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<= Dense Linear Algebra

Common Operations

Ax=b; minllAx—->bll; Ax=Ax

A major source of large dense linear systems is problems involving the
solution of boundary integral equations.
* The price one pays for replacing three dimensions with two is that what started
as a sparse problem in O(n) variables is replaced by a dense problem in O"?).
Dense systems of linear equations are found in numerous other applications,
including:
* airplane wing design;
* radar cross-section studies;
* flow around ships and other off-shore constructions;
+ diffusion of solid bodies in a liquid;
* noise reduction; and
g/2/19 * diffusion of light through small particles;
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v Existing Math Software - Dense LA

DIRECT SOLVERS  [License Support Type Language Mode Dense Sparse Direct [(SCI:"::::C Eigscl:)l?i:uc Last release date
Real [Complex| L7 | C | C++ |Shared| Accel. | Dist SPD | SI | Gen |SPD | Gen | Sym | Gen

Chameleon CeCILL-C yes X X X X C M X 2018-09-15
DPLASMA BSD yes X X X X b M X 2014-04-14
Eigen MPL2 yes X X X X X X X X X 2018-07-23
Elemental New BSD yes X X X M X X X X 2017-02-06
ELPA LGPL yes X X F90 | X X M X 2018-06-01
FLENS BSD yes X X X X X 2014-05-11
LAPACK BSD yes X X X X X X 2017-11-12
LAPACK95 BSD yes X X X X X 2000-11-30
libflame New BSD yes X X X X X X 2014-03-18
MAGMA BSD yes X X X X X |COoX X X X X 2018-06-25
NAPACK BSD yes X X X X X X ?
PLAPACK LGPL yes X X X X M X 2007-06-12
PLASMA BSD yes X X X X X X 2018-09-04
ScalLAPACK BSD yes X X X X MP| X 2018-08-20
Trilinos/Pliris BSD yes X X X X M X 2015-05-07
ViennaCL MIT yes X X X |CoOX X X X X X 2016-01-20

http://www.netlib.org/utk/people/JackDonqgarra/la-sw.html

¢ LINPACK, EISPACK, LAPACK, ScalLAPACK
»>PLASMA, MAGMA

8/2/19


http://www.netlib.org/utk/people/JackDongarra/la-sw.html

- DLA Solvers

- We are interested in developing Dense Linear
Algebra Solvers

- Retool LAPACK and ScalLAPACK for multicore
and hybrid architectures

8/2/19



e 50 Years Evolving SW and Alg =
Tracking Hardware Developments |«

Software/Algorithms follow hardware evolution in time

EISPACK (1970's) == Rely on

(Translation of Algol to F66) %_'___ - Fortran, but row oriented

LINPACK (1980's) | 4mE Relyon

(Vector operations) L - Level-1 BLAS operations
S - Column oriented

F Rely on

LAPACK (1990's)
(Blocking, cache friendly)

......

- Level-3 BLAS operations

ScaLAPACK (2000's) Rely on

(Distributed Memory) - PBLAS Mess Passing
PLASMA (2010's) Rely on

New Algorithms - DAG/scheduler

(many-core friendly) - block data layout

- some extra kernels

SLATE (2020's) :H. , Rely on C++
EEuEEE - Tgsking DA(? scheduling
s - Tiling, but tiles can come from anywhere

- Batched Dispatch
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- What do you mean by performance?

¢ What is a xflop/s?
> xflop{js is a rate of execution, some number of floating point operations per
second.

> Whenever this term is used it will refer to 64 bit floating point operations and the
operations will be either addition or multiplication.

> Tflop/s refers to trillions (1012) of floating point operations per second and
> Pflop/s refers to 105 floating point operations per second.

¢ What is the theoretical peak performance?

> The theoretical peak is based not on an actual performance from a benchmark
run, but on a f?aper' computation to determine the theoretical peak rate of
execution of floating point operations for the machine.

> The theoretical Joeak performance is determined by counting the number of
floating-point additions and multiplications (in full precision) that can be
completed during a period of time, usually the cycle time of the machine.

