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Uncertainty Quantification

Neural Networks:
 Black Box

 How do we know if new model is making
sensible predictions or guessing at random?

» Model or statistical errors help explain failure
to generalize

« DI often criticized for lack of robustness,
interpretability, reliability
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Understanding what a model does not know
is a critical part of any scientific analysis
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Neural Networks

A Neural Network

represents a function with many parameters &
is recursive application of weighted linear functions followed by non-linear functions

Data :D = x",y"

Parameters :0 = weights
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Why use Bayesian methods in Deep Learning?

Drawback to DL:
« Many hyperparameters require specific tuning, with large
datasets finding the optimal set can take a long time

* NN’s trained with BP obtain point estimates of the weights

in the network (s O
/. |D \)
) ="

* No uncertainty in these point estimates: very important for
e.g. medical diagnosis, finance, self driving cars etc.

« Common to use large NN to fit data & use regularization
to try to prevent overfitting

» Need efficient search algorithms/guess work to find best
network architecture
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Explaining why a model fails...

Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Softmax gives probabilities for each class

b t t th t - t . th d I Anh Nguyen Jason Yosinski Jeff Clune
ut no € uncertainty Iin the moae University of Wyoming Cornell University University of Wyoming
anguyen8@uwyo.edu yosinski@cs.cornell.edu jeffclune@uwyo.edu

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
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CIFAR-100's apple misclassified as CIFAR-10's frog class with p > 0.9.
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https://hjweide.github.io/quantifying-uncertainty-in-neural-networks

What are Bayesian Neural Networks?

« Think of training the network as inference problem which we solve using Bayes’ Thm.
L(D|6)(6)
p(|D) =
p(D)
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What are Bayesian Neural Networks?

» Think of training the network as inference problem which we solve using Bayes’ Thm.
L(D|6)m(6)
p(9|D) =
p(D)

« A Bayesian Neural Network is a Neural Network with distributions over weights and
biases. The loss which we are trying to minimize is the Posterior Distribution.

« We find a weighted average over all parameters which can be thought of as an infinite
ensemble of neural networks.
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What are Bayesian Neural Networks?

Think of training the network as inference problem which we solve using Bayes’ Thm.
L(D|6)m(6)
p(9|D) =
p(D)

A Bayesian Neural Network is a Neural Network with distributions over weights and
biases. The loss which we are trying to minimize is the Posterior Distribution.

We find a weighted average over all parameters which can be thought of as an infinite
ensemble of neural networks.

Neal 1995 (& Williams 1997, Lee et al 2018 Google Brain...)

A single layer infinitely wide nn with distributions over weights = A Gaussian process
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Bayesian Neural Networks

hidden layers w?:,l ~ N(Oi' 61)

2 2
w; ~ N (0, €*)

o,

input layer { >

.o‘@

p(f|a) prior
p(8]D, ) o p(ylz, O)p(6l) posterior

p(y'|D,2', ) = fp(y'|af;’,9)p(9|D,a)da prediction

Many inference methods to approximately
solve for this posterior
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Classes

class BicanInference :Adversarially Learned Inference (Dumoulin et al., 2017) or

Practical Variational Inference for Neural Networks

class GaNInference : Parameter estimation with GAN-style training

class cibbs : Gibbs sampling (Geman & Geman, 1984).

Alex Graves
Department of Computer Science class =wc : Hamiltonian Monte Carlo, also known as hybrid Monte Carlo
University of Toronto, Canada

raves@cs.toronto.edu PRy . . . P 18 pt
g class Implicitkigp : Variational inference with implicit probabilistic models

class Inference : Abstract base class for inference. All inference algorithms in

Abstract
Variational methods have been previously explored as a tractable approximation class xpq : Variational inference with the KL divergence
to Bayesian inference for neural networks. However the approaches proposed so
far have only been applicable to a few simple network architectures. This paper class xLqp : Variational inference with the KL divergence

introduces an easy-to-implement stochastic variational method (or equivalently,

minimum description length loss function) that can be applied to most neural net-

works. Along the way it revisits several common regularisers from a variational class raplace ! Laplace approximation (Laplace, 1986).
perspective. It also provides a simple pruning heuristic that can both drastically re-
duce the number of network weights and lead to improved generalisation. Exper-
imental results are provided for a hierarchical multidimensional recurrent neural
network applied to the TIMIT speech corpus.

class map : Maximum a posteriori.

class MetropolisHastings : Metropolis-Hastings (Hastings, 1970; Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953).

class Montecarlo : Abstract base class for Monte Carlo. Specific Monte Carlo methods
class ReparameterizationEntropyKLgp : Variational inference with the KL divergence
class ReparameterizationKLKLgp : Variational inference with the KL divergence

MCMC methods

Gibbs sampling
H a m | | tO n Ia n M C Zco 1;:;; scanc ! Stochastic gradient Hamiltonian Monte Carlo (Chen, Fox, & Guestrin,

