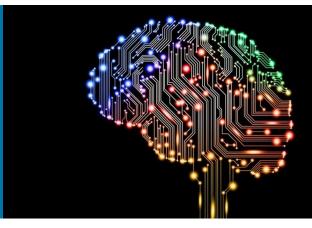
AUG 9, 2019

Deep Learning: Basics



Prasanna Balaprakash

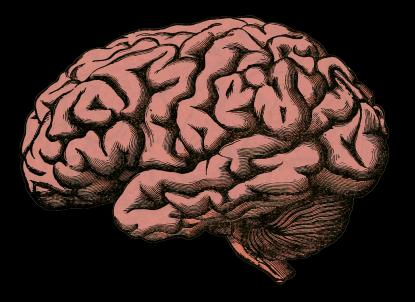
Mathematics and Computer Science Division &

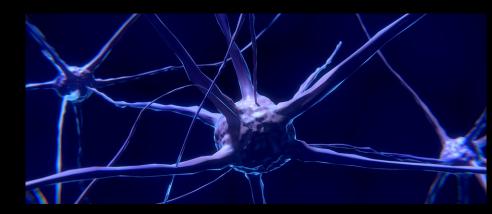
Leadership Computing Facility

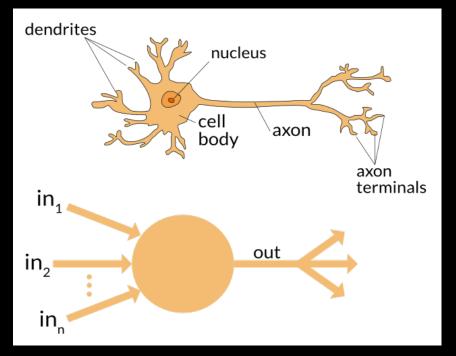
Argonne National Laboratory

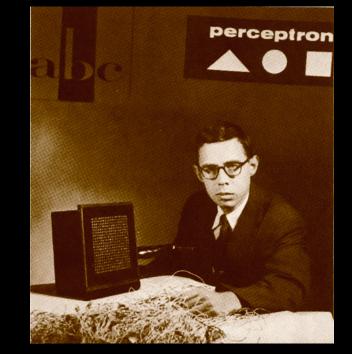
What is difficult for a computer?

