA)
July 28 – August 9, 2019



2 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

The Archetypal Parallel Storage System
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• I/O Nodes
– I/O forwarding (CIOD, DVS, LNet)
– May provide buffering/caching

• Storage Fabric
– Carries file system or block protocols
– InfiniBand, Ethernet, Fibre Channel
– NFS, NSD, LNet; SCSI, NVMe

• Storage Nodes
– Converts file system protocols to 

block protocols
– Moderates permissions, file layout
– Lustre OSSes, GPFS NSD servers

• Storage Arrays
– Adds parity to data (RAID)
– Makes many small drives (HDDs) look 

like one big drive (LUN)
– DDN SFA, NetApp E-series

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Systems are very different, but the APIs you use shouldn't be

• Understanding performance is easier when you know what's behind the API

• What really happens when you read or write some data?
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https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Systems are very different, but the APIs you use shouldn't be

• You are the master of this

• Rob and Quincey presented PnetCDF
and HDF5

• Rob presented MPI-IO

• Burst buffers and I/O forwarders: 
hardware-assisted transformation

• Parallel file systems:
architectural performance quirks

• Storage hardware:
– HDD performance quirks

– SSD performance quirks

– Parity's impact on performance
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Parallel File Systems

Cray Sonexion 2000 (ClusterStor 9000)
248 Lustre OSSes / 10,168 4TB HDDs / 30 PB / 700 GB/sec
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Parallel file systems in principle

File system that spreads files across multiple servers (∴ many NICs and drives)

1 MiB 1 MiB 1 MiB 1 MiB

4 MiB file

server0 server1 server2 server3

1 MiB 1 MiB 1 MiB 1 MiB

You and your application 
see one big file

PFS driver on your 
compute nodes see a 
collection of chunks

PFS servers see 
individual chunks

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Parallel performance advantages of parallel file systems

• Nodes and servers
can read/write
concurrently

• Avoid having to send 
all data to rank0

server0 server1 server2 server3

chunk0 chunk1 chunk2 chunk3

node0 node1 node2 node3

chunk0 chunk1 chunk2 chunk3

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Scalability advantages of parallel file systems

• Typically scale
compute faster than
storage

• Parallel I/O required 
to scale out to 
extreme node counts 
and memory sizes

server0 server1 server2 server3

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 5 6 7 8 9 10 11 12 13 1415

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Key features
• Metadata and data handled by separate 

servers ("metadata servers" "object storage 
servers")

• One file can be striped across many 
"object storage targets"
– You choose stripe width(s) and size
– Striping can vary between files

• Optimized for bandwidth
– Small, random I/Os do not work well
– High metadata rates (opens, unlinks) suffer

• 1 MiB is optimal minimum I/O size
– lfs getstripe – interrogate striping of a file
– lfs setstripe -c – set the striping of a file

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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IBM Spectrum Scale

DVS
CIOD

DVS
CIOD

DVS
CIOD

DVS
CIOD
DVS
CIOD

Key features
• Data and metadata can be combined

– LUNs can store data or metadata
– NSD servers can serve data LUNs and/or 

metadata LUNs

• One file's blocks are striped across 
many data LUNs
– You cannot choose block size
– You cannot choose where blocks land

• Fully distributed architecture
– Many design options; few generic tips
– Avoid using many files in a single directory

• 4 MiB often optimal minimum I/O size

RAID
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Clustered NFS (Isilon, NetApp, etc)
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Key features
• Highly localized: each server manages 

its own data and metadata
• File access is serial

– One file = one server = one data path
– Accessing file from a server that doesn't 

"own" that file triggers a back-end data 
transfer

• Optimized for convenience
– NFS protocol is ubiquitous
– Can corrupt data on parallel file access!

• Some design tricks can make this 
perform very fast

NFS
Server

NFS
Server

NFS
Server

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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I/O Hardware

Seagate Exos E 4U106
106x14 TB SAS JBOD

Mellanox SX6536
648-port FDR InfiniBand Switch
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Hard Drives
• Mechanics

– Platters spin at 7.2K or 10K RPM
– One spindle, one actuator
– Polarity of magnetic grains + run-length 

limited coding to encode bits
– Magnetic read/write heads fly ~3 nm 

above platter surface

• Performance
– Repositioning (random I/O) takes a 

"long" time (vs. sequential I/O)
– Sequential bandwidth ∝ √areal density

• Bit density not increasing quickly anymore 

• add platters instead

– IOPS not going up at all
• short stroke

• 2nd actuator

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Solid-state drives
• Mechanics

