
exascaleproject.org

Requirements & Test Driven Development

ATPESC 2019

Jared O’Neal
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
July 28 – August 9, 2019

2 ATPESC 2019, July 28 – August 9, 2019

License, citation, and acknowledgments

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

• Requested citation: Jared O’Neal, Requirements & Test Driven Development, in Better Scientific Software
Tutorial, Argonne Training Program on Extreme-Scale Computing (ATPESC), St. Charles, IL, 2019. DOI:
10.6084/m9.figshare.9272813.

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific

Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago
Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

• Jim Willenbring and Reed Milewicz

https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.6084/m9.figshare.9272813

THE WILD WORLD OF REQUIREMENTS

4 ATPESC 2019, July 28 – August 9, 2019

Informal definition

A complete collection of well-defined, mutually-consistent statements that
define what you want to build and why these statements are important.
• What qualifies as “complete” is up to team
• Well-defined & mutually-consistent should not be optional

Requirements
• help understand what we want before we address how to build it,
• should be verifiable, and
• should be documented.

5 ATPESC 2019, July 28 – August 9, 2019

Functional vs. non-functional

Functional Requirements communicate what services should or should not be

provided. This can include how they react to

• inputs and

• to corner/edge cases.

Example: A new feature shall be added to the SW such that simulations Z can be configured at

runtime to use a lower-order, but more performant solver.

Non-functional Requirements communicate constraints on the services and

functionality. These could be related to performance, portability, process, etc.
Example: The SW shall be developed as an open source project that is hosted on a Git-based

version control host and shall have automated testing integrated in the repository for use with

Continuous Integration.

6 ATPESC 2019, July 28 – August 9, 2019

Low-level requirements

• Technically-detailed or result of heavy constraints
• Possibly informed by implementation ideas & constraints
• Overly specific can hinder design, creativity, & freedom

Example: The SW architecture shall be upgraded such that a simulation can be
run on nodes with Model X CPUs and Model Y GPUs. The use of GPUs shall be
determined by the pre-processor.

7 ATPESC 2019, July 28 – August 9, 2019

High-level requirements

• Broad ideas, concepts, constraints, and abstractions

• Little technical detail

• Can be understood by people from different disciplines

• Not affected as strongly by changes

• Can be difficult for non-experts to turn into implementations

Example: The SW architecture shall be upgraded such that a simulation can
be built to run on a node with only CPUs or on a node with accelerators.

8 ATPESC 2019, July 28 – August 9, 2019

Externally-imposed

Functional or Non-functional requirements due to

• Use of third-party libraries

• Working as a team of teams, or

• Including standardization (e.g. xSDK Community Package Policies)

https://xsdk.info/policies/

9 ATPESC 2019, July 28 – August 9, 2019

Mathematical example

If a function f is symmetric about x=0, then

1. f’ is antisymmetric about x=0 and

2. f’’ is symmetric about x=0.

The routines for numerically estimating f’ and f’’ shall be implemented such that
these mathematical properties are also true for the estimations.

Example from Prof. Edward Overman,
Mathematics Department at The Ohio State University

10 ATPESC 2019, July 28 – August 9, 2019

Participants

Requirements should capture viewpoints of different roles
related to the development, maintenance, and use of the SW so
that we discover more constraints & identify problems early

• Domain experts can define need, limits, & tolerances
• Developers & technical experts understand technical

constraints
• Users define interfaces

11 ATPESC 2019, July 28 – August 9, 2019

Example formal design workflow

• Science/Engineering Cases
• Derive Requirements from S/E Cases

– Requirement elicitation, specification, & validation
– Determine tests needed to confirm that requirements are satisfied

• Convert Requirements into Design
– Generate low-level technical specifications
– Create design that satisfies specifications

• Implement
• Verification – did we satisfy the requirements?
• Validation – do the requirements result in SW that has correct/useful results?

12 ATPESC 2019, July 28 – August 9, 2019

Example incremental & iterative workflow

Incremental, iterative design repeatedly interleaves requirements analysis,
design, implementation, & verification.

