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Discretization of partial differential equations gives rise to large linear systems of equations e
AX = b,

where A is sparse, i.e. only a few non-zero entries per row.

2D Poisson equation: Central finite differences on a uniform mesh {x; ;}:
—Au=finQ=[0,1]?, AUjj = Uijp1 = Uijo1 = Uiprj — Ui = FOG) Axifxi; & 09,
u=00ndN. Ujj = 0 ifX,',j € o0.

— 5 entries or less per row of A.

Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):
rouptr = (N2 5 )
indicos — (INNONNNNZ)

values = (

2/17



Sandia

Available solvers o,
Solve

Option 1: Direct solvers (think Gaussian elimination)
m Factorisation scales as O(n3).
m Factors are a lot denser than A — memory cost.
m Parallel implementation not straightforward.
m Does not require a lot of information about the structure of A.

A has O(n) non-zero entries. — Optimal complexity for a solve is O(n) operations.

Option 2: Iterative solvers
m Exploit an operation that has O(n) complexity: mat-vec.
m Easy to parallelize.
m Can have small memory footprint. (In the best case, we only need to keep a single vector.)

m More restrictions on required structure of A.
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Sandia
Krylov methods () .

Based on mat-vecs, we can compute

7O =x (“initial guess™’)
P =7+ (5 A7)
——
“residual”

and recombine in some smart way to obtain an approximate solution

K

)_('K: E Oék)_/k.
k=0

The values of «y typically involve inner products between vectors in the so-called Krylov space
span {y*} = {xo,mﬂ,AQXO,A3YO, . }

m Keeping the entire Krylov space can be quite expensive.

m Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

m Conjugate gradient (CG) m Generalized Minimum Residual (GMRES, GMRES(K))
m Use a short recurrence, i.e. does not keep the whole m Works for unsymmetric systems.
Krylov space around. m GMRES keeps the whole Krylov space around.
m Provably works for symmetric positive definite (spd) A. m GMRES(K) discards the Krylov space after K iterations.

4/17



Sandia
Convergence of Krylov methods =
The following holds for CG:

K
¥ =7 < (1= 1/v/5@)" | -4
where k(A) is the condition number of A:
K(A) = Al [a71].

It turns out that this is a common theme with Krylov methods.
The condition number can be seen as a measure of how hard it is to solve the system.

Reduce the condition number. (“Preconditioning”)

Instead of solving

solve

x|
Il

o
N

PAX = Pb or APZ = b,

with preconditioner P so that x(PA) < x(A).
Two conflicting requirements:
m Multiplication with P should be comparable in cost to A.

mP~AL
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Sandia

Some simple preconditioners =

m Jacobi: P = D~ 1, where D is the diagonal of A.
® Gauss-Seidel: P = (D + L)*l, where L is the lower or upper triangular part of A.
m Polynomial preconditioners: P = p(A), where p is some carefully chosen polynomial.

m Incomplete factorizations such as ILU or Incomplete Cholesky.
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Sandia
The Trilinos project e
m Collection of interoperable packages for the solution of large-scale, complex multiphysics
engineering and scientific problems

S m discretization in space & time, mesh and graph tools, automatic differentiation, linear &
EE 'i"'iNu; nonlinear solvers & preconditioners, eigen-solvers, optimization, UQ, ...

1

(Mostly) C++ and object-oriented
Support for hybrid (MPI1+X) parallelism, X € {OpenMP, CUDA, Pthreads, ...}

m Open source, primarily developed at Sandia
Belos - iterative linear solvers Ifpack2 - single-level solvers and preconditioners

m Standard methods: m incomplete factorisations

m Conjugate Gradients (CG), Generalized Minimal Residual m ILUT

(GMRES) m RILU(K)

m TFQMR, BiCGStab, MINRES, Richardson / fixed-point m relaxation preconditioners
m Advanced methods: = Jacobi

m Block GMRES, block CG/BiCG m Gauss-Seidel (and a multithreaded variant)

m Hybrid GMRES, CGRODR (block recycling GMRES) m Successive Over-Relaxation (SOR)

m TSQR (tall skinny QR), LSQR m Symmetric versions of Gauss-Seidel and SOR

m Ongoing research: m Chebyshev

m Communication avoiding methods m additive Schwarz domain decomposition
m Pipelined and s-step methods
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Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining/
lessons/krylov_amg/
Sets 1and 2
20 mins
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Sandia

The motivation for Multigrid methods =

Convergence of Jacobi:
High frequency error is damped quickly, low frequency error slowly
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Sandia

The motivation for Multigrid methods =

Convergence of Jacobi:
Local transmission of information cannot result in a scalable method
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Sandia

Geometric Multigrid =

Basic ideas

m Reconstruct the fine level solution from
information of coarse representations of the fine
problem.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.
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m Reconstruct the fine level solution from

sPre SPost information of coarse representations of the fine
1 1 problem.

m Apply cheap smoothers on each multigrid level.

