
Krylov Solvers and Preconditioning

Jonathan Hu and Christian Glusa

ATPESC 2019

Q Center, St. Charles, IL (USA)

August 6, 2019
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND NO.

SAND2019-9176 PE

1 / 17

Discretization of partial differential equations gives rise to large linear systems of equations

A~x = ~b,

where A is sparse, i.e. only a few non-zero entries per row.

Example

2D Poisson equation:

−∆u = f inΩ = [0, 1]2,

u = 0 on ∂Ω.

Central finite differences on a uniform mesh {xi,j}:

4ui,j − ui,j+1 − ui,j−1 − ui+1,j − ui−1,j = f(xi,j)∆x if xi,j 6∈ ∂Ω,

ui,j = 0 if xi,j ∈ ∂Ω.

→ 5 entries or less per row of A.

Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):

A =

 1 2 0
3 4 0
0 0 5


rowptr =

(
0 2 4 5

)
indices =

(
0 1 0 1 2

)
values =

(
1 2 3 4 5

)

2 / 17

Available solvers

Solve

A~x = ~b.

Option 1: Direct solvers (think Gaussian elimination)

Factorisation scales asO(n3).

Factors are a lot denser than A→memory cost.

Parallel implementation not straightforward.

Does not require a lot of information about the structure of A.

Observation

A hasO(n) non-zero entries. → Optimal complexity for a solve isO(n) operations.

Option 2: Iterative solvers

Exploit an operation that hasO(n) complexity: mat-vec.

Easy to parallelize.

Can have small memory footprint. (In the best case, we only need to keep a single vector.)

More restrictions on required structure of A.

3 / 17

Available solvers

Solve

A~x = ~b.

Option 1: Direct solvers (think Gaussian elimination)

Factorisation scales asO(n3).

Factors are a lot denser than A→memory cost.

Parallel implementation not straightforward.

Does not require a lot of information about the structure of A.

Observation

A hasO(n) non-zero entries. → Optimal complexity for a solve isO(n) operations.

Option 2: Iterative solvers

Exploit an operation that hasO(n) complexity: mat-vec.

Easy to parallelize.

Can have small memory footprint. (In the best case, we only need to keep a single vector.)

More restrictions on required structure of A.

3 / 17

Krylov methods

Based on mat-vecs, we can compute

~y0 = ~x0 (“initial guess”’)

~yk+1 = ~yk +
(
~b− A~yk

)
︸ ︷︷ ︸
“residual”

and recombine in some smart way to obtain an approximate solution

~xK =
K∑

k=0

αk~y
k.

The values of αk typically involve inner products between vectors in the so-called Krylov space

span
{
~yk

}
=

{
~x0,A~x0,A2~x0,A3~x0, . . .

}
.

Keeping the entire Krylov space can be quite expensive.

Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

Conjugate gradient (CG)

Use a short recurrence, i.e. does not keep the whole

Krylov space around.

Provably works for symmetric positive definite (spd) A.

Generalized Minimum Residual (GMRES, GMRES(K))

Works for unsymmetric systems.

GMRES keeps the whole Krylov space around.

GMRES(K) discards the Krylov space after K iterations.

4 / 17

Convergence of Krylov methods
The following holds for CG: ∣∣∣∣~xK −~x

∣∣∣∣ ≤ (
1− 1/

√
κ(A)

)K ∣∣∣∣~x0 −~x
∣∣∣∣ ,

where κ(A) is the condition number of A:

κ(A) = ||A||
∣∣∣∣A−1

∣∣∣∣ .
It turns out that this is a common theme with Krylov methods.

The condition number can be seen as a measure of how hard it is to solve the system.

Idea

Reduce the condition number. (“Preconditioning”)

Instead of solving

A~x = ~b,

solve

PA~x = P~b or AP~z = ~b, ~x = P~z

with preconditioner P so that κ(PA) � κ(A).
Two conflicting requirements:

Multiplication with P should be comparable in cost to A.

P ≈ A−1.

5 / 17

Some simple preconditioners

Jacobi: P = D−1, where D is the diagonal of A.

Gauss-Seidel: P = (D+ L)−1
, where L is the lower or upper triangular part of A.

Polynomial preconditioners: P = p(A), where p is some carefully chosen polynomial.

Incomplete factorizations such as ILU or Incomplete Cholesky.