> For example, an Intel Skylake processor at 2.1 GHz can comflete 32 floaﬁn%
point operations per cycle 19er' core or a theoretical peak performance of 67.
GFlop/s per core or 1.61 Tflop/s for the socket of 24 cores.
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»

e Peak Performance - Per Core
e FLOPs
Floating point operations per cycle per core FLOES = oores X dook %~ oydle
» Most of the recent computers have FMA (Fused multiple add):
(i.e. x —x + y*z in one cycle)
> Intel Xeon earlier models and AMD Opteron have SSE2
» 2 flops/cycle/core DP & 4 flops/cycle/core SP
> Intel Xeon Nehalem (2009) & Westmere (2010) have SSE4
> 4 flops/cycle/core DP & 8 flops/cycle/core SP
> Intel Xeon Sandy Bridge(2011) & Ivy Bridge (2012) have AVX
> 8 flops/cycle/core DP & 16 flops/cycle/core SP
> Intel Xeon Haswell (2013) & Broadwell (2014) AVX2
» 16 flops/cycle/core DP & 32 flops/cycle/core SP
> Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP
> Intel Xeon Skylake (server) & KNE-AVX-512- ‘l
» 32 flops/cycle/core DP & 64 flops/cycle/core SP SKYLAKE
We > Skylake w/24 cores & XeenPhi(Knight'sLanding)-w/68——ceres-

e ™ > Intel Xeon Cascade Lake, Kaby Lake, Coffee Lake,
» 32 flops/cycle/core DP & 64 flops/cycle/core SP



S i
Commodity Processors ...

Over provisioned for floating point operations
Today it's all about data movement

Memory Access Latencies in Clock Cycles

o o il ol 167 cycles to move a word from memory to a register

e In 167 cycles single core: 5344 DP Flops, socket: >40K Flops
o R Main memory o
e Ub to 20 MB cache L3 Cache Full Random access N 33

Integrated

|4 Balalelal

3.0
lanes *° L3 Cache In Page Random access [ 18
per socket

A M M A M

L3 Cache sequential access [l 14

EGCh Cor'e: 32 F|OpS pel" core / CYCIQ L2 Cache Full Random access [l 11
L2 Cache In Page Random access [l 11

L2 Cache sequential access M 11

WlTh 2°6 GHZ L1 Cache In Full Random access
EGCh Cor'e Peak DP 83.2 Gflop/s L1 Cache In Page Random access
EC(Ch Socke_‘_ Peak 665,6 Gflop/s L1 Cache sequential access

~* Need Cache Friendly Algorithms
.. Matrix Multiply and Data Reuse

0 50 100 150 200



Memory transfer

* One level of memory model on my laptop:

Cycle time = 2.3 GHz
Turbo Boost = 3.5 GHz

3.5 GHz*16 flops/cycle =
56 Gflop/s per core

56 GFLOP/sec/core x 2 cores

A

A
Cache

(6 MB)

25.6 GB/sec ]

Main memory

(16 GB)

( Omitting latency here. )

The model IS simplified (see next slide) but it provides an upper bound on
performance as well. l.e., we will never go faster than what the model predicts. (

8/2/19

And, of course, we can go slower ... )



FMA: fused multiply-add

AXPY: | all . U for (j=0;j<n;j++) n MUL
y[i] +=a * x[i]; n ADD
2n FLOP
(without increment) n FMA
o, ¢ —— BEGRN . ipha - 0er00; oL
for(j=0;j<n;j++) n ADD
alpha += X[l] * y[l]; 2n FLOP
n FMA
(without increment)

Note: It is reasonable to expect the one loop codes shown here to perform as well as
their Level 1 BLAS counterpart (on multicore with an OpenMP pragma for example).

The true gain these days with using the BLAS is (1) Level 3 BLAS, and (2) portability.



* Take two double precision vectors x and y of size n=375,000.
a <—

DOT:

* Data size:
— (375,000 double ) * ( 8 Bytes / double ) = 3 MBytes per vector

( Two vectors fit in cache (6 MBytes). OK.)

