
exascaleproject.org

I/O Architectures and Technology

ATPESC 2019

Glenn K. Lockwood
National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

Q Center, St. Charles, IL (USA)
July 28 – August 9, 2019

2 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

The Archetypal Parallel Storage System

2

CN

CN

CN CN

CN CN

CN

CN

CN

CN CN

CN CN

CN CN

CN

CN

CN

CN

CN

ION

ION

SN
SN
SN
SN
SN
SN
SN
SN

ION

ION

ION St
or

ag
e

Fa
br

ic

• I/O Nodes
– I/O forwarding (CIOD, DVS, LNet)
– May provide buffering/caching

• Storage Fabric
– Carries file system or block protocols
– InfiniBand, Ethernet, Fibre Channel
– NFS, NSD, LNet; SCSI, NVMe

• Storage Nodes
– Converts file system protocols to

block protocols
– Moderates permissions, file layout
– Lustre OSSes, GPFS NSD servers

• Storage Arrays
– Adds parity to data (RAID)
– Makes many small drives (HDDs) look

like one big drive (LUN)
– DDN SFA, NetApp E-series

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

3 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Systems are very different, but the APIs you use shouldn't be

• Understanding performance is easier when you know what's behind the API

• What really happens when you read or write some data?

3

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

CN

CN

CN CN

CN CN

CN

CN

CN

CN CN

CN CN

CN CN

CN

CN

CN

CN

CN

ION

ION

SN
SN
SN
SN
SN
SN
SN
SN

ION

ION

ION St
or

ag
e

Fa
br

ic

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

4 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Systems are very different, but the APIs you use shouldn't be

• You are the master of this

• Rob and Quincey presented PnetCDF
and HDF5

• Rob presented MPI-IO

• Burst buffers and I/O forwarders:
hardware-assisted transformation

• Parallel file systems:
architectural performance quirks

• Storage hardware:
– HDD performance quirks

– SSD performance quirks

– Parity's impact on performance

4

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

exascaleproject.org

Parallel File Systems

Cray Sonexion 2000 (ClusterStor 9000)
248 Lustre OSSes / 10,168 4TB HDDs / 30 PB / 700 GB/sec

6 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Parallel file systems in principle

File system that spreads files across multiple servers (∴ many NICs and drives)

1 MiB 1 MiB 1 MiB 1 MiB

4 MiB file

server0 server1 server2 server3

1 MiB 1 MiB 1 MiB 1 MiB

You and your application
see one big file

PFS driver on your
compute nodes see a
collection of chunks

PFS servers see
individual chunks

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

7 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Parallel performance advantages of parallel file systems

• Nodes and servers
can read/write
concurrently

• Avoid having to send
all data to rank0

server0 server1 server2 server3

chunk0 chunk1 chunk2 chunk3

node0 node1 node2 node3

chunk0 chunk1 chunk2 chunk3

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

8 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Scalability advantages of parallel file systems

• Typically scale
compute faster than
storage

• Parallel I/O required
to scale out to
extreme node counts
and memory sizes

server0 server1 server2 server3

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 5 6 7 8 9 10 11 12 13 1415

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

9 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

MDS
MDS

OSS
OSS

OSS
OSS

OSS
OSS

Lustre

LNet

LNet

LNet

LNet

LNet St
or

ag
e

Fa
br

ic

Key features
• Metadata and data handled by separate

servers ("metadata servers" "object storage
servers")

• One file can be striped across many
"object storage targets"
– You choose stripe width(s) and size
– Striping can vary between files

• Optimized for bandwidth
– Small, random I/Os do not work well
– High metadata rates (opens, unlinks) suffer

• 1 MiB is optimal minimum I/O size
– lfs getstripe – interrogate striping of a file
– lfs setstripe -c – set the striping of a file

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

10 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

IBM Spectrum Scale

DVS
CIOD

DVS
CIOD

DVS
CIOD

DVS
CIOD
DVS
CIOD

Key features
• Data and metadata can be combined

– LUNs can store data or metadata
– NSD servers can serve data LUNs and/or

metadata LUNs

• One file's blocks are striped across
many data LUNs
– You cannot choose block size
– You cannot choose where blocks land

• Fully distributed architecture
– Many design options; few generic tips
– Avoid using many files in a single directory

• 4 MiB often optimal minimum I/O size

RAID
RAID

RAID
RAID

NSD
server

NSD
server

NSD
server

St
or

ag
e

Fa
br

ic

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

11 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Clustered NFS (Isilon, NetApp, etc)

St
or

ag
e

Fa
br

ic

Key features
• Highly localized: each server manages

its own data and metadata
• File access is serial

– One file = one server = one data path
– Accessing file from a server that doesn't

"own" that file triggers a back-end data
transfer

• Optimized for convenience
– NFS protocol is ubiquitous
– Can corrupt data on parallel file access!