Brain and neurons



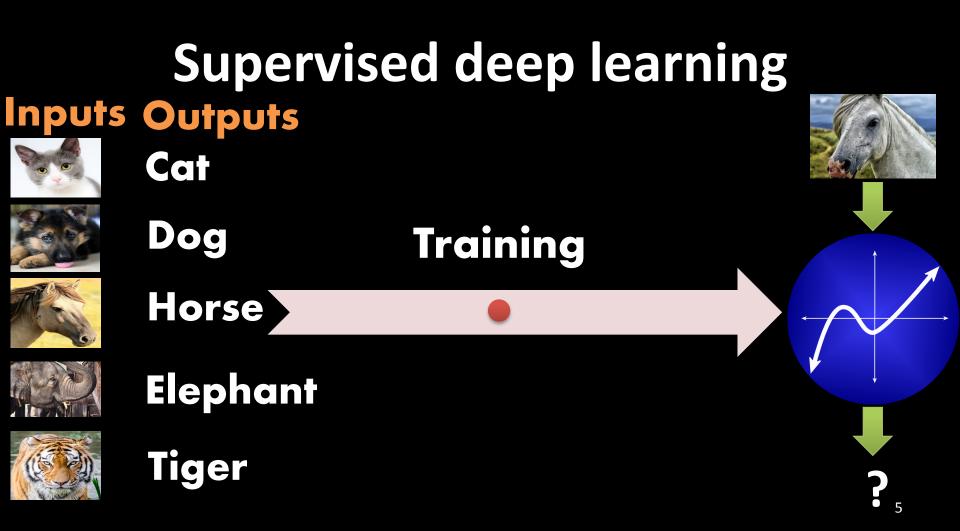






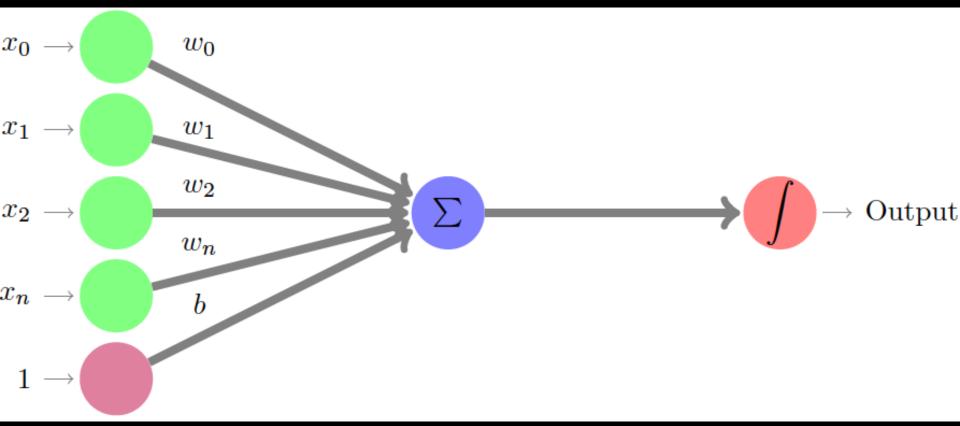
(Loosely) inspired by neurobiology Frank Rosenblatt, 1952