– Trap electrons inside a cell surrounded by 
insulator

– SSD ∋ chips ∋ dies ∋ planes ∋ blocks ∋ pages –
highly parallel internals

– Programs in pages (2K-8K) but erase in blocks 
(128K – 2M)

– FTL constantly repacks/recycles blocks

• Performance
– Reduce GC for best performance

• Align or buffer small I/Os

• Big I/Os are still better than small

• Write cliff and jitter are inevitable

– Deep queues required to fill all parallel channels

• issue I/O from multiple threads

• more CPU often needed to drive I/O

Park et al. IEEE Journal of Solid-state 
Circuits 50 [1] pp204-213.  2015.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Redundant Array of Independent Disks (RAID)

* Not true since XOR is associative + commutative; can do (old block ^ new block ^ old parity) (thanks Phil!)
https://github.com/glennklockwood/io-algorithms/blob/master/raid.py

• Mechanics
– Split data into a stripe composed of N blocks

– XOR each block and store result on N+1 
parity block

– If a block is lost, XOR remaining blocks and 
parity to recover lost block

• Performance
– Aligning writes to stripes is critical –

otherwise, a partial-stripe write causes

• a read (whole stripe*)

• a modify (update stripe and calculate new 
parity)

• a write (new data + new parity)

– Replication used when IOPS are critical

– Involved in many perf issues in practice

• Rebuilding a failed disk slows down parallel I/O

• Parity checks on read slow down all I/O

1 ^ 0 ^ 1 ^ 1 ^ 1 ^ 0 ^ 1 = 1

1 ^ 0 ^ 1 ^ 1 ^ 1 ^ 1 ^ 1 = 0

1 0 1 1 1 0 1 1
Healthy

1 0 1 1 1 1 1
Unhealthy

1 0 1 1 1 0 1 1
Rebuilt

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Hardware-assisted transformation:
Burst buffer architectures

Samsung PM1725a NVMe SSD
Source: Samsung
https://news.samsung.com/medialibrary/global/photo/12105?album=27

NERSC Cori / Cray XC-30
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Motivation for Burst Buffers

Tape Hard disk drive Solid-state drive
Sequential reads and writes 360 MB/sec 250 MB/sec 3,000 MB/sec

Random reads and writes O(10-3) ops/sec O(102) ops/sec O(106) ops/sec

Internal concurrency O(1) O(10) O(100)

Cost (2019) O($10/TB) O($30/TB) O($100/TB)

Performance sources:
• IBM TS1155 data sheet

(https://www.ibm.com/downloads/cas/AZGD8GMB)
• Seagate ST14000NM0048 data sheet

(https://www.seagate.com/www-content/datasheets/pdfs/exos-x-14-channel-DS1974-4-1812US-en_US.pdf)
• Samsung 983DCT data sheet 

(https://www.samsung.com/semiconductor/global.semi.static/Data_Center_SSD_983_DCT.Product_Brief.pdf)

• SSDs are better for performance

• HDDs are better for capacity

• Use a little flash and a lot of disk to get the best of both worlds

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://www.ibm.com/downloads/cas/AZGD8GMB
https://www.seagate.com/www-content/datasheets/pdfs/exos-x-14-channel-DS1974-4-1812US-en_US.pdf
https://www.samsung.com/semiconductor/global.semi.static/Data_Center_SSD_983_DCT.Product_Brief.pdf
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Burst buffers in practice

• Burst buffers come in two use 
modes
1. explicit – separate namespace
2. transparent – looks like the regular 

parallel file system but performs like 
all-flash

• Burst buffer resources are 
scheduled
– request burst buffer in job script
– data does not always remain after job 

completes
– provide explicit, non-standard 

controls for staging data
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Explicit burst buffers in practice: Slurm and DataWarp example
19

#!/bin/bash
#SBATCH –p regular
#SBATCH –N 10
#SBATCH –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/my/inputs destination=$DW_JOB_STRIPED/inputs type=directory
#DW stage_in source=/lustre/my/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs type=directory

srun myapp.x --indir=$DW_JOB_STRIPED/inputs \
--infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

“scratch” means explicit 
namespace

Want 1 TB of capacity 
(and proportional 
performance)

Files/directories to be staged 
into flash before job is started

Files/directories to be staged from flash 
back to Lustre after job completes

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Caching burst buffers in practice: Slurm and DataWarp example
20