• Some design tricks can make this
perform very fast

NFS
Server

NFS
Server

NFS
Server

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

exascaleproject.org

I/O Hardware

Seagate Exos E 4U106
106x14 TB SAS JBOD

Mellanox SX6536
648-port FDR InfiniBand Switch

13 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Hard Drives
• Mechanics

– Platters spin at 7.2K or 10K RPM
– One spindle, one actuator
– Polarity of magnetic grains + run-length

limited coding to encode bits
– Magnetic read/write heads fly ~3 nm

above platter surface

• Performance
– Repositioning (random I/O) takes a

"long" time (vs. sequential I/O)
– Sequential bandwidth ∝ √areal density

• Bit density not increasing quickly anymore

• add platters instead

– IOPS not going up at all
• short stroke

• 2nd actuator

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

14 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Solid-state drives
• Mechanics

– Trap electrons inside a cell surrounded by
insulator

– SSD ∋ chips ∋ dies ∋ planes ∋ blocks ∋ pages –
highly parallel internals

– Programs in pages (2K-8K) but erase in blocks
(128K – 2M)

– FTL constantly repacks/recycles blocks

• Performance
– Reduce GC for best performance

• Align or buffer small I/Os

• Big I/Os are still better than small

• Write cliff and jitter are inevitable

– Deep queues required to fill all parallel channels

• issue I/O from multiple threads

• more CPU often needed to drive I/O

Park et al. IEEE Journal of Solid-state
Circuits 50 [1] pp204-213. 2015.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

15 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Redundant Array of Independent Disks (RAID)

* Not true since XOR is associative + commutative; can do (old block ^ new block ^ old parity) (thanks Phil!)
https://github.com/glennklockwood/io-algorithms/blob/master/raid.py

• Mechanics
– Split data into a stripe composed of N blocks

– XOR each block and store result on N+1
parity block

– If a block is lost, XOR remaining blocks and
parity to recover lost block

• Performance
– Aligning writes to stripes is critical –

otherwise, a partial-stripe write causes

• a read (whole stripe*)

• a modify (update stripe and calculate new
parity)

• a write (new data + new parity)

– Replication used when IOPS are critical

– Involved in many perf issues in practice

• Rebuilding a failed disk slows down parallel I/O

• Parity checks on read slow down all I/O

1 ^ 0 ^ 1 ^ 1 ^ 1 ^ 0 ^ 1 = 1

1 ^ 0 ^ 1 ^ 1 ^ 1 ^ 1 ^ 1 = 0

1 0 1 1 1 0 1 1
Healthy

1 0 1 1 1 1 1
Unhealthy

1 0 1 1 1 0 1 1
Rebuilt

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

exascaleproject.org

Hardware-assisted transformation:
Burst buffer architectures

Samsung PM1725a NVMe SSD
Source: Samsung
https://news.samsung.com/medialibrary/global/photo/12105?album=27

NERSC Cori / Cray XC-30

17 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Motivation for Burst Buffers

Tape Hard disk drive Solid-state drive
Sequential reads and writes 360 MB/sec 250 MB/sec 3,000 MB/sec

Random reads and writes O(10-3) ops/sec O(102) ops/sec O(106) ops/sec

Internal concurrency O(1) O(10) O(100)

Cost (2019) O($10/TB) O($30/TB) O($100/TB)

Performance sources:
• IBM TS1155 data sheet

(https://www.ibm.com/downloads/cas/AZGD8GMB)
• Seagate ST14000NM0048 data sheet

(https://www.seagate.com/www-content/datasheets/pdfs/exos-x-14-channel-DS1974-4-1812US-en_US.pdf)
• Samsung 983DCT data sheet

(https://www.samsung.com/semiconductor/global.semi.static/Data_Center_SSD_983_DCT.Product_Brief.pdf)

• SSDs are better for performance

• HDDs are better for capacity

• Use a little flash and a lot of disk to get the best of both worlds

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://www.ibm.com/downloads/cas/AZGD8GMB
https://www.seagate.com/www-content/datasheets/pdfs/exos-x-14-channel-DS1974-4-1812US-en_US.pdf
https://www.samsung.com/semiconductor/global.semi.static/Data_Center_SSD_983_DCT.Product_Brief.pdf

18 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Burst buffers in practice

• Burst buffers come in two use
modes
1. explicit – separate namespace
2. transparent – looks like the regular

parallel file system but performs like
all-flash

• Burst buffer resources are
scheduled
– request burst buffer in job script
– data does not always remain after job

completes
– provide explicit, non-standard

controls for staging data

CN

CN

CN

CN CN

CN CN

CN CN

CN

CN

CN ION

SN
SN
SN
SN

ION

ION

St
or

ag
e

Fa
br

ic

BB BB BB BB

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

19 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Explicit burst buffers in practice: Slurm and DataWarp example
19

#!/bin/bash
#SBATCH –p regular
#SBATCH –N 10
#SBATCH –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/my/inputs destination=$DW_JOB_STRIPED/inputs type=directory
#DW stage_in source=/lustre/my/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs type=directory

srun myapp.x --indir=$DW_JOB_STRIPED/inputs \
--infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