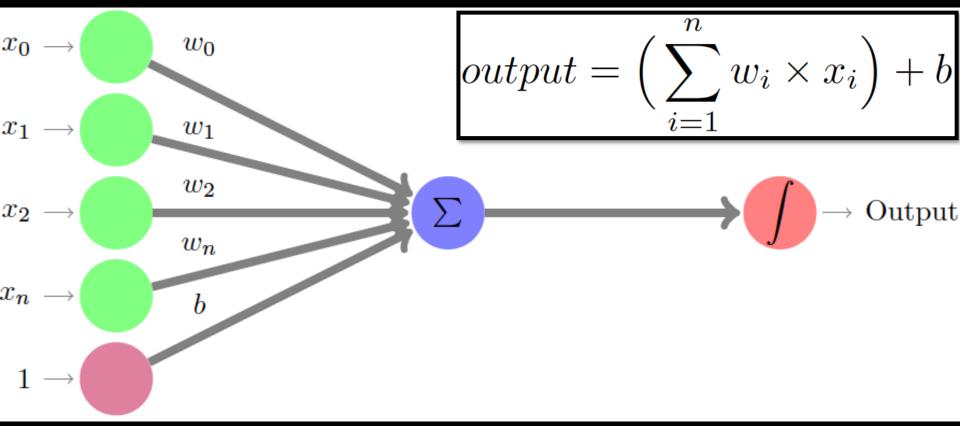
4

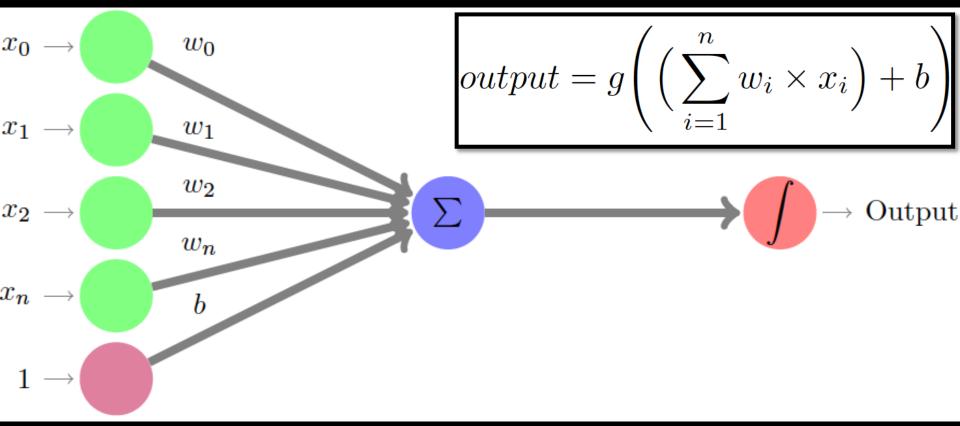


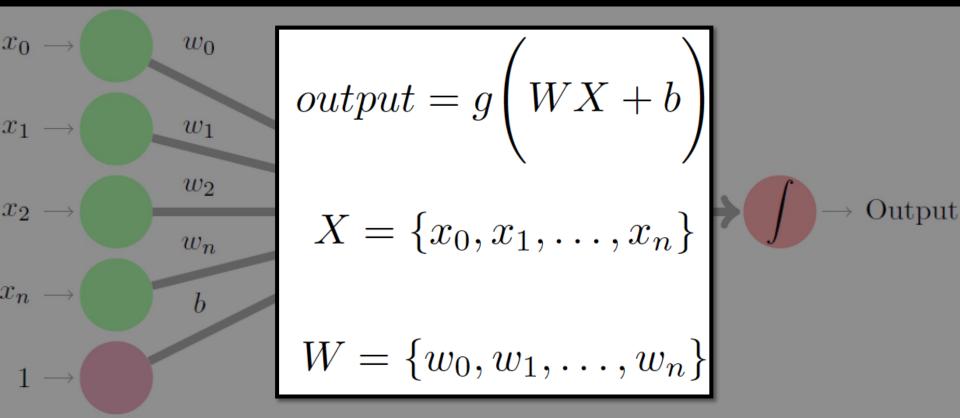
Outline

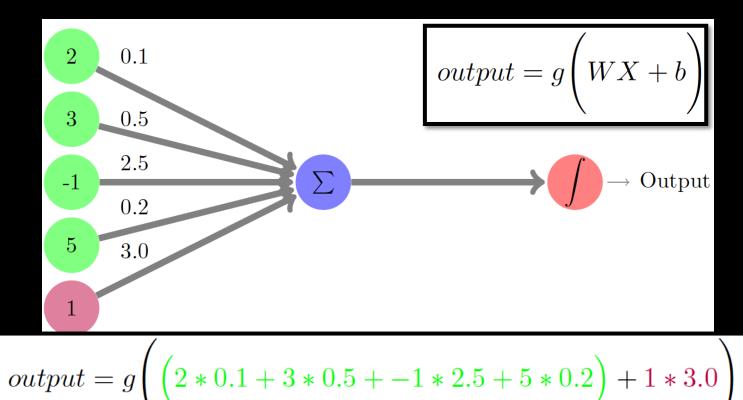
- Perceptron and deep neural networks
- Training deep neural networks
- Improving training