6 / 17

The Trilinos project

Collection of interoperable packages for the solution of large-scale, complex multiphysics

engineering and scientific problems

discretization in space & time, mesh and graph tools, automatic differentiation, linear &

nonlinear solvers & preconditioners, eigen-solvers, optimization, UQ, …

(Mostly) C++ and object-oriented

Support for hybrid (MPI+X) parallelism, X ∈ {OpenMP, CUDA, Pthreads, . . . }
Open source, primarily developed at Sandia

Belos - iterative linear solvers Ifpack2 - single-level solvers and preconditioners

Standard methods:

Conjugate Gradients (CG), Generalized Minimal Residual

(GMRES)

TFQMR, BiCGStab, MINRES, Richardson / fixed-point

Advanced methods:

Block GMRES, block CG/BiCG

Hybrid GMRES, CGRODR (block recycling GMRES)

TSQR (tall skinny QR), LSQR

Ongoing research:

Communication avoiding methods

Pipelined and s-step methods

incomplete factorisations

ILUT

RILU(k)

relaxation preconditioners

Jacobi

Gauss-Seidel (and a multithreaded variant)

Successive Over-Relaxation (SOR)

Symmetric versions of Gauss-Seidel and SOR

Chebyshev

additive Schwarz domain decomposition

7 / 17

Hands-on: Krylov methods and preconditioning

Go to https://xsdk-project.github.io/MathPackagesTraining/
lessons/krylov_amg/

Sets 1 and 2

20 mins

8 / 17

https://xsdk-project.github.io/MathPackagesTraining/lessons/krylov_amg/
https://xsdk-project.github.io/MathPackagesTraining/lessons/krylov_amg/

The motivation for Multigrid methods

Convergence of Jacobi:

High frequency error is damped quickly, low frequency error slowly

9 / 17

The motivation for Multigrid methods

Convergence of Jacobi:

Local transmission of information cannot result in a scalable method

10 / 17

Geometric Multigrid

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Basic ideas

Reconstruct the fine level solution from

information of coarse representations of the fine

problem.

Apply cheap smoothers on each multigrid level.

Restriction and prolongation operators transfer

information between different multigrid levels.

The multigrid method is fully defined by

the level smoothers and transfer operators!

Main idea:

Attack different components of the error on different

grids/levels!

⇒ Desired optimal behaviour: convergence in a fixed num-

ber of iterations independent of problem size n.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.

11 / 17

Geometric Multigrid

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Basic ideas

Reconstruct the fine level solution from

information of coarse representations of the fine

problem.

Apply cheap smoothers on each multigrid level.

Restriction and prolongation operators transfer

information between different multigrid levels.

The multigrid method is fully defined by

the level smoothers and transfer operators!

Main idea:

Attack different components of the error on different

grids/levels!

⇒ Desired optimal behaviour: convergence in a fixed num-

ber of iterations independent of problem size n.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.

11 / 17

Geometric Multigrid

P2→1R1→2

P1→0R0→1

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Basic ideas

Reconstruct the fine level solution from

information of coarse representations of the fine

problem.

Apply cheap smoothers on each multigrid level.

Restriction and prolongation operators transfer

information between different multigrid levels.

The multigrid method is fully defined by

the level smoothers and transfer operators!

Main idea:

Attack different components of the error on different

grids/levels!

⇒ Desired optimal behaviour: convergence in a fixed num-

ber of iterations independent of problem size n.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.

11 / 17

Geometric Multigrid

P2→1R1→2

P1→0R0→1

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Basic ideas

Reconstruct the fine level solution from

information of coarse representations of the fine

problem.

Apply cheap smoothers on each multigrid level.

Restriction and prolongation operators transfer

information between different multigrid levels.

The multigrid method is fully defined by

the level smoothers and transfer operators!

Main idea:

Attack different components of the error on different

grids/levels!

⇒ Desired optimal behaviour: convergence in a fixed num-

ber of iterations independent of problem size n.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.

11 / 17

Geometric Multigrid

P2→1R1→2

P1→0R0→1

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Recursive algorithm

Multigrid(xk, bk):

1. If problem is small, use direct solver.

2. Presmoothing: ApplySpre

k
on xk .

3. Transfer residual rk to next coarser level:

r
k+1

= Rk→k+1r
k

4. Call Multigrid(xk+1, rk+1).

5. Transfer correction xk+1 to fine grid and add to xk :

x
k
= x

k
+ Pk+1→kx

k+1

6. Postsmoothing: ApplySpost

k
on xk .

