
exascaleproject.org

Software Refactoring and Documentation

ATPESC 2019

Anshu Dubey
Computer Scientist 
Mathematics and Computer Science Division

Q Center, St. Charles, IL (USA)
July 28 – August 9, 2019



2 ATPESC 2019, July 28 – August 9, 2019ATPESC 2019, July 28 – August 9, 2019

License, citation, and acknowledgments
License and Citation

• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). 

• Requested citation: Anshu Dubey, Software Refactoring and Documentation, in Better Scientific Software 
Tutorial, Argonne Training Program on Extreme-Scale Computing (ATPESC), St. Charles, IL, 2019. DOI: 
10.6084/m9.figshare.9272813.

Acknowledgements

• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific 
Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort 
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration..

• This work was performed in part at the Argonne National Laboratory, which is managed managed by 
UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.9272813


REFACTORING



4 ATPESC 2019, July 28 – August 9, 2019

About this presentation

• What this lecture is ---
– Methodology for planning the refactoring 

process
• Considerations before and during refactoring
• Developing a workable process and schedule
• Possible pitfalls and workarounds

– Examples from codes that underwent 
refactoring
• And lessons learned

• What this lecture is not ---
– Instructions on detailed process 

of refactoring
• It is a difficult process
• Each project has its own quirks and 

challenges
• No one methodology will apply 

everywhere
– Tutorial on tools for refactoring

• There really aren’t that many



5 ATPESC 2019, July 28 – August 9, 2019

Definition

Refactoring usually applies to object oriented software where the internals 
of the implementations are “cleaned up” without changing the behavior.

The general definition of refactoring

In the context of this lecture
A broad interpretation where any part of the software may change while 
retaining or enhancing its basic capabilities.
The reason
In context of HPC scientific software the degree of change is motivated by 
many factors. It may include redesign at a higher level.



6 ATPESC 2019, July 28 – August 9, 2019

considerations

• Know why you are refactoring
– Is it necessary 
– Where should the code be after refactoring

• Know the scope of refactoring
– How deep a change
– How much code will be affected

• Estimate the cost
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the stakeholders
– That includes the users
– For both development time and 

disruption



7 ATPESC 2019, July 28 – August 9, 2019

Reasons for refactoring

• Once before
– Vector to risc processors (cpu)
– Flat memory model to hierarchical memory model

• To heterogeneous
– Few CPU’s sufficient memory per cpu
– Several co-existing memory models

• The driving reason for these transitions is performance
– Performance may drive refactoring even without change in platforms

The big one these days is the change in platforms



8 ATPESC 2019, July 28 – August 9, 2019

Reasons for refactoring

• Transition of code from research 
prototype to production

• Imposing architecture and maintainability 
on an old code
– Significant change in the code base

• Change in model or discretization
• Changes in numerical algorithms

– Significant change in intended use for the 
code
• From a small team to a large team
• Releasing to wider user base

There can be other reasons

• Enabling extensibility or 
configurability
– Partial common functionality 

among different usage modes
– Model refinement
– Incorporating new insights



9 ATPESC 2019, July 28 – August 9, 2019

Scope of refactoring

• For performance
– Know the target improvement

• Very easy to go down the rabbit hole of squeezing 
the last little bit

• Almost never worth the effort for obtaining 
scientific results

• For extensibility
– Similar to maintainability
– Greater emphasis on interfaces and 

encapsulation

Know where you want the end product to be

• For maintainability
– Know the boundaries for imposing 

structure
• Rewriting the entire code is generally 

avoidable
• Kernels for implementing formulae can 

be left alone ?
• In general it is possible to stop at higher 

levels than that



10 ATPESC 2019, July 28 – August 9, 2019

Reasons for refactoring

Transition from vector to risc machines

The big one these days is change in platforms

op1vector op2 op4op3

For vector processors 
§ Data structures needed to be long vectors

– Longer => better
§ Spatial or temporal locality had no importance

– Memory access was flat
• Interleaving banks for better performance



11 ATPESC 2019, July 28 – August 9, 2019

Reasons for refactoring
The big one these days is change in platforms

op1, op2, 
op3, op4 small chunk that could fit 

In the cacheFor risc processors
• Memory has hierarchy

– Closer and smaller => faster access 
– Small working sets that can persist in the closest memory 

preferable
– Makes spatial and temporal locality important

• Data structures that enable formation of small working 
sets on which multiple operations can be performed are 
better