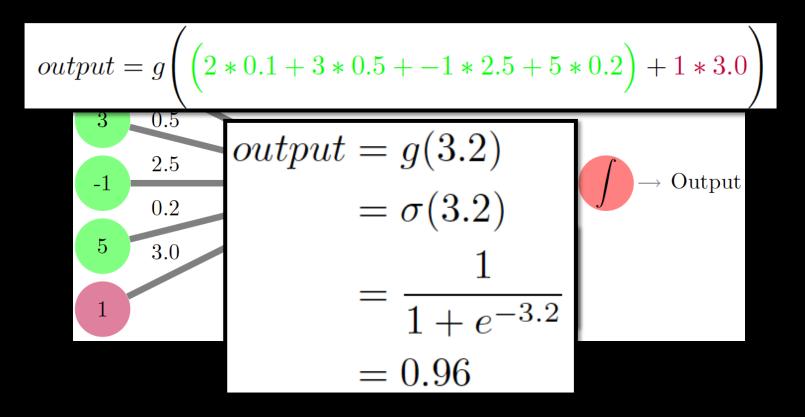




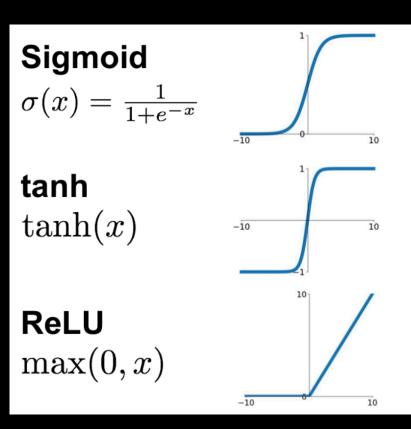


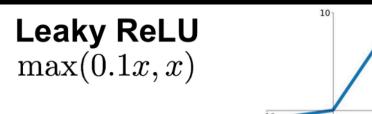






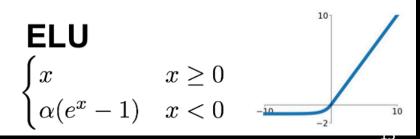
Common activation functions



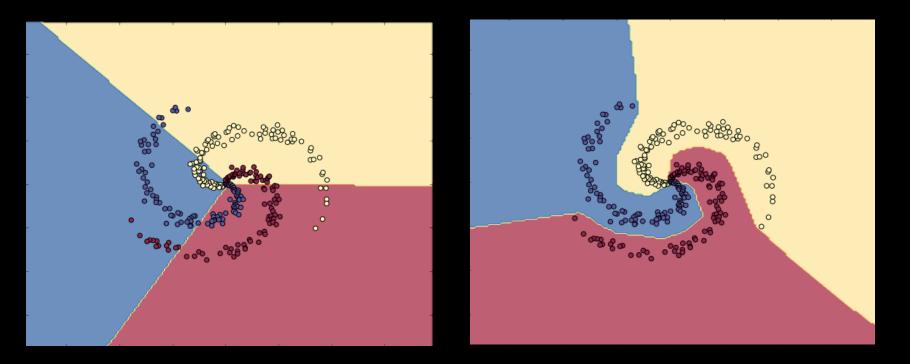


10

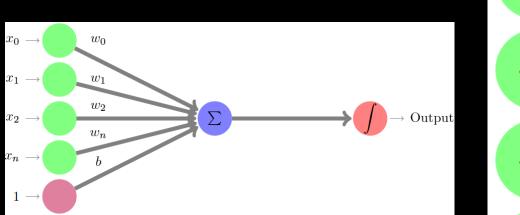
 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