#!/bin/bash
#SBATCH –p regular
#SBATCH –N 10
#SBATCH –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=cache pfs=/lustre/my

srun myapp.x --indir=$DW_JOB_STRIPED_CACHE/inputs \
--infile=$DW_JOB_STRIPED_CACHE/file.dat \
--outdir=$DW_JOB_STRIPED_CACHE/outputs

cf. "scratch" in previous 
example

Want 1 TB of capacity 
(and proportional 
performance)

Directory to be mirrored into 
burst buffer

Inputs are read into flash on demand; 
outputs are flushed to Lustre on demand

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Staging data in and out

Explicit Mode
• Get your own private namespace

• Exceeding capacity request causes ENOSPC

• Explicitly define "hot" data to be available on 
flash before job starts

• Explicitly define data worth staging back to 
PFS after job completion

• If you don't mind managing your own staging 
for best performance

Caching Mode
• Looks like the regular PFS

• Exceeding capacity request causes stage out

• First read always comes from PFS

• All undeleted data is automatically staged out 
after job completion

• If you want better performance with minimal 
effort

Expert users can explicitly manage data staging in both cases
Both modes change data consistency behavior!

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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#!/usr/bin/env bash

#SBATCH -N 2 -n 128 -C knl -t 30:00 --qos debug

#DW jobdw pfs=/global/cscratch1/sd/glock \

#DW     capacity=80GB access_mode=striped pool=wlm_pool type=cache

IOR="$SLURM_SUBMIT_DIR/ior -a POSIX -t 1M -b 1M -s 256 -e -C –k"

PFS_FILE="$SCRATCH/testdir/lustre.testfile" # $SCRATCH is predefined at NERSC

CACHE_FILE="$DW_JOB_STRIPED_CACHE/testdir/dw.testfile"

srun $IOR -o "$PFS_FILE" -w

stat "$PFS_FILE"

srun $IOR -o "$PFS_FILE" -r

srun $IOR -o "$CACHE_FILE" -w

stat "$(dirname $PFS_FILE)/$(basename $CACHE_FILE)"

stat "$CACHE_FILE"

srun $IOR -o "$CACHE_FILE" -r

Write to Lustre:
1,212 MiB/sec

File size on Lustre:
34,359,738,368 bytes

Read from Lustre
2,963 MiB/sec

Write to DataWarp:
5,506 MiB/sec

File size on Lustre:
0 bytes!

File size on DataWarp:
34,359,738,368 bytes

Read from DataWarp
11,743 MiB/sec

Full script: https://github.com/glennklockwood/iolab/blob/master/dw_caching/dw_caching.sbatch

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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#!/usr/bin/env bash

#SBATCH -N 2 -n 128 -C knl -t 30:00 --qos debug

#DW jobdw pfs=/global/cscratch1/sd/glock \

#DW     capacity=80GB access_mode=striped pool=wlm_pool type=cache

IOR="$SLURM_SUBMIT_DIR/ior -a POSIX -t 1M -b 1M -s 256 -e -C –k"

PFS_FILE="$SCRATCH/testdir/lustre.testfile" # $SCRATCH is predefined at NERSC

CACHE_FILE="$DW_JOB_STRIPED_CACHE/testdir/dw.testfile"

srun $IOR -o "$PFS_FILE" -w

stat "$PFS_FILE"

srun $IOR -o "$PFS_FILE" -r

srun $IOR -o "$CACHE_FILE" -w

stat "$(dirname $PFS_FILE)/$(basename $CACHE_FILE)"

stat "$CACHE_FILE"

srun $IOR -o "$CACHE_FILE" -r

Burst buffer take-aways
• Performance is typically better
• Your data is not necessarily 

"just there"
• Be mindful of transparent 

caching (implicit data 
management)

• Explicit data management adds 
some complexity

Full script: https://github.com/glennklockwood/iolab/blob/master/dw_caching/dw_caching.sbatch

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Architecture and performance take-aways
• Systems are very different, but the APIs you use shouldn't be
• For POSIX I/O, underlying storage system architecture affects performance
• Big I/Os are generally better than small I/Os

– Full stripe (e.g., 1 MiB – 8 MiB) avoids read-modify-write due to parity

– Bigger can trigger more parallelism under the hood (good) or memory pressure (bad)

• Aligned I/Os are better than misaligned I/Os
– Avoid read-modify-write due to false sharing

– Avoid lock contention on parallel file systems

– Avoid excessive garbage collection in SSDs

• Use I/O middleware when possible
– MPI-IO understands stripe geometry and parallelism

– PnetCDF and HDF5 understand alignment

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
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Thank you!


