
ATPESC Numerical Software Track

AMReX: Building a Block-Structured
AMR Application (and More)

Presented to
ATPESC 2019 Participants

Ann Almgren
Deputy Director, AMReX ECP Co-Design Center
Senior Scientist and Group Lead, CCSE, LBNL

Don Willcox
Postdoctoral Researcher, LBNL

Q Center, St. Charles, IL (USA)
Date 08/06/2019

ATPESC 2018, July 28 – August 9, 20192

Setting the Stage
Most of the problems we solve today are hard.

Characteristics of these problems are
often that they couple multiple physical
processes across a range of spatial
and temporal scales.

Gone are the days of simple physics, simple geometry,
single algorithm, homogeneous architectures …

So how do we build algorithms and software for hard multi-
physics multi-scale multi-rate problems without starting over
every time?

WarpX project: Jean-Luc Vay, PI

ATPESC 2018, July 28 – August 9, 20193

Setting the Stage (p2)

https://ceed.exascaleproject.org/vis/

Unstructured:
• Can fit the mesh to any geometry – much more generality
• No loss of accuracy at domain boundaries
• More “book-keeping” for connectivity information, etc
• Geometry generation becomes time-consuming

Structured:
• Easier to write discretizations
• Simple data access patterns
• Extra order of accuracy due to cancellation of

error
• Easy to generate complex boundaries through

cut cells but hard to maintain accuracy at
boundaries

TINKER: https://www.epcc.ed.ac.uk

Not all simulations use a mesh

But for those that do, the choice
is usually structured vs
unstructured.

AMReX: Emmanuel Motheau

ATPESC 2018, July 28 – August 9, 20194

Structured Grid Options

http://silas.psfc.mit.edu/22.15/lectures/chap4.xml

https://commons.wikimedia.org/wiki

Logically rectangular doesn’t mean physically
rectangular

Structured with non-constant cells split pros and cons
of structured vs unstructured:

• Can fit (simple) non-rectangular boundaries
while still having known connectivity

• Finer in certain regions (mesh refinement)
• Harder to maintain accuracy

http://silas.psfc.mit.edu/22.15/lectures/chap4.xm
l

http://www.cfoo.co.za/simocean/modelsroms.php

ATPESC 2018, July 28 – August 9, 20195

More Structured Grid Options

Structured grid does not have to mean the
entire domain is logically rectangular either.

One can also “prune” the grids so as to not waste
memory or MPI ranks – can still use rectangular
cells in non-rectangular domain.

Grid pruning can save both memory and work.

ATPESC 2018, July 28 – August 9, 20196

Why Is Uniform Cell Size Good?

Numerical Analysis 101:

We often use a centered difference as an approximation for a gradient,

Note we only get second-order accuracy if we use constant cell spacing.

Can we confine this error?

ATPESC 2018, July 28 – August 9, 20197

Can We Have the Best Of Both Worlds?
Distorting the mesh is not ideal, but we can’t afford uniformly fine grid.

Adaptive Mesh Refinement:
• refines mesh in regions of interest
• allows local regularity – accuracy, ease of discretization, easy data access
• naturally allows hierarchical parallelism
• uses special discretizations only at coarse/fine interfaces (co-dimension 1)
• requires only a small fraction of the book-keeping cost of unstructured grids

https://iopscience.iop.org/article/
10.1088/0067-0049/186/2/457)

Example:
AMReX

Example:
FLASH

Grid sizes
May differ Same

Child grid have unique parent?

No Yes

https://iopscience.iop.org/article/

ATPESC 2018, July 28 – August 9, 20198

Patch-Based vs OctTree

http://cucis.ece.northwestern.edu/projects/DAMSEL/

Both styles of block-structured AMR break the domain into logically rectangular
grids/patches. Level-based AMR organizes the grids by levels; quadtree/octree
organizes the grids as leaves on the tree.

ATPESC 2018, July 28 – August 9, 20199

“AMR for One” does not have to mean “AMR for All”

For example, in the MFiX-Exa
code, we define a level set that
holds the distance to the nearest
wall . The level set is only used
by the particles to compute
particle-wall collisions.

We refine the mesh on which the
level set is defined in order to
capture fine geometric features …
but the particles and fluid are both
defined on the coarser mesh only.

Particles, particle mesh, and level set mesh at
the bottom of a cylinder in an MFiX-Exa
simulation.