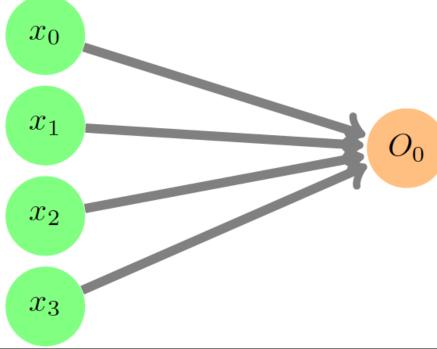


Importance of nonlinear activations

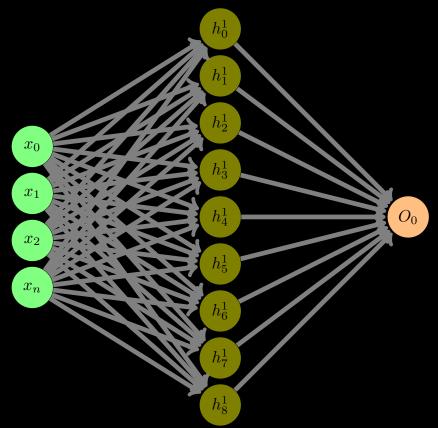


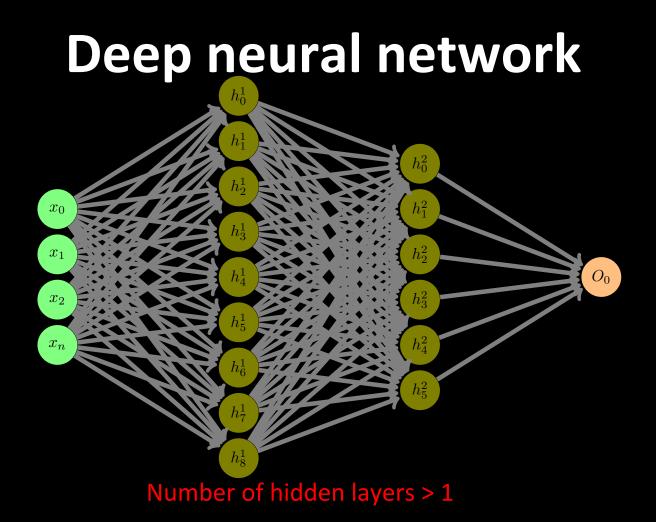
Perceptron simplified





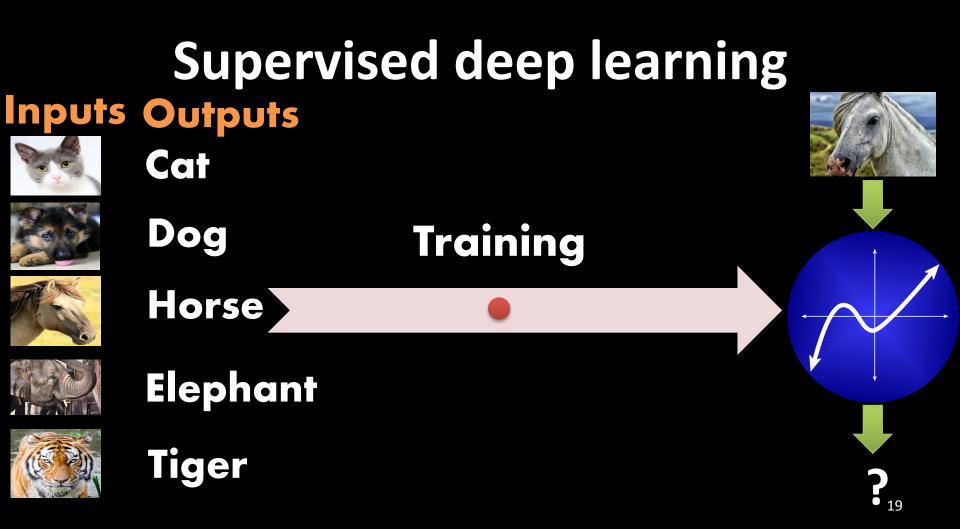
Multi-layer perceptron



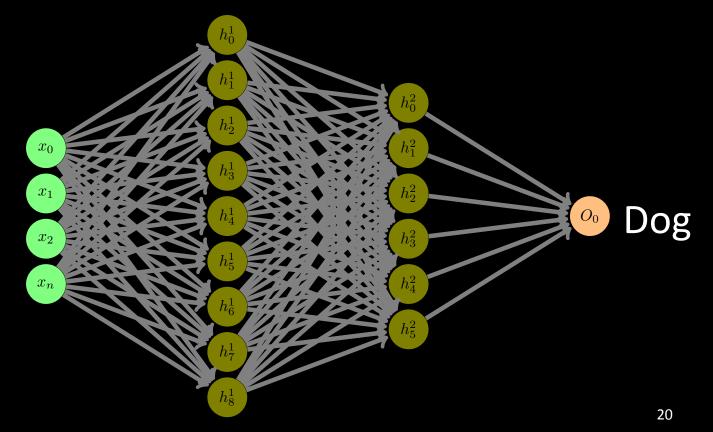


Outline

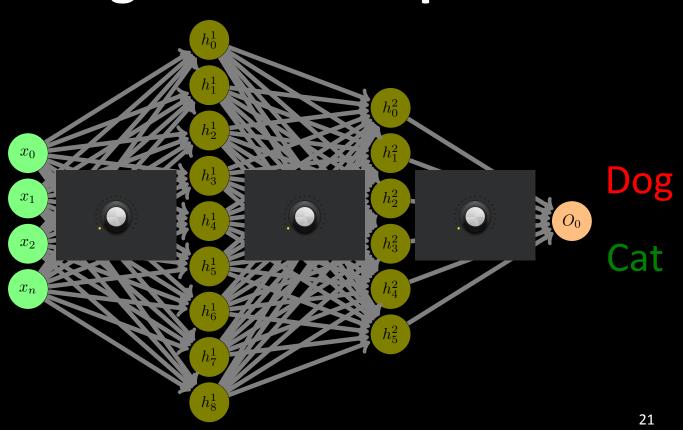
- Perceptron and deep neural networks
- Training deep neural networks
- Improving training



Training: forward pass



Training: backward pass



Quantifying error (loss)

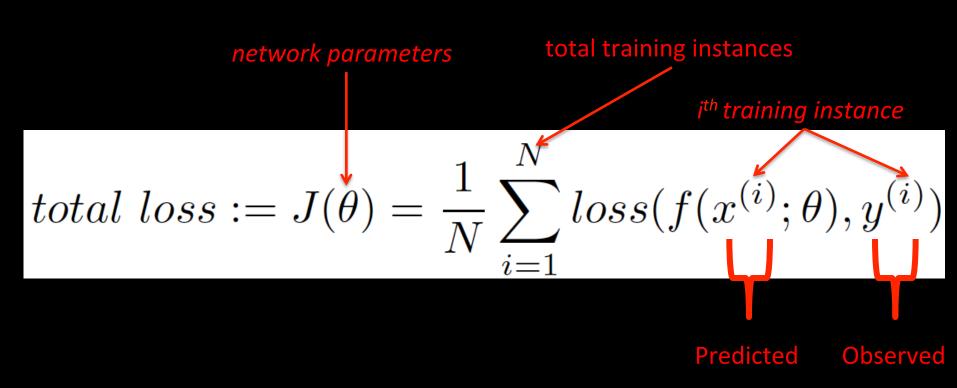
ith training instance (e.g. cat image)