Sa
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Geometric Multigrid =

Basic ideas

m Reconstruct the fine level solution from
information of coarse representations of the fine
problem.

m Apply cheap smoothers on each multigrid level.

m Restriction and prolongation operators transfer
information between different multigrid levels.

The multigrid method is fully defined by
So the level smoothers and transfer operators!
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Geometric Multigrid =

Recursive algorithm

Multigrid(x* , b¥):
1. If problem is small, use direct solver.

2. Presmoothing: Apply Sfm on xK.

3. Transfer residual r* to next coarser level:
k41 k
r = Resk41r

4. Call Multigrid(x*+1 | k+1 )-

5. Transfer correction X1 to fine grid and add to xK:

X = X + Pk+1‘,kxk+1

6. Postsmoothing: Apply S‘f"“ on xK.

So
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Geometric Multigrid =

Recursive algorithm
Main idea:

Attack different components of the error on different grids/levels! solver.
=> Desired optimal behaviour: convergence in a fixed number of iter- |
ations independent of problem size n. X

Sllﬂe S;lmst

3. Transfer residual r* to next coarser level:
i = Rk~>k+1rk

) P21 4. Call Multigrid(xk+1 | k1)
5. Transfer correction X1 to fine grid and add to xK:

=4 Pk+1~>kxk+1

6. Postsmoothing: Apply Sf"“ on xK.

So
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Sandia
Algebraic Multigrid (AMG) (]=
m Creating multigrid levels based on geometric information is not always feasible or convenient.
m Ideally, users would like to only supply their matrix A and have levels be created automatically.

m Form artificial coarse grid unknowns:

m By selecting a subset of the fine grid unknowns (Classical AMG)
m By grouping unknowns into “aggregates” based on connectivity in the matrix graph (Aggregation-based AMG)

m Construct transfer operators that preserve the near-nullspace of the problem.
(And imitate the high-/low-frequency splitting of geometric multigrid.)

Aggregates for a 2D problem Aggregates for a 3D Poisson problem
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Software packages for Algebraic Multigrid e

m Classical AMG (hypre)
Developed at Lawrence Livermore National Lab.
— Opportunity to speak to Ulrike Meier Yang during the speed-dating.

/e~

m Smoothed Aggregation Multigrid (PETSc)
Developed by Mark Adams and the PETSc team.
— Opportunity to speak to Barry Smith during the speed-dating.

m Smoothed Aggregation Multigrid (Trilinos)
Two multigrid packages in Trilinos:
= ML
C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

= Muelu
Templated C++ library with support for 2B+ unknows and next-generation architectures (OpenMP, CUDA, ...)
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The MuelLu package =

m Robust, scalable, portable AMG preconditioning is critical for many large-scale
simulations
Multifluid plasma simulations
Shock physics
Magneto-hydrodynamics (MHD) /9
m Low Mach computational fluid dynamics (CFD) <,
m Capabilities
m Aggregation-based and structured coarsening a%qé\

m Smoothers: Jacobi, Gauss-Seidel, £, Gauss-Seidel, multithreaded Gauss-Seidel,
polynomial, ILU
m Load balancing for good parallel performance
m Ongoing research
m performance on next-generation architectures
m AMG for multiphysics
m Multigrid for coupled structured/unstructured problems
m Algorithm selection via machine learning
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Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining/
lessons/krylov_amg/
Sets 3and 4
20 mins
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Next generation architectures and applications

Optimizing Multigrid Setup for  Multigrid for Maxwell’s equations
Structured Grids
m Exploit mesh structure to speed m Full Maxwell system

up multigrid setup & solve. m Coupling with particle code

m Stay as “algebraic” as possible. m Target architectures:

Haswell, KNL, GPU

m Largest problem to date: ~34B
unknowns

EMPIRE-PIC EM CFLE3 Tty HSW 2MPIXL, KNL &MPIXL6 1HT

Multigrid for low Mach CFD

m Critical component in wind
turbine simulations
m Two linear solves:

m Momentum:
GMRES/symmetric
Gauss-Seidel

m Pressure: GMRES/AMG

Sandia
National
Laboratores
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Take away messages e

m CG works for spd matrix and preconditioner. GMRES works for unsymmetric systems, but requires more memory.
m Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solve.

m Multigrid can lead to a constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated
m summer students (LINK),
m postdocs (LINK).

Please come and talk to us !
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