Workflow for single increment

• Requirement elicitation, specification, & validation

• Identify next necessary, high-priority tasks

• Design, implement, and verify tasks

• Simplify and improve code where possible to avoid degradation (refactor)

13 ATPESC 2019, July 28 – August 9, 2019

User stories
A form of requirement elicitation

As a …, I would like … so that ….

These statements
• express what needs to be done or a constraint on what we can do and
• encapsulate the reasons why the need or constraint should be

considered.

User stories should start a discussion that concludes with requirements
and possibly tasks to start work.

14 ATPESC 2019, July 28 – August 9, 2019

Elicitation & specification

As a user of the SW, I would like the storage of data to make
good use of HPC resources and to leverage pre-existing libraries
for reading data so that my simulations run in less time and time
to results is reduced.

V1: The SW shall record simulation results, configuration values, hardware
information, and telemetry via a parallel IO library and using a standard file
format.
V2: The SW shall record simulation results, configuration values, hardware
information, and telemetry via a parallel IO library and using a file format that is
included in python, R, MATLAB, and C/C++.
V3: The SW shall record simulation results, configuration values, hardware
information, and telemetry via parallel IO library XYZ v1.2.3 or greater.

15 ATPESC 2019, July 28 – August 9, 2019

Iteration & prototyping
Requirements require refining

Larger/Formal
Start

Requirements
Elicitation

Requirements
Specification

Requirements
Validation

Science
Reqs

Science
Reqs

Feasiblity

User
Reqs

Partial
Reqs

Prototyping

Technical
Reqs

Full
Reqs

Review

Smaller/Exploratory
Start

Requirements
Elicitation

Requirements
Specification

Requirements
Validation

Full
Reqs

Full
Reqs

Prototyping

Updates

Updated
Reqs

Prototype
in Situ

Refinements

Final
Reqs

Review

16 ATPESC 2019, July 28 – August 9, 2019

Documentation
Requirements Management

• Documents should be clear, readable by many, & living

• Documentation maintenance should be easy & simple

• Design-by-contract requirements & motivation can be
comments and inline documentation

• Should high-level or system-level requirements
– Go into dedicated document?
– Be included in the developer’s guide or adapted for user guide?

– Be a history of static requirements documents?

– Be encoded in system-level test cases?

17 ATPESC 2019, July 28 – August 9, 2019

Are requirements for CSEM?
The Bad & Ugly

• Can be challenging and frustrating

• Can be seen as impediment to immediate progress

• Requirements change
– Due to changing environment

– Due to improved understanding

• Hard to know when enough is enough

18 ATPESC 2019, July 28 – August 9, 2019

Are requirements for CSEM?
The Good

• Achieve a clear & shared understanding of what needs to be done,

• Arrive at definitions & concepts that are understood by all,

• Bring out in the open ideas that seem obvious to some and usually go

unstated,

• Bridge differences between disciplines & levels of expertise,

• Discover constraints/problems early,

• Link requirements with verification,

• Build a team where members feel like an important part of the process, and

• Arrive at idea of SW architecture through structuring/grouping requirements.

19 ATPESC 2019, July 28 – August 9, 2019

Formal vs. exploratory
Plan-based development
• Upfront design efforts
• Clear understanding of needs & goals
• Can be formal, structured, & rigid
• Can be slower due to overhead
• Can produce “useless” outputs
• Could be helpful if

– Team is large or interdisciplinary
– Members lack domain expertise or have

different levels of experience
– Team has high turnover
– SW is large, mission-critical, or long lifetime

Agile development
• Design & understanding continually

evolved through implementing
• Produces outputs that are “valuable”

and necessary
• Constantly refactor code to simplify

and clean
• Delay point of no return
• Could be helpful if

– Team is small & highly-skilled
– Requirements are constantly changing
– Refactoring can be done efficiently

20 ATPESC 2019, July 28 – August 9, 2019

It’s a spectrum

“Software developers should be pragmatic and should choose those methods that
are most effective for the type of system being developed, whether or not these
are labeled agile or plan-driven.”
⎯ Ian Sommervile [1]