network parameters

$$loss(f(x^{(i)};\theta), y^{(i)})$$

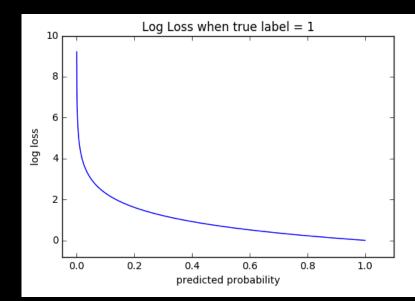
PredictedObserved(Dog)(Cat)

Quantifying error (loss)



Cross entropy loss

Measure loss of *a classification model* whose *output is a probability value between 0 and 1*

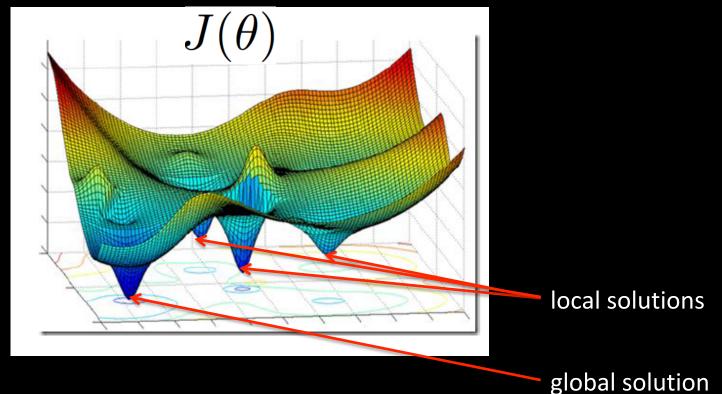


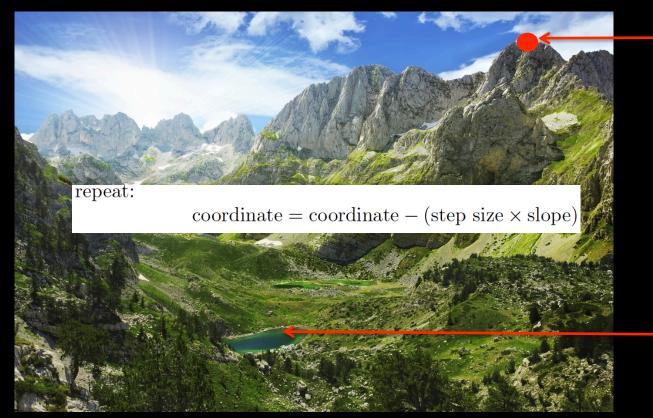
$$Cross \ Entropy(\theta) := J(\theta) = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log(f(x^{(i)}; \theta) + (1 - y^{(i)}) \log(1 - f(x^{(i)}; \theta)))$$

Training neural networks: objective

 $\arg_{\theta} \min \frac{1}{N} \sum_{i=1}^{N} loss(f(x^{(i)}; \theta), y^{(i)})$ How to minimize? J(heta) $_{ heta=W_1,W_2,\ldots,W_n}$

