Exceptional service in the national interest

Krylov Solvers and Preconditioning

Jonathan Hu and Christian Glusa

ATPESC 2019

O Center, St. Charles, IL (USA)

August 6, 2019

Sanda National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sanda, LLC, a wholly General subsidiary of Honeyvell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE+MA000352. SMIO No. SMIDUD019170 FE

Discretization of partial differential equations gives rise to large linear systems of equations

$$\mathbf{A}\vec{x}=\vec{b},$$

where **A** is sparse, i.e. only a few non-zero entries per row.

Example		
2D Poisson equation:	Central finite differences on a uniform mesh $\{x_{i,j}\}$:	
$-\Delta u = f \text{ in } \Omega = [0,1]^2,$	$4u_{i,j} - u_{i,j+1} - u_{i,j-1} - u_{i+1,j} - u_{i-1,j} = f(x_{i,j})\Delta x$	$\text{ if } \textbf{\textit{x}}_{i,j} \not\in \partial \Omega,$
$u = 0$ on $\partial \Omega$.	$u_{i,j} = 0$	if $x_{i,j} \in \partial \Omega$.

\rightarrow 5 entries or less per row of **A**.

Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):

Available solvers

Solve

Option 1: Direct solvers (think Gaussian elimination)

- Factorisation scales as $\mathcal{O}(n^3)$.
- **E** Factors are a lot denser than $\mathbf{A} \rightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of A.

Observation

A has $\mathcal{O}(n)$ non-zero entries. \rightarrow Optimal complexity for a solve is $\mathcal{O}(n)$ operations.

Option 2: Iterative solvers

- Exploit an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- More restrictions on required structure of **A**.

Available solvers

Solve

 $\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}}.$

Option 1: Direct solvers (think Gaussian elimination)

- Factorisation scales as $\mathcal{O}(n^3)$.
- **Factors** are a lot denser than $\mathbf{A} \rightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of A.

Observation

A has $\mathcal{O}(n)$ non-zero entries. \rightarrow Optimal complexity for a solve is $\mathcal{O}(n)$ operations.

Option 2: Iterative solvers

- Exploit an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- More restrictions on required structure of A.

Krylov methods

Based on mat-vecs, we can compute

$$\vec{\mathbf{y}}^{0} = \mathbf{x}^{\vec{0}}$$
 ("initial guess")
$$\vec{\mathbf{y}}^{\texttt{K}+1} = \vec{\mathbf{y}}^{\texttt{K}} + \underbrace{\left(\vec{b} - \mathbf{A}\vec{\mathbf{y}}^{\texttt{K}}\right)}_{\text{"residual"}}$$

and recombine in some smart way to obtain an approximate solution

$$\vec{\mathbf{x}}^{\mathsf{K}} = \sum_{k=0}^{\mathsf{K}} \alpha_k \vec{\mathbf{y}}^{\mathsf{K}}$$

The values of α_k typically involve inner products between vectors in the so-called *Krylov space* span $\{\vec{y}^k\} = \{\vec{x^0}, \mathbf{A}\vec{x}^0, \mathbf{A}^2\vec{x}^0, \mathbf{A}^3\vec{x}^0, \dots\}$.

- Keeping the entire Krylov space can be quite expensive.
- Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

- Conjugate gradient (CG)
 - Use a short recurrence, i.e. does not keep the whole Krylov space around.
 - Provably works for symmetric positive definite (spd) A.

- Generalized Minimum Residual (GMRES, GMRES(K))
 - Works for unsymmetric systems.
 - GMRES keeps the whole Krylov space around.
 - GMRES(K) discards the Krylov space after K iterations.

Convergence of Krylov methods

The following holds for CG:

$$\left\| \vec{\mathbf{x}}^{\mathsf{K}} - \vec{\mathbf{x}} \right\| \le \left(1 - 1/\sqrt{\kappa(\mathbf{A})} \right)^{\mathsf{K}} \left\| \vec{\mathbf{x}}^{0} - \vec{\mathbf{x}} \right\|,$$

where $\kappa(\mathbf{A})$ is the condition number of \mathbf{A} :

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|.$$

It turns out that this is a common theme with Krylov methods.

The condition number can be seen as a measure of how hard it is to solve the system.

Idea

Reduce the condition number. ("Preconditioning")

Instead of solving

$$A\vec{x}=\vec{b},$$

solve

$$\mathbf{P}\mathbf{A}\vec{x} = \mathbf{P}\vec{b}$$
 or

 $\mathbf{AP}\vec{z} = \vec{b}, \quad \vec{x} = \mathbf{P}\vec{z}$

with preconditioner ${\bf P}$ so that $\kappa({\bf PA})\ll\kappa({\bf A}).$

Two conflicting requirements:

Multiplication with P should be comparable in cost to A.

P \approx **A**⁻¹.

- **J**acobi: $\mathbf{P} = \mathbf{D}^{-1}$, where **D** is the diagonal of **A**.
- Gauss-Seidel: $\mathbf{P} = (\mathbf{D} + \mathbf{L})^{-1}$, where \mathbf{L} is the lower or upper triangular part of \mathbf{A} .
- Polynomial preconditioners: $\mathbf{P} = p(\mathbf{A})$, where p is some carefully chosen polynomial.
- Incomplete factorizations such as ILU or Incomplete Cholesky.