Transition from vector to risc machines



12 ATPESC 2019, July 28 – August 9, 2019

Cost estimation

• Can be costly itself if the project is 
large

• Most projects do a terrible job of 
estimation
– Insufficient understanding of code 

complexity
– Insufficient provisioning for verification and 

obstacles
– Refactoring often overruns in both time and 

budget

The biggest potential pitfall

• Factors that can help
– Knowing the scope and sticking to it

• If there is change in scope estimate 
again

– Plan for all stages of the process 
with contingency factors built-in

– Make provision for developing tests 
and other forms of verification
• Can be nearly as much or more work 

than the code change
• Insufficient verification incurs technical 

debt



13 ATPESC 2019, July 28 – August 9, 2019

Cost estimation

• Potential for branch divergence

• Policies for code modification
– Estimate the cost of synchronization
– Plan synchronization schedule and account for overheads

• Anticipate production disruption 
– From code freeze due to merges
– Account for resources for quick resolution of merge issues

This is where buy-in from the stake-holders is critical

When development and production co-exist



14 ATPESC 2019, July 28 – August 9, 2019

On ramp plan

Proportionate to the scope

Bad 
idea

All at once

May 
be OK

All at once



15 ATPESC 2019, July 28 – August 9, 2019

On ramp plan

So how should it be done

§ Incrementally if at all possible
§ Small components, verified 

individually
§ Migrated back

§ Alternatively migrate 
them into new 
infrastructure



16 ATPESC 2019, July 28 – August 9, 2019

verification

• Understand the verification needs 
during transition

• Map from here to there
• Know your error bounds

– Bitwise reproduction of results unlikely after 
transition

Critical component of refactoring

• Check for coverage provided by 
existing tests

• Develop new tests where there 
are gaps

• Make sure tests exist at different 
granularities
– There should definitely be 

demanding integration and system 
level tests



17 ATPESC 2019, July 28 – August 9, 2019ATPESC 2019, July 28 – August 9, 2019

Refactoring

Workflow with testing

Start Refactor

Refactor Step Regression or 
Unit Test Passed? Finished 

Refactor?
Integration & 
System Tests

Fix Changes

Success!

No

Yes

Yes

No

No

Yes

Passed?



18 ATPESC 2019, July 28 – August 9, 2019

Implementation

• Developers (hopefully) know what the end code should be
– They will do the code implementation

Process and policies are important
• Managing co-existence of production and development
• Managing branch divergence
• Any code pruning
• Schedule of testing
• Schedule of integration and release

– Release may be external or just to the internal users

Procedures and policies



EXPERIENCE – FLASH VERSIONS 1-5



20 ATPESC 2019, July 28 – August 9, 2019

Example FLASH 

Hydro MHD

Gravity Burn

Physics

Driver

Simulation

Grid Runtime
Params I/O

Profiling

Logfile

Monitoring

Infrastructure

• Grid
– Manages data
– Domain discretization

• Hydro
– simpleUnsplit
– Unsplit

• Driver
– Time-stepping
– Orchestrates interactions



21 ATPESC 2019, July 28 – August 9, 2019

Version 1

• Three independently developed codes smashed together
– Desire to use the same code for many different applications necessitated some thought to 

infrastructure and architecture

• Challenges
– F77 style of programming; Common blocks for data sharing
– Inconsistent data structures, divergent coding practices and no coding standards

• Solution
– A setup script and config files
– Concept of alternative implementations, with a script for some plug and play
– Inheriting directory structure to emulate object oriented approach
– Wrapper layer with interfaces



22 ATPESC 2019, July 28 – August 9, 2019

Version 2 

• Data inventory and interface 
formalization
– Modularize the code and make it 

extensible
– Elimination of common blocks
– Formalization of interfaces

• Objectives partially met
– Centralized database was built

• It met the data objectives
• But got in the way of modularization
• No data scoping, partial 

encapsulation
• Database query overheads

• Scope not fully determined
– Enforced backward compatibility

• Precluded needed deep changes
• Hugely increased developer effort 
• High barrier to entry for a new developer

