
ATPESC Numerical Software Track

Putting It All Together
Using Numerical Packages in Practice

Presented to
ATPESC 2019 Participants

Ann Almgren
Deputy Director, ECP Block-Structured AMR Co-Design Center

Mark Miller
IDEAS-ECP/ATPESC SQE Support and Training Coordinator

Q Center, St. Charles, IL (USA)
Date 08/06/2019

ATPESC 2019, July 28 – August 9, 20192

Recall from this
morning’s
introduction:

ATPESC 2019, July 28 – August 9, 20193

Recall from this
morning’s
introduction:

None of us can
actually do it all

ATPESC 2019, July 28 – August 9, 20194

Recall from this
morning’s
introduction:

So where do you
want to spend
your time?

None of us can
actually do it all

ATPESC 2019, July 28 – August 9, 20195

Key steps of simulation science application development
• Physical model

– Expertise may be very domain-specific

• Mathematical model
– Expertise may require detailed mathematical knowledge

• Discretization and algorithm development
– Expertise includes knowing regimes of applicability, stability, approximation,

error bounds

• Parallel implementation
– Expertise in hardware, software stack and parallel programming models

ATPESC 2019, July 28 – August 9, 20196

That’s a lot of expertise!

Very few of us are experts in all of these areas. So how do we
optimize the insight/impact of our computational science?

• Team science – in an ideal world we could work in teams that have
all the relevant expertise within one team

• That’s not always possible –so one way to broadly share expertise is
through software libraries
– Expertise in discretization and algorithm development
– Expertise in hardware, software stack and parallel programming models

ATPESC 2019, July 28 – August 9, 20197

In the short-term we often prefer to do things ourselves

∇2T = 0 ∈ Ω
T(0) = 180o

T(1) = 0o

Hot
water
bath

Cold
water
bath

For the 1-D heat equation why bother learning a software package?

ATPESC 2019, July 28 – August 9, 20198

We can prototype in matlab, build simple serial implementations, and
demonstrate proof-of-concept.

This can be good:

• New algorithms are often designed and validated in this mode.

• Sometimes writing your own version of a known technology (e.g.
multigrid solver) is worth it -- “learning by doing”

This can be bad:

• Our own implementations are more likely to lack generality, be
inefficient or even buggy.

• How much time do we spend “reinventing the wheel?”

Sometimes simple is good

ATPESC 2019, July 28 – August 9, 20199

Software libraries/frameworks/tools
are made by real people.

The people aspect matters

• Software developers know a lot about their product

• But they don’t necessarily know exactly what you need

Communication/Collaboration is an important part of the process
it’s good for the developer as well as the user!

The “supply” side
of software libraries

ATPESC 2019, July 28 – August 9, 201910

Why don’t people “just” use software libraries
Lack of knowledge – how do you know whether the right tool even exists?

And if it exists: Where do you find it? How do you use it? Will it work with your
other tools?

ATPESC 2019, July 28 – August 9, 201911

Why don’t people “just” use software libraries
Frustration! It can be really frustrating to not have the tool do what you want as
well as you want. And how do you tell whether it’s you or the tool?

So how can you find the right tool – if it exists -
and how do you learn how to use it correctly?

ATPESC 2019, July 28 – August 9, 201912

Ideal solution: a “toolbox” of compatible (interoperable)
tools that “just work”

• This is exactly what the
software developers are
working towards

• But it takes time and resources

• The developer/user interaction
can be a win-win

ATPESC 2019, July 28 – August 9, 201913

On a practical level, there are trade-offs

Challenges

• Something new to learn
• Hard to predict show-stoppers
• Not always plug-n-play
• Trusting the work of others
• Overhead of collaborating
• Funding priorities

Advantages

• Key challenges addressed well
– Portable, Performant, Scalable,

Interoperable

• Numerics are well tested/vetted
• Functionality is often more general than

you would have made yourself
• More science, more impact; less time

writing/debugging software
• Become part of a community – for

collaboration and help

ATPESC 2019, July 28 – August 9, 201914

How do we tip the balance?
Challenge

Something new to learn
Hard to predict show-stoppers
Not always plug-n-play
Trusting others
Overhead of collaborating
Funding priorities

Mitigation

Many examples and documentation
Engage package developers early
Submit build issues
Identify or develop tests
Builds relationships
Add to the package yourself

The point of open source is to encourage use
Package teams want users to make progress.
If package is missing a crucial feature, ask.

ATPESC 2019, July 28 – August 9, 201915

If you like to code … and you like to contribute … think about
joining the “supply side”!

It’s not that big a leap – and it’s a win-win.

And … many contributors started as users!

ATPESC 2019, July 28 – August 9, 201916

Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC)
program and the Exascale Computing Project funded by U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

Auspices and Disclaimer

	Putting It All Together�Using Numerical Packages in Practice
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Key steps of simulation science application development
	That’s a lot of expertise!
	In the short-term we often prefer to do things ourselves
	Sometimes simple is good
	The “supply” side�of software libraries
	Why don’t people “just” use software libraries
	Why don’t people “just” use software libraries
	Ideal solution: a “toolbox” of compatible (interoperable) tools that “just work”
	On a practical level, there are trade-offs
	How do we tip the balance?
	And … many contributors started as users!
	Auspices and Disclaimer