The Trilinos project

- Collection of interoperable packages for the solution of large-scale, complex multiphysics engineering and scientific problems
- discretization in space & time, mesh and graph tools, automatic differentiation, linear & nonlinear solvers & preconditioners, eigen-solvers, optimization, UQ, ...
- (Mostly) C++ and object-oriented
- Support for hybrid (MPI+X) parallelism, $X \in \{\text{OpenMP, CUDA, Pthreads, } \dots \}$
- Open source, primarily developed at Sandia

Belos - iterative linear solvers

- Standard methods:
 - Conjugate Gradients (CG), Generalized Minimal Residual (GMRES)
 - TFQMR, BiCGStab, MINRES, Richardson / fixed-point
- Advanced methods:
 - Block GMRES, block CG/BiCG
 - Hybrid GMRES, CGRODR (block recycling GMRES)
 - TSQR (tall skinny QR), LSQR
- Ongoing research:
 - Communication avoiding methods
 - Pipelined and s-step methods

Ifpack2 - single-level solvers and preconditioners

- incomplete factorisations
 - ILUT
 - RILU(k)
- relaxation preconditioners
 - Jacobi
 - Gauss-Seidel (and a multithreaded variant)
 - Successive Over-Relaxation (SOR)
 - Symmetric versions of Gauss-Seidel and SOR
 - Chebyshev
- additive Schwarz domain decomposition

Randia National

Hands-on: Krylov methods and preconditioning Go to https://xsdk-project.github.io/MathPackagesTraining/ lessons/krylov_amg/ Sets 1 and 2 20 mins

The motivation for Multigrid methods

Sandia National Laboratories

Convergence of Jacobi: High frequency error is damped quickly, low frequency error slowly

The motivation for Multigrid methods

Sandia National Laboratories

Convergence of Jacobi: Local transmission of information cannot result in a scalable method

Basic ideas

 Reconstruct the fine level solution from information of coarse representations of the fine problem.

Observation

Low frequency on the finest level can be represented by high frequency on a coarser level.

Basic ideas

- Reconstruct the fine level solution from information of coarse representations of the fine problem.
- Apply cheap **smoothers** on each multigrid level.

Basic ideas

- Reconstruct the fine level solution from information of coarse representations of the fine problem.
- Apply cheap **smoothers** on each multigrid level.
- Restriction and prolongation operators transfer information between different multigrid levels.

Basic ideas

- Reconstruct the fine level solution from information of coarse representations of the fine problem.
- Apply cheap **smoothers** on each multigrid level.
- Restriction and prolongation operators transfer information between different multigrid levels.

The multigrid method is fully defined by the **level smoothers** and **transfer operators**!

Recursive algorithm

Multigrid(x^k , b^k):

- 1. If problem is small, use direct solver.
- 2. Presmoothing: Apply S_k^{pre} on x^k .
- 3. Transfer residual r^k to next coarser level:

$$r^{k+1} = R_{k \to k+1} r^k$$

- 4. Call Multigrid(x^{k+1}, r^{k+1}).
- 5. Transfer correction x^{k+1} to fine grid and add to x^k :
 - $x^{k} = x^{k} + P_{k+1 \rightarrow k} x^{k+1}$
- 6. Postsmoothing: Apply S_{k}^{post} on x^{k} .

Algebraic Multigrid (AMG)

- Ideally, users would like to only supply their matrix A and have levels be created automatically.
- Form artificial coarse grid unknowns:
 - By selecting a subset of the fine grid unknowns (Classical AMG)
 - By grouping unknowns into "aggregates" based on connectivity in the matrix graph (Aggregation-based AMG)
- Construct transfer operators that preserve the near-nullspace of the problem.

(And imitate the high-/low-frequency splitting of geometric multigrid.)

Aggregates for a 2D problem

Software packages for Algebraic Multigrid

Classical AMG (hypre)

Developed at Lawrence Livermore National Lab.

ightarrow Opportunity to speak to Ulrike Meier Yang during the speed-dating.

- Smoothed Aggregation Multigrid (PETSc)
 Developed by Mark Adams and the PETSc team.
 - ightarrow Opportunity to speak to Barry Smith during the speed-dating.
- Smoothed Aggregation Multigrid (Trilinos) Two multigrid packages in Trilinos:
 - ML

C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

MueLu

Templated C++ library with support for 2B+ unknows and next-generation architectures (OpenMP, CUDA, ...)

Sandia National

14/17

The MueLu package

- Robust, scalable, portable AMG preconditioning is critical for many large-scale simulations
 - Multifluid plasma simulations
 - Shock physics
 - Magneto-hydrodynamics (MHD)
 - Low Mach computational fluid dynamics (CFD)
- Capabilities
 - Aggregation-based and structured coarsening
 - \blacksquare Smoothers: Jacobi, Gauss-Seidel, ℓ_1 Gauss-Seidel, multithreaded Gauss-Seidel, polynomial, ILU
 - Load balancing for good parallel performance
- Ongoing research
 - performance on next-generation architectures
 - AMG for multiphysics
 - Multigrid for coupled structured/unstructured problems
 - Algorithm selection via machine learning

Hands-on: Algebraic Multigrid Go to https://xsdk-project.github.io/MathPackagesTraining/ lessons/krylov_amg/ Sets 3 and 4 20 mins

Next generation architectures and applications

Optimizing Multigrid Setup for Structured Grids

- Exploit mesh structure to speed up multigrid setup & solve.
- Stay as "algebraic" as possible.

Multigrid for Maxwell's equations

- Full Maxwell system
- Coupling with particle code
- Target architectures: Haswell, KNL, GPU
- Largest problem to date: ~34B unknowns

Multigrid for low Mach CFD

- Critical component in wind turbine simulations
- Two linear solves:
 - Momentum: GMRES/symmetric Gauss-Seidel
 - Pressure: GMRES/AMG

Take away messages

- CG works for spd matrix and preconditioner. GMRES works for unsymmetric systems, but requires more memory.
- Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solve.
- Multigrid can lead to a constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated

- summer students (LINK),
- postdocs (LINK).

Please come and talk to us !