“scratch” means explicit
namespace

Want 1 TB of capacity
(and proportional
performance)

Files/directories to be staged
into flash before job is started

Files/directories to be staged from flash
back to Lustre after job completes

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

20 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Caching burst buffers in practice: Slurm and DataWarp example
20

#!/bin/bash
#SBATCH –p regular
#SBATCH –N 10
#SBATCH –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=cache pfs=/lustre/my

srun myapp.x --indir=$DW_JOB_STRIPED_CACHE/inputs \
--infile=$DW_JOB_STRIPED_CACHE/file.dat \
--outdir=$DW_JOB_STRIPED_CACHE/outputs

cf. "scratch" in previous
example

Want 1 TB of capacity
(and proportional
performance)

Directory to be mirrored into
burst buffer

Inputs are read into flash on demand;
outputs are flushed to Lustre on demand

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

21 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Staging data in and out

Explicit Mode
• Get your own private namespace

• Exceeding capacity request causes ENOSPC

• Explicitly define "hot" data to be available on
flash before job starts

• Explicitly define data worth staging back to
PFS after job completion

• If you don't mind managing your own staging
for best performance

Caching Mode
• Looks like the regular PFS

• Exceeding capacity request causes stage out

• First read always comes from PFS

• All undeleted data is automatically staged out
after job completion

• If you want better performance with minimal
effort

Expert users can explicitly manage data staging in both cases
Both modes change data consistency behavior!

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

22 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

#!/usr/bin/env bash

#SBATCH -N 2 -n 128 -C knl -t 30:00 --qos debug

#DW jobdw pfs=/global/cscratch1/sd/glock \

#DW capacity=80GB access_mode=striped pool=wlm_pool type=cache

IOR="$SLURM_SUBMIT_DIR/ior -a POSIX -t 1M -b 1M -s 256 -e -C –k"

PFS_FILE="$SCRATCH/testdir/lustre.testfile" # $SCRATCH is predefined at NERSC

CACHE_FILE="$DW_JOB_STRIPED_CACHE/testdir/dw.testfile"

srun $IOR -o "$PFS_FILE" -w

stat "$PFS_FILE"

srun $IOR -o "$PFS_FILE" -r

srun $IOR -o "$CACHE_FILE" -w

stat "$(dirname $PFS_FILE)/$(basename $CACHE_FILE)"

stat "$CACHE_FILE"

srun $IOR -o "$CACHE_FILE" -r

Write to Lustre:
1,212 MiB/sec

File size on Lustre:
34,359,738,368 bytes

Read from Lustre
2,963 MiB/sec

Write to DataWarp:
5,506 MiB/sec

File size on Lustre:
0 bytes!

File size on DataWarp:
34,359,738,368 bytes

Read from DataWarp
11,743 MiB/sec

Full script: https://github.com/glennklockwood/iolab/blob/master/dw_caching/dw_caching.sbatch

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

23 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

#!/usr/bin/env bash

#SBATCH -N 2 -n 128 -C knl -t 30:00 --qos debug

#DW jobdw pfs=/global/cscratch1/sd/glock \

#DW capacity=80GB access_mode=striped pool=wlm_pool type=cache

IOR="$SLURM_SUBMIT_DIR/ior -a POSIX -t 1M -b 1M -s 256 -e -C –k"

PFS_FILE="$SCRATCH/testdir/lustre.testfile" # $SCRATCH is predefined at NERSC

CACHE_FILE="$DW_JOB_STRIPED_CACHE/testdir/dw.testfile"

srun $IOR -o "$PFS_FILE" -w

stat "$PFS_FILE"

srun $IOR -o "$PFS_FILE" -r

srun $IOR -o "$CACHE_FILE" -w

stat "$(dirname $PFS_FILE)/$(basename $CACHE_FILE)"

stat "$CACHE_FILE"

srun $IOR -o "$CACHE_FILE" -r

Burst buffer take-aways
• Performance is typically better
• Your data is not necessarily

"just there"
• Be mindful of transparent

caching (implicit data
management)

• Explicit data management adds
some complexity

Full script: https://github.com/glennklockwood/iolab/blob/master/dw_caching/dw_caching.sbatch

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

24 ATPESC 2019, July 28 – August 9, 2019

Hands on exercises: https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

ATPESC 2019, July 28 – August 9, 2019

Architecture and performance take-aways
• Systems are very different, but the APIs you use shouldn't be
• For POSIX I/O, underlying storage system architecture affects performance
• Big I/Os are generally better than small I/Os

– Full stripe (e.g., 1 MiB – 8 MiB) avoids read-modify-write due to parity

– Bigger can trigger more parallelism under the hood (good) or memory pressure (bad)

• Aligned I/Os are better than misaligned I/Os
– Avoid read-modify-write due to false sharing

– Avoid lock contention on parallel file systems

– Avoid excessive garbage collection in SSDs

• Use I/O middleware when possible
– MPI-IO understands stripe geometry and parallelism

– PnetCDF and HDF5 understand alignment

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

exascaleproject.org

Thank you!