* Time to move the vectors from memory to cache:
— (6 MBytes ) / ( 25.6 GBytes/sec ) = 0.23 ms

* Time to perform computation of DOT:
— ( 2n flops ) / ( 56 Gflop/sec ) = 0.013 ms




Vector Operations

total_time > max ( time_comm, time_comp )
=max (0.23ms, 0.01lms ) =0.23ms

Performance for DOT < 3.2 Gflop/s
Peak is 56 Gflop/s

We say that the operation is communication
bounded. No reuse of data.




Level 1, 2 and 3 BLAS

Level 1 BLAS Matrix-Vector operations

— o ) y a — IR
AXPY: O‘I + I DOT: I

2n FLOPs

2n memory references
AXPY: 2n READ, n WRITE
DOT: 2n READ

RATIO Fl Pt Ops to Memory Ops: 1:1

Level 2 BLAS Matrix-Vector operations

GEMV: H a x 2n? FLOPs
nZ memory references
RATIO FI Pt Ops to Memory Ops: 2:1
Level 3 BLAS Matrix-Matrix operations

GEMM: I E .
C — o [UA +p @

2n3 FLOPs
3n2 memory references
3n2READ, n2 WRITE

RATIO Fl Pt Ops to Memory Ops: n:2



Double precision matrix A and vectors x and y of size n=860.

GEMV: K a o+ i
A
Data size:

— (8607 +2*860 double ) * ( 8 Bytes / double ) ~ 6 MBytes
Matrix and two vectors fit in cache (6 MBytes).

Time to move the data from memory to cache:
— (6 MBytes ) / ( 25.6 GBytes/sec ) = 0.23 ms

Time to perform computation of GEMV:
— (2n?flops ) / ( 56 Gflop/sec ) = 0.026 ms




Matrix - Vector Operations

total_time > max ( time_comm, time_comp )
=max ( 0.23ms, 0.026ms ) =0.23ms

Performance for GEMV < 6.4 Gflop/s

Peak is 56 Gflop/s

We say that the operation is communication
bounded. Very little reuse of data.




Take two double precision vectors x and y of size n=500.

GEMM: — +B
ﬂ
Data size:

— (5002 double ) * ( 8 Bytes / double ) = 2 MBytes per matrix
( Three matrices fit in cache (6 MBytes). OK.)

Time to move the matrices in cache:
— (6 MBytes ) / ( 25.6 GBytes/sec ) = 0.23 ms

Time to perform computation in GEMM:
— ( 2n3flops ) / ( 56 Gflop/sec ) = 4.5 ms



Matrix Matrix Operations

total_time = max ( time_comm , time_comp )
=max(0.23ms, 4.46ms ) = 4.46ms
For this example, communication time is less than 6% of the computation time.
Performance = (2 x 500 3 flops)/4.5ms = 55.5 Gflop/s

There is a lots of data reuse in a GEMM; 2/3n per data element. Has good
temporal locality.

If we assume total_time = time_comm +time_comp, we get
Performance for GEMM = 55.5 Gflop/sec

(Out of 56 Gflop/sec possible, so that would be 99% peak performance efficiency.)




Level 1, 2 and 3 BLAS
1 core Intel Haswell 17-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz);

Peak = 56 Gflop/s

60
—— — @
50
vy
S~
§ 40 =B—dgemm Level-3 BLAS
= =A=dgemv Level-2 BLAS
§ 30 =&-daxpy Level-1 BLAS
(5]
£
)
5 20
a.
10 ‘/ 34 Gflop/s |
o 4— ' —5% | é 1.6 Gflop/s
0 T T T T T

T T T T

0 500 1000 1500 2000 2500 3000
Matrix (Vector) Size N

T

3500 4000 4500 5000

1 core Intel Haswell i7-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz
6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.

The theoretical peak per core double precision is 56
Compiled with gcc and using Veclib

Gflop/s per core.