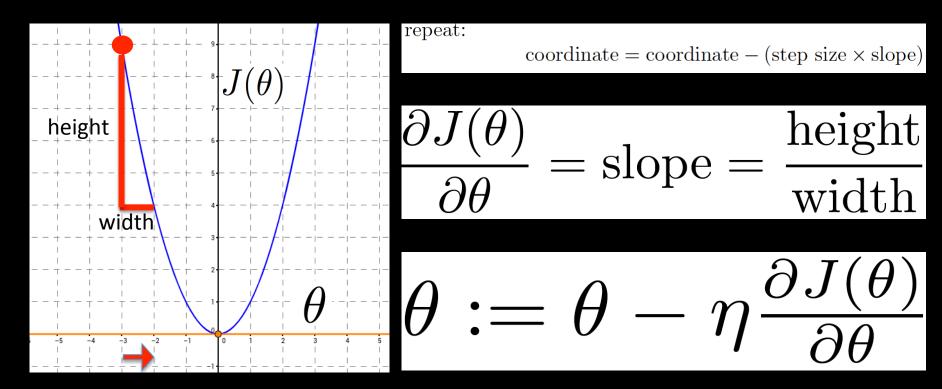
Training neural networks: objective

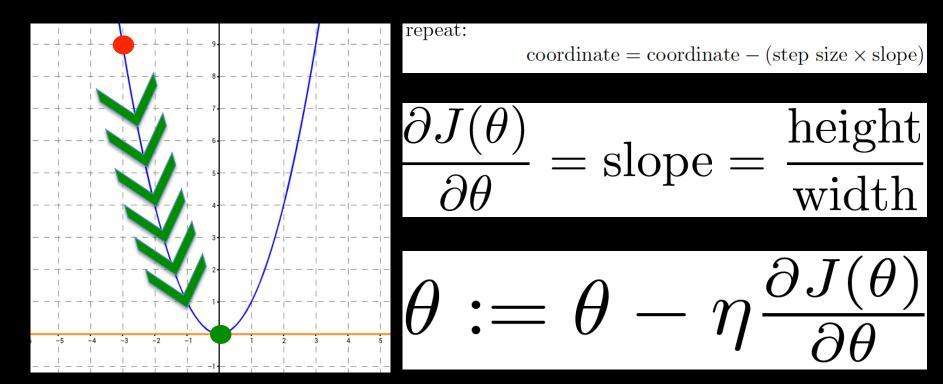




You are here!

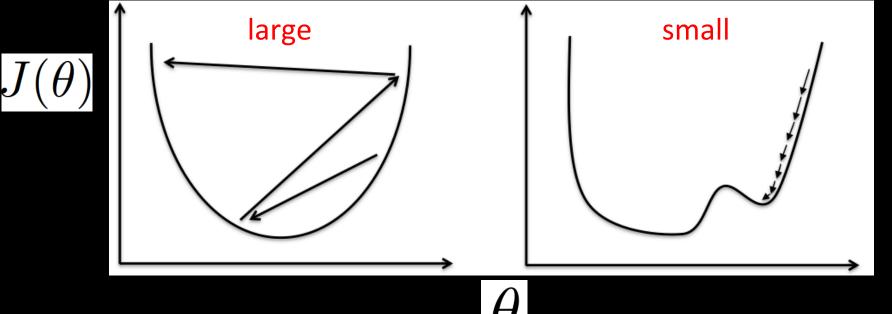
You want to go here!





$$\theta := \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$$

learning rate



Stochastic gradient descent

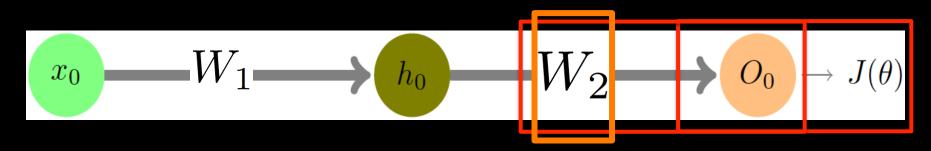
- Initialize θ randomly
- For N epochs
 - For each training example (x, y): * compute loss gradient: $\frac{\partial J(\theta)}{\partial \theta}$ * update θ with update rule: $\theta := \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$

Mini-batch gradient descent

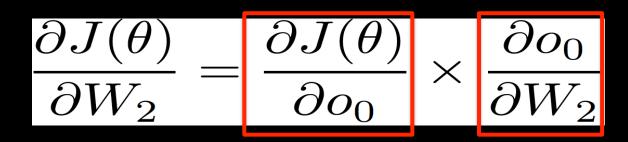
- Initialize θ randomly
- For N epochs
 - For each batch of training examples $\{(x_0, y_0), \ldots, (x_b, y_b)\}$:
 - * compute loss gradient: $\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{B} \sum_{i=1}^{N} \frac{\partial J^{i}(\theta)}{\partial \theta}$
 - * update θ with update rule:

$$\theta := \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$$

Backpropagation



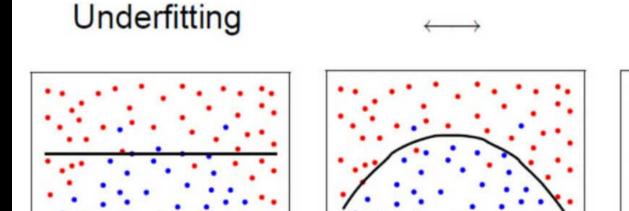
Chain rule

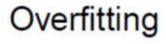


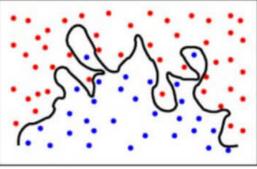
Outline

- Perceptron and deep neural networks
- Training deep neural networks
- Improving training

Improving training

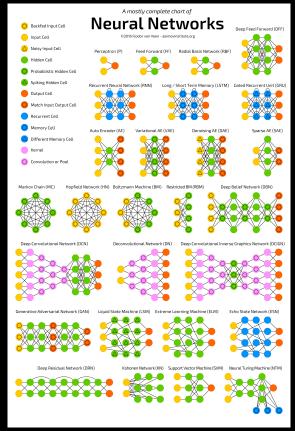






How to avoid under fitting?

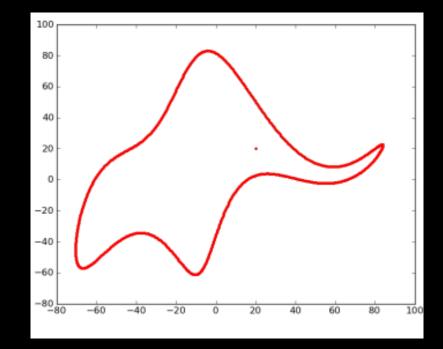
- Increase the number of units/layer and hidden layers
- Use appropriate network
 - Convolutional network for images
 - Recurrent network for sequences
- Within the same network
 - Experiment with hyper parameters
 - Activation functions, optimizers, batch size



How to avoid over fitting?

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk" ---Enrico Fermi

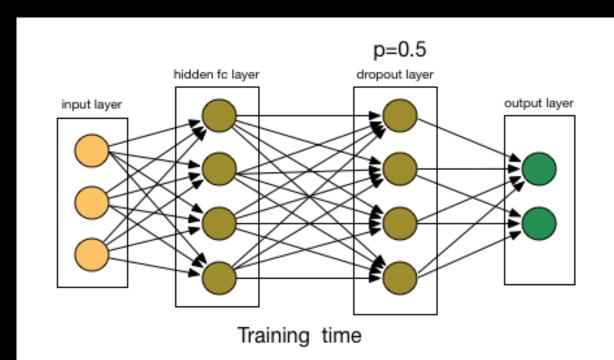
Deep neural networks: 10⁶ to 10⁹ parameters!



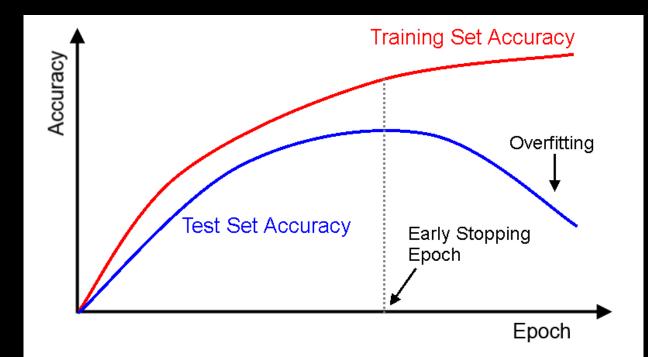
Mayer et. al., *Drawing an elephant with four complex parameters*, Am. J. Phys. 78, 648 (2010) ³⁷

Data augmentation

Dropout



Early stopping



Regularization

 $\sum loss(f(x^{(i)};\theta), y^{(i)}) + \lambda \sum (\theta_i)^2$ m=1

Summary

- Perceptron
- Perceptron to neural networks
- Forward pass
- Backward propagation with gradient descent
- Under fitting and over fitting

Questions

https://imgs.xkcd.com/comics/machine_learning.png