• Not enough buy-in from users
– Did not get adopted for production in the 

center for more than two years
• Development continued in FLASH1.6, and so 

had to be brought simultaneously into FLASH2 
too



23 ATPESC 2019, July 28 – August 9, 2019

Version 3 : the Current Architecture

§Kept inheriting directory structure, configuration and customization 
mechanisms from earlier versions

§Defined naming conventions 
– Differentiate between namespace and organizational directories
– Differentiate between API and non-API functions in a unit
– Prefixes indicating the source and scope of data items

§Formalized the unit architecture
– Defined API for each unit with null implementation at the top level

§Resolved data ownership and scope
§Resolved lateral dependencies for encapsulation 
§ Introduced subunits and built-in unit test framework



24 ATPESC 2019, July 28 – August 9, 2019

Version transition

• Build the framework in isolation
– Used the second model in the ramp-on slide

• Ramp on was planned
– scope of change was determined ahead of time

• Determine data scoping and arbitration
• Code mostly not altered at the kernel level
• Base APIs for various units

– scientists were on-board with the plan
• Including the depth of changes



25 ATPESC 2019, July 28 – August 9, 2019

The Ramp-on Plan

• Infrastructure units first implemented with a homegrown Uniform Grid.
• Unit tests for infrastructure built before any physics was brought over
• Test-suite started on multiple platforms
• Migrate mature solvers (few likely changes) and freeze them in version 2
• Migrate the remaining solvers one application dependencies at a time
• Scientists in the loop for verification and in prioritizing physics migration



26 ATPESC 2019, July 28 – August 9, 2019

Version 4

• Capability building exercise
• Did not need any change in the architecture
• Few infrastructure changes

– Mesh replication was easily introduced for multigroup radiation
– Laser drive
– Interface with linear algebra libraries

• No or minimal changes to existing code
No explicit version transition methodology



27 ATPESC 2019, July 28 – August 9, 2019

Version 5

• Objective: prepare for platform and deeper heterogeneity 
– Expected changes in platforms

• Hierarchical parallelism
• Remove bulk synchronism
• Different targets for execution

– Needed in the code 
• Deeper encapsulation of physics kernels

– Knowledge of grid
• Constrained semantics

– Enable code transformation and optimization

Ongoing



28 ATPESC 2019, July 28 – August 9, 2019

FLASH5 Refactoring for Next Generation Hardware

FLASH 

Other units

GridMain

Grid API

AMR

Paramesh

Uniform
Grid

FLASH 

Other units

GridMain

Grid API

AMR

Paramesh

Uniform
Grid

AMReX

AMReX - Lawrence Berkeley National Lab
• Designed for exascale
• Node-level heterogeneity
• Smart iterators hide parallelization

Goal: Replace Paramesh with AMReX

Plan: 
• Paramesh & AMReX coexist
• Adapt interfaces to suit AMReX
• Refactor Paramesh implementation
• Compare AMReX implementation against 

Paramesh implementation



29 ATPESC 2019, July 28 – August 9, 2019

Refactoring plan
Design
• Degree & scope of change
• Formulate initial requirements
Prototyping
• Explore & test design decisions
• Update requirements
Implementation
• Recover from prototyping
• Expand & implement design 

decisions

FLASH
Version

4.4

New
Grid 
Unit

Imple-
mentation

From
Old

FLASH

AMReX
Mesh

Simple
Hydro

Grid API 

Iterators

Fine-coarse

AMReX
Mesh

AMReX
Mesh

Simple
Hydro

Grid API

Require-
ments

gathering

Interfaces
Data

Structures
Iterators

Iterators

Unsplit
Hydro

Hydro Driver

New alternative
Implementation

Iterators over
Paramesh

Flux correction

Top-level
interaction



30 ATPESC 2019, July 28 – August 9, 2019

Phase 1 - design

• Derive and understand principal definitions & abstractions
• Collect & understand Paramesh/AMReX constraints

– Generally useful design due to two sets of constraints?