18



Level 1, 2 and 3 BLAS
18 cores Intel Xeon Gold 6140 (Skylake), 2.3 GHz, Peak DP = 1325 Gflop/s

C=C+A*B
1050 Gflop/s

dgemv BLAS Level 2
daxpy BLAS Level 1

1200
§dgemm BLAS Level 3

1000 -

Compute bound

800
§'600
= =y + A*
5 y=y+A*x
200 Ve
y= a*x+y

200
8 Gflop/s

Memory bound

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size (N), vector size (NxN)

18 cores Intel Xeon Gold 6140, 2.3 GHz (Skylake)

The theoretical peak double precision is 1325 Gflop/s
Compiled with icc and using Intel MKL 2018




Issues

 Reuse based on matrices that fit into cache.

 What if you have matrices bigger than cache?



Issues

 Reuse based on matrices that fit into cache.
* What if you have matrices bigger than cache?

 Break matrices into blocks or tiles that will fit.

—: A -BEE - B
ANE BoD

8/2/19
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LU Factorization in LINPACK (1970’s)

o
o
o
o
o
o
o
o
o
o
o
o
o
o
@

000000000000 00®

* Factor one column at a time
— i_amax and _scal
e Update each column of trailing matrix, one column at a time

22

vectorized or
Iti-threaded
— _axpy "BLAS
# Iﬁl
Level 1 BLAS soge i i
Bulk synchronous thread e I S
— Single main thread ' A
[RES=——— \‘\_"’A
— Parallel work in BLAS L L
—_— —

— “Fork-and-join” model



The Standard LU Factorization LAPACK
1980’s HPC of the Day: Cache Based SMP

00000
olelele]

00
o

0000000000
0000000000
0000000000
0000000000
0000000000

Factor panel of nv columns

— getf2, unblocked BLAS-2 code

Level 3 BLAS update block-row of U

— trsm

Level 3 BLAS update trailing matrix

— gemm

— Aimed at machines with cache hierarchy
Bulk synchronous
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<= Parallelism in LAPACK

¢+ Most flops in gemm update

. 2/3 ndterm

- Easily parallelized using
multi-threaded BLAS

« Done in any reasonable software

- Other operations lower order
+ Potentially expensive if not parallelized

24
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getf2 panel

I=|u(I)

laswp
swap rows

trsm solve
D -

gemm multiply

B R
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=" Last Generations of DLA Software

Software/Algorithms follow hardware evolution in time

LINPACK (70's) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80's) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScaLAPACK (90's) Rely on

(Distributed Memory) - PBLAS Mess Passing

2D Block Cyclic Layout
l Matrix point of view l Processor point of view

(o][2][4o][2][ol[2][s]
(t]s)[s [+ )(=](s |+ 1[=](s]

(o] Yo]~]

=]

[~]

]

=]

[~]

=]
R

a[ala]= olole|e|e

NS olo|o|o|o

salal= ololo|e|e
w o |w|w NS
w o |w|w NSNS
ww|w|w NN
oo oo INESESENES
oo oo INESESISES
oo oo INESESENES

@
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ScalLAPACK

Scalable Linear Algebra PACKage

Distributed memory

Message Passing
— Clusters of SMPs
— Supercomputers

Dense linear algebra

Modules
— PBLAS: Parallel BLAS
— BLACS: Basic Linear Algebra Communication Subprograms



Parallelism in ScaLAPACK

e Similar to LAPACK
* Bulk-synchronous processing

— separate message passing & compute

* Most flops in gemm update
— 2/3 n®term
— Can use sequential BLAS,
p X q =# cores

= # MPI processes,
num_threads =1

— Or multi-threaded BLAS,
p X g = # nodes
= # MPI processes,
num_threads = # cores/node

27

szEn e getf2 panel

T Il
i

1 1 1 11 1 E‘_ swap rows
A

| 11 111 i I\ -
R

B-



Today’s HPC Environment for Numerical Libraries

ORNL Summit, 200 Pflop/s, 4608 nodes
® (node= 2-Power9 chips + 6-Nvidia GPUs)
2.3 x 106 Cores

Highly parallel
— Distributed memory
— MPI + Open-MP programming model

Heterogeneous
— Commodity processors + GPU accelerators

Simple loop level parallelism too limiting in terms of performance

"\rllhretad Fork .~ - \\ Join %?r?g
Communication between parts very — |
expenSive Compar'ed 'l'o f? a"'”“g pOInT Ops llllllllll.lllll Serial Region | Parallel Region | Serial Region