AMReX: Johannes Blaschke

ATPESC 2018, July 28 – August 9, 201910

What about Time-Stepping?
AMR doesn’t dictate the spatial or temporal discretization on a single patch, but we need to make sure
the data at all levels gets to the same time.

The main question is:
To subcycle or not to subcycle?

Subcycling in time means taking multiple time steps on finer levels relative to coarser levels.

Non-subcycling:
• Same dt on every grid at every level
• Every operation can be done as a multi-level operation before proceeding to the next operation,

e.g. if solving advection-diffusion-reaction system, we can complete the advection step on all
grids at all levels before computing diffusion

Subycling:
• dt / dx usually kept constant
• Requires separation of “level advance” from “synchronization operations”
• Can make algorithms substantially more complicated

ATPESC 2018, July 28 – August 9, 201911

AMReX applications include …
AMR has a long history in compressible astrophysics and other
compressible phenomena.

Extensions of AMR usage include

• Low Mach number Combustion – heat release may look very
different on coarse and fine levels

• Low Mach number astrophysics – 1-d background state plus
perturbational solution

• Moist atmospheric modeling
• Solid mechanics, e.g. microstructure evolution
• Lattice Boltzmann, cellular automata ….

Flows with particles add complexity when particles and grids
interact

Especially interesting ways to use AMR include AMAR – i.e.
different physics / algorithms at different levels of refinement

ATPESC 2018, July 28 – August 9, 201912

Software Support for AMR
This may convince you that you don’t want to write an AMR code from scratch!

There are a number of AMR software packages available –

They all
• Provide data containers for blocks of data at different resolutions
• manage the metadata – same-level and coarse-fine box intersections
• manage re-gridding (creation of new grids based on user-specified

refinement criteria)

They differ on:

• what types of data they support
• what types of time-stepping they support (many are no-subcycling only)
• whether they support separate a “dual grid” approach
• what degree of parallelism do they support? MPI only, MPI+X (what X?)
• what task iteration support – asynchronous, fork-join, kernel launching…?
• how flexible is the load balancing?
• what additional “native” features – e.g. AMR/GMG solvers?

ATPESC 2018, July 28 – August 9, 201913

AMReX:
Manages data containers for blocks of mesh and particle data at
different (mesh) resolutions

• mesh data on cell centers, faces and nodes
• particle data – multiple “types” with different numbers of

attributes
• geometric data for solid obstacles/boundaries in the form

of “cut cell” quantities (EB = embedded boundary
representation)

Allows operation on data via “iterators” – performance portability
between CPU-based and GPU-based operations (“Same kernel,
different launch”)

Handles all the metadata, aka “book-keeping”
• caches same-level and coarse-fine box intersections

Manages re-gridding (= creation of new grids / deletion of old
grids based on user-specified refinement criteria)

Unstructured meshes change with the geometry

Structured meshes don’t … but we need to
compute new intersections

ATPESC 2018, July 28 – August 9, 201914

AMReX:
Supports
• a “dual grid” approach – particles, e.g. can live on different grid layout than fluid does

• MPI + OpenMP on multicore; MPI + CUDA (HIP) on GPUs
• support using lambdas for kernel launching on CPU vs GPU
• (Can also use OpenMP / OpenACC)
• Kernels can be C++ or Fortran
• Performance portability – set USE_CUDA = TRUE or FALSE at compile-time

• task iteration– asynchronous, fork-join, kernel launching…

• flexible load balancing

• “native” AMR/GMG solvers

• “native” I/O along with support for HDF5 (WIP)
• format supported by Visit, Paraview, yt

ATPESC 2018, July 28 – August 9, 201915

AMReX Core Mesh Data Hierarchy

• IntVect
– Dimension length array for indexing.

• Box
– Rectilinear region of index space (using IntVects)

• BoxArray
– Union of Boxes at a given level

• FArrayBox (FAB)
– Data defined on a box (double, integer, complex, etc.)
– Stored in column-major order (Fortran)

• MultiFAB
– Collection of FArrayBoxes at a single level
– Contains a Distribution Map defining the relationship across MPI Ranks.
– Primary Data structure for AMReX mesh based work.

Simplest
Structures

Most
Complex
Structures

ATPESC 2018, July 28 – August 9, 201916

What does a loop look like: Fortran vs C++?