Example
• Design infrastructure of software with plan-based so that design is

– Mature and stable
– Flexible and built with “reasonable” speculative generality

• Design localized code (e.g. solvers, kernels) with agile so that
– We write only what is needed
– We can explore & adjust without “excessive” overheads

21 ATPESC 2019, July 28 – August 9, 2019

Bibliography
Selected Books

1. Ian Sommerville, Software Engineering. Pearson, Tenth Edition, 2016.

2. Benjamin S. Blanchard and Wolter J. Fabrycky, Systems Engineering and Analysis.
Pearson, Fifth Edition, 2011.

3. Andrew Hunt and David Thomas, The Pragmatic Programmer. Addison-Wesley,
1999.

4. Steve McConnell, Code Complete. Microsoft Press, Second Edition, 2004.

5. Alberto Sillitti and Giancarlo Succi, “Requirements Engineering for Agile Methods” in
Engineering and Managing Software Requirements. Springer-Verlag, 2005.

https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html
https://www.pearson.com/us/higher-education/program/Blanchard-Systems-Engineering-and-Analysis-5th-Edition/PGM222930.html
https://pragprog.com/book/tpp20/the-pragmatic-programmer-20th-anniversary-edition
https://stevemcconnell.com/books/
https://www.springer.com/gp/book/9783540250432

22 ATPESC 2019, July 28 – August 9, 2019

Bibliography
Selected Articles

6. Yang Li, Emitza Guzman & Bernd Brügge, “Effective Requirements Engineering for CSE
Projects: A Lightweight Tool”, 2015.

7. Dustin Heaton & Jeffrey C. Carver, “Claims about the use of software engineering practices
in science: A systematic literature review”, 2015.

8. Yang Li, Matteo Harutunian, Nitesh Narayan, Bernd Brügge and Gerrit Buse, “Requirements
Engineering for Scientific Computing: A Model-Based Approach”, 2011.

9. Sarah Thew, Alistair Sutcliffe, Rob Procter, Oscar de Bruijn, John McNaught, Colin C. Venters, &
Iain Buchan, “Requirements Engineering for E-science: Experiences in Epidemiology”,
2009.

10. David Lorge Parnas & Paul C. Clements, “A Rational Design Process: How and Why to Fake
It”. IEEE Transactions on Software Engineering, Vol. SE-12, No. 2, February 1986.

11. BSSW.io Requirements Engineering Blog Articles by Reed Milewicz

https://ieeexplore.ieee.org/document/7371381
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001342
https://ieeexplore.ieee.org/document/6130741
https://ieeexplore.ieee.org/document/4685682
https://ieeexplore.ieee.org/document/6312940
https://bssw.io/items/overview-of-requirements-and-requirements-engineering

TEST DRIVEN DEVELOPMENT

24 ATPESC 2019, July 28 – August 9, 2019

Software development aspirations

We would like to

• Write correct code productively,

• Verify the correctness of the code, and

• Write clean, maintainable code with useful documentation.

The reality of development can be

• Prototyped code,

• Little or out-of-date documentation, and

• No or subpar testing.

Test Driven Development helps us achieve our aspirations

25 ATPESC 2019, July 28 – August 9, 2019

Start TDD

Identify Needed
Functionality

Passed?

More
Tests?

Identify Tests

Success!NoYes

Yes

No

Write Single
Test

Confirm Test
Fails

Modify Code
& Run Tests Refactor?

Yes

No

Test driven development (TDD)
• Introduced as an XP and agile SW development method

• Simultaneously develop code & create automated verification tests

• Develop to pass tests in quickest/easiest way and then refactor

Red / Green / Refactor

26 ATPESC 2019, July 28 – August 9, 2019

Start TDD

Identify Needed
Functionality

Passed?

More
Tests?

Identify Tests

Success!NoYes

Yes

No

Write Single
Test

Confirm Test
Fails

Modify Code
& Run Tests Refactor?

Yes

No

Augmented TDD

Write documentation!