[ o~

Comparison of operation counts may not reflect time to solution

A-O
. . . [ Type Size  [Range | u=27T
Floating point hardware at 64, 32, and 16 bit levels fome 10 27—t <10

double 64 bits  10*3%® 258~ 14 x 10718
quadruple | 128 bits  10*4%2 2113 £ 9.6 x 10-%




Tile Algorithms: Matrix Decomposition

LAPACK Algorithm (right looking) Tile Algorithm

D

=chol( )

I I/ktrsm

T TR



Track dependencies — Directed acyclic graph (DAG)

Fork-join schedule on 4 cores Reorder without
with artificial synchronizations synchronizations

G

Critical path
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Dataflow Based Des

Objectives
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< Merging DAGs

48 cores, matrix is 4000 x 4000, tile size is 200 x 200.

| ' Cholesky
E i ; T e | matrix inverse
Cholesky A = LL”T iy e (\
i p ] g el -
- - | R\

Invert L! }%;i:
3

Multiply A1=LTL!

time —
Total: 18(3t+6)

Assume a t by t matrix
tiling then Cholesky
Factorization alone: 3t-2

32 Total: 25(7t-3)



Standard for Batched Computations

Define standard API for batched BLAS and LAPACK in
collaboration with Intel/Nvidia/other users

Fixed size: most of BLAS and LAPACK released
Variable size: most of BLAS released

Variable size: LAPACK in the branch

Native GPU algorithms (Cholesky, LU, QR) in the branch

Tiled algorithm using batched routines on tile or LAPACK
data layout in the branch

Framework for Deep Neural Network kernels
CPU, KNL and GPU routines
FP16 routines in progress

Batched BLAS I

Factored part of A*
Factored part of A®
Factored part of A?
y atrix
_— Batched factorization
of a set of k£ matrices
Al AZ.., AF



Batched Computations

 Non-batched computation

 loop over the matrices one by one and compute using multithread (note that, since
matrices are of small sizes there is not enough work for all the cores). So we expect low
performance as well as threads contention might also affect the performance

for (1=0; i<batchcount; i++)
dgemm (...)

Low percentage of the work

resources is used




Batched Computations

 Batched computation

« Distribute all the matrices over the available resources by assigning a matrix to each

group of core/TB to operate on it independently
* |For very small matrices, assign a matrix/core (CPU) or per TB for GPU
* For medium size a matrix go to a team of cores (CPU) or many TB’s (GPU)
* For large size switch to multithreads classical 1 matrix per round.

Batched dgemm/(...) /m\




Batched Computations: How do we design and optimize

2000

68 cores Intel Xeon Phi KNL 7250, 1.3 GHz. DP peak is 2662 Gflop/s compiled with icc and using Intel MKL 2017

=©-Batched dgemn
1800 l=#¢=Standard dgemr

n BLAS 3
n BLAS 3

Small
sizes

1600

1400

1200

1000

Gflop/s

800

600

400

200

medium
sizes

large
si

Switch to non-batched

C=C+A*B

|
1000

50~1000 matrices of size

1800

| | |
2200 2500 3000
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Machine Learning in Computational Science

Many fields are beginning to adopt machine learning to augment modeling and simulation
methods

Climate
Biology

Drug Design
Epidemology
Materials
Cosmology
High-Energy Physics

= SOCIAL MEDIA TARGET *OMPUTT
ALGORITHMS DATA
DE E R VIO MINING
KD 'N ACHITECTURES
L - > G LEARNING
35 BUSINESS BRAND

{
L
!