The multigrid method is fully defined by

the level smoothers and transfer operators!

Main idea:

Attack different components of the error on different grids/levels!

⇒ Desired optimal behaviour: convergence in a fixed number of iter-

ations independent of problem size n.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.

11 / 17

Geometric Multigrid

P2→1R1→2

P1→0R0→1

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Recursive algorithm

Multigrid(xk, bk):

1. If problem is small, use direct solver.

2. Presmoothing: ApplySpre

k
on xk .

3. Transfer residual rk to next coarser level:

r
k+1

= Rk→k+1r
k

4. Call Multigrid(xk+1, rk+1).

5. Transfer correction xk+1 to fine grid and add to xk :

x
k
= x

k
+ Pk+1→kx

k+1

6. Postsmoothing: ApplySpost

k
on xk .

The multigrid method is fully defined by

the level smoothers and transfer operators!

Main idea:

Attack different components of the error on different grids/levels!

⇒ Desired optimal behaviour: convergence in a fixed number of iter-

ations independent of problem size n.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.

11 / 17

Algebraic Multigrid (AMG)

Creating multigrid levels based on geometric information is not always feasible or convenient.

Ideally, users would like to only supply their matrix A and have levels be created automatically.

Form artificial coarse grid unknowns:

By selecting a subset of the fine grid unknowns (Classical AMG)

By grouping unknowns into “aggregates” based on connectivity in the matrix graph (Aggregation-based AMG)

Construct transfer operators that preserve the near-nullspace of the problem.

(And imitate the high-/low-frequency splitting of geometric multigrid.)

Aggregates for a 2D problem Aggregates for a 3D Poisson problem

12 / 17

Software packages for Algebraic Multigrid

Classical AMG (hypre)

Developed at Lawrence Livermore National Lab.

→ Opportunity to speak to Ulrike Meier Yang during the speed-dating.

Smoothed Aggregation Multigrid (PETSc)

Developed by Mark Adams and the PETSc team.

→ Opportunity to speak to Barry Smith during the speed-dating.

Smoothed Aggregation Multigrid (Trilinos)
Two multigrid packages in Trilinos:

ML

C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

MueLu

Templated C++ library with support for 2B+ unknows and next-generation architectures (OpenMP, CUDA, …)

13 / 17

The MueLu package

Robust, scalable, portable AMG preconditioning is critical for many large-scale
simulations

Multifluid plasma simulations

Shock physics

Magneto-hydrodynamics (MHD)

Low Mach computational fluid dynamics (CFD)

Capabilities

Aggregation-based and structured coarsening

Smoothers: Jacobi, Gauss-Seidel, `1 Gauss-Seidel, multithreaded Gauss-Seidel,
polynomial, ILU

Load balancing for good parallel performance

Ongoing research

performance on next-generation architectures

AMG for multiphysics

Multigrid for coupled structured/unstructured problems

Algorithm selection via machine learning

14 / 17

Hands-on: Algebraic Multigrid

Go to https://xsdk-project.github.io/MathPackagesTraining/
lessons/krylov_amg/

Sets 3 and 4

20 mins

15 / 17

https://xsdk-project.github.io/MathPackagesTraining/lessons/krylov_amg/
https://xsdk-project.github.io/MathPackagesTraining/lessons/krylov_amg/

Next generation architectures and applications

Optimizing Multigrid Setup for

Structured Grids

Multigrid for Maxwell’s equations Multigrid for low Mach CFD

Exploit mesh structure to speed

up multigrid setup & solve.

Stay as “algebraic” as possible.

Full Maxwell system

Coupling with particle code

Target architectures:

Haswell, KNL, GPU

Largest problem to date: ∼34B
unknowns

Critical component in wind

turbine simulations

Two linear solves:

Momentum:

GMRES/symmetric

Gauss-Seidel

Pressure: GMRES/AMG

16 / 17

Take away messages

CG works for spd matrix and preconditioner. GMRES works for unsymmetric systems, but requires more memory.

Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solve.

Multigrid can lead to a constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated

summer students (LINK),

postdocs (LINK).

Please come and talk to us !

17 / 17

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/summerprog.cfm
https://cg.sandia.gov/psp/applicant/EMPLOYEE/HRMS/c/HRS_HRAM_FL.HRS_CG_SEARCH_FL.GBL?Page=HRS_APP_JBPST_FL&Action=U&FOCUS=Applicant&SiteId=1&JobOpeningId=668219&PostingSeq=1