Update
docs!

• Express goals in human language first
• Gather/analyze requirements & design verification upfront

27 ATPESC 2019, July 28 – August 9, 2019

Augmented TDD example – Fibonacci sequence

The sequence is defined recursively as
Fn = Fn-1 + Fn-2

28 ATPESC 2019, July 28 – August 9, 2019

First design decision

The sequence is defined recursively as

Fn = Fn-1 + Fn-2

Two definitions
1. F0 = 0 and F1 = 1

2. F1 = 1 and F2 = 1

The difference seems trivial, but we need to make a decision.

29 ATPESC 2019, July 28 – August 9, 2019

Interface 2

Study design decision

Interface 1

Starting Interface

30 ATPESC 2019, July 28 – August 9, 2019

Design by contract & first test

We wanted failure

31 ATPESC 2019, July 28 – August 9, 2019

Code to pass the test

Fails for n > 1

Red to green!

32 ATPESC 2019, July 28 – August 9, 2019

Be destructive

Fails for n > 1

33 ATPESC 2019, July 28 – August 9, 2019

Contract satisfied!

Simplest, easiest to write Sufficient verification tests

34 ATPESC 2019, July 28 – August 9, 2019

Refactor

Change implementation, not contract
• No need to update documentation
• No need to update test suite

35 ATPESC 2019, July 28 – August 9, 2019

Test driven development

Incremental development by writing/modifying code & getting immediate feedback

• Coevolves the functionality of the code with verification of that functionality

• Simultaneous requirements gathering/analysis & verification planning

• All code is testable & code that you need

• Produces a proven test suite for future regression testing

• Minimizes tedium of writing tests

• Proactively prevents bug creation

• Adopt to move plan-based more toward agile
Note that
• Occasionally breaking a test or the code temporarily to see how a test fails can be helpful

• Many IDEs integrate TDD testing into the interface

exascaleproject.org

Bibliography

1. Kent Beck, Test Driven Development: By Example. Addison-Wesley, 2002.
2. Steve Freeman & Nat Pryce, Growing Object-Oriented Software, Guided by

Tests. Addison-Wesley, 2009.
3. Ian Sommerville, Software Engineering. Pearson, Tenth Edition, 2016.
4. Aziz Nanthaamornphong & Jeffrey C. Carver, “Test-Driven Development in

scientific software: a survey”. Software Quality Journal, Vol 25, Issue 2, 2017,
pp. 343-372.

5. Aziz Nanthaamornphong, Jeffrey C. Carver, Karla Morris, et. al., “Building
CLiiME via Test-Driven Development: A Case Study”, May/June 2014.

https://www.oreilly.com/library/view/test-driven-development/0321146530/
http://www.growing-object-oriented-software.com/
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html
https://link.springer.com/article/10.1007/s11219-015-9292-4
https://ieeexplore.ieee.org/document/6774772

37 ATPESC 2019, July 28 – August 9, 2019

Agenda
Time Module Topic Speaker

9:30am-10:15am 01 Objectives, Motivation, & Overview Katherine Riley, ANL

10:15am-10:45am Break

10:45am-11:30am 02 Requirements & Test-Driven Development Jared O’Neal, ANL

11:30am-12:30pm 03 Software Design & Testing Anshu Dubey, ANL

12:30pm-1:30pm Lunch

1:30pm-2:15pm 04 Licensing James Willenbring, SNL

2:15pm-3:15pm 05 Agile Methodologies & Useful GitHub Tools James Willenbring, SNL

3:15pm-3:45pm Break

3:45pm-4:15pm 06 Git Workflows Jared O’Neal, ANL

4:15pm-4:55pm 07 Code Coverage & Continuous Integration Jared O’Neal, ANL

4:55pm-5:30pm 08 Software Refactoring & Documentation Anshu Dubey, ANL

38 ATPESC 2019, July 28 – August 9, 2019

Why documentation?

“Those who read the software documentation want to
understand the programs, not to relive their discovery.”

⎯ Parnas & Clements [10]