#84517548

a S
=
4
=]
/3/// Afﬁfi/// A//éf
&
3
el ; =




Deep Learning Needs Small Matrix Operations

Matrix Multiply is the time consuming part. THIS 1S YOUR MACHINE LEARNING SYSTETM?
. : : . YUP! YOU POUR THE DATA INTO THIS BIG
Convolution Layers and Fully Connected Layers require matrix multipl PILE OF LINEAR ALGEBRA, THEN COLLECT
, _ THE ANSLERS ON THE OTHER SIDE.
There are many GEMM’s of small matrices, perfectly parallel, can get b WHAT IF THE ANSUERS ARE LURONG? )
input featufe]maps featurse] mapsfeaturcr-.-zmapsfeatursez maps " ou JUST STIR THE PILE DNTIL
B = TS e N f:*e —_— THEY START LOOKING RIGHT.

\
[ R LN
56 N\ _, —_ N
convolution \ 2x2 st q .
subsampling convolution 1 2x2
\ subsampling

feature extraction

<. Convolution Step

Fully C ted
<% In this case 3x3 GEMM Uiy .o.nne.c N
38/ 47 Classification
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€. IEEE 754 Half Precision (16-bit) Floating Pt Standard b

A lot of interest driven by "machine learning”

exponent fraction AMBRadeon mStnct AMD

[ heeamms
sign (S bit) (10 bit) I

Memory Type 16GB GDDR5 4GB HBM "High Bandwidth Cache
l I and Controller”

Memory Bandwidth 224GBlsec 512GB/sec ?

Single Precision fa]=I 227101 OPS 12.5 TFLOPS
(FP32)

Half Precision 5.7 TFLOPS 8.2 TFLOPS 25 TFLOPS
(FP16)

1 5 TD <150wW <175W
Iml‘ XEM mln‘ Cooling Passive Passive Passive
(SFF)
»n DIRECT NEAR LINEAR SCALING GPU Polaris 10 Fiji Vega
n 4(][]GB E — 3“( m Manufacturing GloFo 14nm TSMC 28nm ?

Process

®
l n tel VS 16GH WITH A GRU* 1 WHEN SCALING 10 32 NODLS

KMIGHTSMILL | INTELXEONPHIRESULTS

Next Gen X Phi NOV™16 TOPS00 LIST

[ pices +45 H80Y% GPU PERFORMANCE COMPARISON

sign exponent (8 bits) fraction (7 bits)
I T ]

[T

[1]ofoo]o]q]
g 7 (bitindex) o

DL Training FP16 10 TFLOPS 120 TFLOPS

DL Inferencing Fp16 21 TFLOPS 120 TFLOPS

P64/FP32 5/10 TFLOPS  7.5/15 TFLOPS

——
HBM2 Bandwidth 720 GB/s 900 GB/s 152

STREAM Triad Perf 557 GB/s 855 GB/s 1.5x
Google TPU different then IEEE
bfloat16 NVLink Bandwidth 160 GB/s 300 GB/s 1.9x
1 bit for the sign,
L2 Cache 4 MB 6 MB 125X

8 bits for the exponent (same as SP)

7 bits for the mantissa L1 Caches 1.3 MB 10 MB 5T '




N
< Mixed Precision

- Today many precisions to deal with (IEEE Standard)

| Type Size | Range | u=2"t
half 16 bits  10*° 21 ~49x10*
single 32 bits  10*® 224 ~6.0x10%

double 64 bits  10%3%® 2758 11 x107'®
quadruple | 128 bits 104932 27113 ~ 96 x 10~

¢ NO"'C the number' r'Cmge Wl"'h sign exponent (8 bits) I[EEE SP  fraction (23 bits)
half frefis_ion (16 bit fl.pt.) (|)|01111100"01oooooooooooooooooo
Sign| Ie Tgohnite) I (T;tl;?t? 1 |argest f| pt siaﬁ 3é())(ponent (8 bits?)gu%rzaction 7 E)ti)tig;rlldex)
number olo[1|1]1]|1|1|o[o]o|1]|0|ofo0|0]|0 largest fl pt
2 o © 65,504 16 15 & 7 (bitindex) o number

10
float16 Google TPU: bfloat16 0(10%)
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- Nvidia Volta peak rates