Array4<Real> const& fab = mf.array(mfi);
for (int k = lo.z; k <= hi.z; ++k) {

for (int j = lo.y; j <= hi.y; ++j) {
for (int i = lo.x; i <= hi.x; ++i) {

fab(i,j,k) += 1.; }}}

Array4<Real> holds:

• Pointer to the data of type Real
• Size of the object in 3D
• Striding information

and is fully accessible on the GPU.

do k = lo(3), hi(3)
do j = lo(2), hi(2)

do i = lo(1), hi(1)+1
fluxx(i,j,k) += 1.0

end do
end do

end do

Fortran C++

ATPESC 2018, July 28 – August 9, 201917

CPU vs GPU Parallelism
CPU thread
distribution strategy
using tiling with
OpenMP.

GPU thread
distribution
strategy using
CUDA threads.

• OpenMP threads
across tiles on local
boxes (~10-100).

• GPU threads are on
the order of local
number of cells
(~thousands).

• GPU Parallelization
strategy is shifted to a
finer-grained
implementation over
cells.

ATPESC 2018, July 28 – August 9, 201918

AMReX Loops over Mesh Data

phi_old.FillBoundary(geom.periodicity());
const Real* dx = geom.CellSize();
const Box& domain_bx = geom.Domain();
for (MFIter mfi(phi_old); mfi.isValid(); ++mfi)
{

const Box& xbx = mfi.nodaltilebox(0);
Array4<Real> const& fluxx = flux[0].array(mfi);
Array4<Real> const& phi = phi_old.array(mfi);

amrex::ParallelFor(xbx,
[=] AMREX_GPU_DEVICE (int i, int j, int k)
{

compute_flux_x(i,j,k,fluxx,phi,dxinv);
});}

// Additional launch for Y and Z fluxes.
}

Standard MPI Work:
Launches used to implement.

Loop over Boxes with local data.
CUDA streams incremented within.

Get Box and pointers to
MultiFab data to work over.

Launch lambda function to
perform over desired Box.

Device sync during MFIter
destructor to guarantee
data consistency.

ATPESC 2018, July 28 – August 9, 201919

AMReX Hands-On Examples
Let’s do a few hands-on exercises that demonstrate AMReX capability:

• “AMR 101”: AMR for scalar advection
• Multilevel mesh data – fluid velocity on faces and tracer on cell centers
• Subcycling in time with refluxing (to enforce conservation)
• Dynamic AMR

• “Off to the races” : use a Poisson solve to compute potential flow around obstacles then advect the
particles in that flow field

• Single-level mesh data – fluid velocity on faces, EB obstacles defined by volume and area fractions
• Linear solver (geometric multigrid)
• Particle advection

• “AMReX-Pachinko”: let particles fall through an obstacle course, bouncing off the solid obstacles
• Single-level mesh – EB obstacles only
• Particle-obstacle and particle-wall collisions

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/

https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/
https://xsdk-project.github.io/MathPackagesTraining/lessons/amrex/

ATPESC 2018, July 28 – August 9, 201920

Take Away Messages

If you’re interested in learning more about AMREX:
• the software: https://www.github.com/AMReX-Codes/amrex
• the documentation: https://amrex-codes.github.io/amrex
• some movies based on AMReX: https://amrex-codes.github.io/amrex/gallery.html

• Different problems require different spatial discretizations and different data structures – the most
common are

• Structured mesh
• Unstructured mesh
• Particles (which can be combined with structured and/or unstructured meshes)

• Structured mesh doesn’t equal “just” flow in a box

• There are quite a few AMR software packages – they have several commonalities and a large number of
differences, both in what functionality they support and on what architectures they are performant

• Interoperability is important! See the next few sessions for how AMReX can be used in conjunction with
SUNDIALS time stepping and TAO optimization packages.

https://www.github.com/AMReX-Codes/amrex
https://amrex-codes.github.io/amrex
https://amrex-codes.github.io/amrex/gallery.html

	AMReX: Building a Block-Structured �AMR Application (and More)
	Setting the Stage
	Setting the Stage (p2)
	Structured Grid Options
	More Structured Grid Options
	Why Is Uniform Cell Size Good?
	 Can We Have the Best Of Both Worlds?
	Patch-Based vs OctTree
	“AMR for One” does not have to mean “AMR for All”
	What about Time-Stepping?
	AMReX applications include …
	Software Support for AMR
	AMReX:
	AMReX:
	AMReX Core Mesh Data Hierarchy
	What does a loop look like: Fortran vs C++?
	CPU vs GPU Parallelism
	AMReX Loops over Mesh Data
	AMReX Hands-On Examples
	Take Away Messages