• Collect & understand physics unit requirements on Grid unit
• Design fundamental data structures & update interface

– AMReX introduces iterators over blocks/tiles of mesh
– Package up block/tile index with associated mesh metadata

• Minimal prototyping with no verification

Sit, think, hypothesize, & argue



31 ATPESC 2019, July 28 – August 9, 2019

Phase 2 - prototyping

• Implement new data structures
– Evolve design/implementation by iterating between Paramesh & 

AMReX

• Explore Grid/physics unit interface
– simpleUnsplit Hydro unit

• Discover use patterns of data structures and Grid unit 
interface

• Adjust requirements & interfaces

Quick, dirty, & light

Verification
• Single simpleUnsplit simulation
• Quantitative regression test with 

Paramesh
• Proof of concept with AMReX via

qualitative comparison with Paramesh



32 ATPESC 2019, July 28 – August 9, 2019

Phase 3 - implementation

• Derive & implement lessons learned
– Clean code & inline documentation

• Update Unsplit Hydro

• Hybrid FLASH
– AMReX manages data
– Paramesh drives AMR

• Fully-functioning simulation with AMReX
• Prune old code

Toward quantifiable success & Continuous Integration

Verification
• Git workflow
• Grow test suite / CI with Jenkins
• Add new feature/test

• Create Paramesh baseline with 
FLASH4.4

• Refactor Paramesh 
implementation

• Implement with AMReX & 
compare against Paramesh 
baseline



DOCUMENTATION 



34 ATPESC 2019, July 28 – August 9, 2019

Lifecycle

Maintenance
Ongoing Testing

Issues and Bug Resolution

Capability 
Addition

Initial Development 

Requirements 
analysis Design

Verification 
validation Implementation

Integration of 
New Research

Release 
Distribution

User Support



35 ATPESC 2019, July 28 – August 9, 2019

Documentation

Requirements 
analysis • Expectations from the software

• Capabilities needed
• Solvers needed
• Constraints
• How will they be tested

Example FLASH
• Same code for different 

applications -> configurability
• Shock Hydro, Degenerate 

matter EOS, AMR
• Battery of tests

Initial Development 



36 ATPESC 2019, July 28 – August 9, 2019

Documentation

Design
• Software overview
• Architecture
• Interfaces
• Coding principles
• Coding standards

Example FLASH
• Design docs à snapshot of 

discussion
• Online example of unit
• Coding standards

Initial Development 



37 ATPESC 2019, July 28 – August 9, 2019

Documentation

Implementation

• Header – documenting 
functionality, inputs and 
outputs and outcomes

• API – tools that autogenerate 
documentation

Doxygen, NDoc, Visual 
Expert, Javadoc, EiffelStudio, Sa
ndcastle, ROBODoc, POD, Twin
Text

• Inline documentation
• Implementation choices 

Initial Development 

https://en.wikipedia.org/wiki/Doxygen
https://en.wikipedia.org/wiki/NDoc
https://en.wikipedia.org/wiki/Visual_Expert
https://en.wikipedia.org/wiki/Javadoc
https://en.wikipedia.org/wiki/EiffelStudio
https://en.wikipedia.org/wiki/Sandcastle_(software)
https://en.wikipedia.org/wiki/ROBODoc
https://en.wikipedia.org/wiki/Plain_Old_Documentation
https://en.wikipedia.org/wiki/TwinText


38 ATPESC 2019, July 28 – August 9, 2019

Documentation

Maintenance
Ongoing Testing

Issues and Bug Resolution

Release 
Distribution

User Support

• User’s guide
• Developer’s guide
• Reference manual

API Online reference

http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug_4p4/
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p6/
http://flash.uchicago.edu/site/flashcode/user_support/tips_arch.txt


39 ATPESC 2019, July 28 – August 9, 2019

Documentation

Maintenance
Ongoing Testing

Issues and Bug Resolution

Initial Development 

Requirements 
gathering Design

Verification 
validation Implementation

Release 
Distribution

User Support

• User’s guide
• Deveoper’s guide
• Reference manual

API 
Capability 
Addition

Integration of 
New Research

http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug_4p4/
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p6/


www.anl.gov

TAKEAWAYS ….
TO HAVE GOOD OUTCOME FROM REFACTORING
KNOW WHY, HOW MUCH, AND COST
PLAN
HAVE STRONG TESTING AND VERIFICATION
GET BUY-IN FROM STAKEHOLDERS
DIFFERENT STAGES OF SOFTWARE NEED DIFFERENT 
DOCUMENTATION
DOCUMENTING WHY IN THE CODE IS AS IMPORTANT AS HOW