- 64 bit floating point (FMA): 7.5 Tflop/s

- 32 bit floating point (FMA): 15 Tflop/s

- 16 bit floating point (FMA): 30 Tflop/s

- 16 bit floating point with Tensor core: 120 Tflop/s

07

41



VOLTA TENSOR OPERATION

Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result
more products
SR

.
>

= O—©

-
e |
-

Also supports FP16 accumulator mode for inferencing

42
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

» dgemm achieve about 6.4 Tflop/s

' [A=FP64 GEMM|

Matrix matrix multiplication GEMM

C |=a|] A B +B ©

A—tb—t—to—b—b—b—b—b—h—A

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30
matrix size
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

%2 GENM » dgemm achieve about 6.4 Tflop/s
FP64 GEMM « sgemm achieve about 14 Tflop/s

Matrix matrix multiplication GEMM

C |=a|] A B +B ©

I I LI LI

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k
matrix size
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

T T T T T T T T .o-FPi6 GEMM dgemm achieve about 6.4 Tflop/s
FP32 GEMM sgemm achieve about 14 Tflop/s
FP64 GEMM hgemm achieve about 27 Tflop/s

Matrix matrix multiplication GEMM

~4X

C |=a| A B +B ©

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30
matrix size
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100
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Study of the Matrix Matrix multiplication kernel on Nvidia V100
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Study of the rank k update used by the LU factorization algorithm on Nvidia V100
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Study of the LU factorization algorithm on Nvidia V100
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LU factorization is used to solve a

linear system Ax=b
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Idea: use low precision to compute the expensive floKs (LU O(n3)) and then iteratively

refine the solution in order to achieve the FP64 arithmetic
Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision 0O(n?)
r=>b- Ax FP64 precision 0O(n3)
WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r
solving Az=r could be done by either:
> z = U\(L\r) Classical Iterative Refinement lower precision 0O(n?)
> GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n?)
2. X=x+12 FP64 precision O(n?)
3. r=b- Ax FP64 precision 0O(n3)
END g ang Cson savedcansive e e i ih e method ot e s,

»  Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
» It can be shown that using this approach we can compute the solution to 64-bit floating point precision.

> Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

E. Carson & N. Higham, “Accelerating the Solution of

Linear Systems by Iterative Refinement in Three
Precisions SIAM J. Sci. Comput., 40(2), A817-A847.
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Improving Solution

* 7 is the correction or (X;.; — X;)

 Computed in lower precision and then added to the approximate
solution in higher precision x; + z

_ S (xi)
S (xi)

* Can be used in situations like this, i.e. _ S xa)
B JS(xi)

Xi+1 = Xi
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Leveraging Half Precision in HPCon Vioo
Performance Behavior

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)
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Leveraging Half Precision in HPCon Vioo
Performance Behavior

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy; Flops = 2n3/(3 time)
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Critical Issues at Exascale for Algorithm and Software
Design

Synchronization-reducing algorithms
Break Fork-Join model

Communication-reducing algorithms
Use methods which have lower bound on communication

Mixed precision methods (half (16bit), single(32 bit), & double precision (64))
2x - 10x speed of ops and 2x - 4x speed for data movement

Autotuning - Performance Debugging

Today’s machines are very complicated, build “smarts” into software to adapt to the
hardware

Fault resilient algorithms
Implement algorithms that can recover from failures/bit flips
Reproducibility of results

Today we can’t guarantee this. We understand the issues, but some of our “colleagues”
have a hard time with this.
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Collaborators / Software / Support

. PLASMA : ‘
~ ) O
http://icl.cs.utk.edu/plasmal/ @_ﬁ @ FUJITSU
BVIDIA.
. MAGMA Nag AMD:
http:/l/icl.cs.utk.edu/magmal/ ‘\The MathWorks

. SLATE @

. https:/licl.utk.edu/slate/
. https:/Ibitbucket.orgl/icl/slate/src/default/ E\(E\\)P

U.S. DEPARTMENT OF

© ENERGY
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. PaRSEC (Parallel Runtime Scheduling & Execution Control)

Collaborating partners

University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

http://icl.cs.utk.edu/parsec/

Looking for Grad Students and Post-Docs


http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
https://icl.utk.edu/slate/
https://bitbucket.org/icl/slate/src/default/
http://icl.cs.utk.edu/plasma