Variational Inference

class Reparameterizationkigp ! Variational inference with the KL divergence

class scrp @ Stochastic gradient Langevin dynamics (Welling & Teh, 2011).
class scoreEntropyKLgp : Variational inference with the KL divergence

class scorekLkLgp : Variational inference with the KL divergence

Argonne Leadership Computing Facility Argonne o

NATIONAL LABORATORY




Bayesian approach

A Practical Bayesian Framework for Backprop Networks

« Marginalization over hyperparameter David J.C. MacKay

Computation and Neural Systems®
. California Institute of Technology 139-74
* Naturally account for uncertainty Pasadens CA 91125

mackay@hope.caltech.edu

* More robust to overfitting as average rather than point
eStImate Used Abstract

A quantitative and practical Bayesian framework is described for learning of map-
pings in feedforward networks. The framework makes possible: (1) objective compar-
° L1 /L2 regL”anzanon = ChO|Ce Of pr|0r for We|ghtS isons between solutions using alternative network architectures; (2) objective stopping
rules for network pruning or growing procedures; (3) objective choice of magnitude
and type of weight decay terms or additive regularisers (for penalising large weights,
0 0 0 = etc.); (4) a measure of the effective number of well-determined parameters in a model;
¢ MOdel Comparlson via BayeSIan EVIdence (5) )c;uérftiﬁed estimates of the error bars on network parameterz and on network out-7
put; (6) objective comparisons with alternative learning and interpolation models such
as splines and radial basis functions. The Bayesian ‘evidence’ automatically embod-
ies ‘Occam’s razor,” penalising over—flexible and over—complex models. The Bayesian
approach helps detect poor underlying assumptions in learning models. For learning
models well matched to a problem, a good correlation between generalisation ability
and the Bayesian evidence is obtained.
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Bayesian approach

A Practical Bayesian Framework for Backprop Networks

« Marginalization over hyperparameter David J.C. MacKay

Computation and Neural Systems®
. California Institute of Technology 139-74
* Naturally account for uncertainty Pasadens CA 91125

mackay@hope.caltech.edu

* More robust to overfitting as average rather than point
eStImate Used Abstract

A quantitative and practical Bayesian framework is described for learning of map-

pings in feedforward networks. The framework makes possible: (1) objective compar-

° L1 /L2 regL”anzanon = ChO|Ce Of pr|0r for We|ghtS isons between solutions using alternative network architectures; (2) objective stopping

rules for network pruning or growing procedures; (3) objective choice of magnitude

and type of weight decay terms or additive regularisers (for penalising large weights,

0 0 0 = etc.); (4) a measure of the effective number of well-determined parameters in a model;

¢ MOdel Comparlson via BayeSIan EVIdence (5) )c;uérftiﬁed estimates of the error bars on network parameterz and on network out-7

put; (6) objective comparisons with alternative learning and interpolation models such

as splines and radial basis functions. The Bayesian ‘evidence’ automatically embod-

ies ‘Occam’s razor,” penalising over—flexible and over—complex models. The Bayesian

approach helps detect poor underlying assumptions in learning models. For learning

models well matched to a problem, a good correlation between generalisation ability
and the Bayesian evidence is obtained.

But how well do
they scale... ??
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PyMC3

Stan
. Slow in high dim
. Approximate solution to exact posterior

Edward .
Tensorflow Probability & Edward (Tran et al 2016)

f » Variational inference: finds exact solution to approx. posterior
TensorFlow ZhuSuan (Shi et al 2017)
83 SKPro machine learning toolbox (Gressman et al 2018)
ZHUSUAN Pomegranate (Schreiber 2017)
Skpl"O > Oracle Labs Augur (Tristan et al 2014) - 1,000 GPUs
0 5B
O
p@megranate
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https://dl.acm.org/author_page.cfm?id=81342514111&coll=DL&dl=ACM&trk=0

adapting

Prob p to drop weights from network at training time

Uncertainty Quantification — no extra cost
Avoids overfitting as it prevents units co-

Dropout
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Uncertainty Quantification — no extra cost

Dropout
* Prob p to drop weights from network at training time

» Avoids overfitting as it prevents units co-adapting

Argonne Leadership Computing Facility

?j — G(IBlel + b)bgWg
b; ~ Bernoulli(p;)
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Uncertainty Quantification — no extra cost

Dropout
* Prob p to drop weights from network at training time
» Avoids overfitting as it prevents units co-adapting

« A dropout network is simply a Gaussian process
approximation

« Srivastava et al 2014: Optimal p=0.8 input layers, 0.5
hidden layers
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?j — G(IBlel + b)bgWg
b; ~ Bernoulli(p;)
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How does dropout compare to Bayesian Neural Networks?

Dropout can be interpreted as averaging Bayesian nn is the proper way of averaging over the space of

exponentially many models with shared nn structures and parameters
weights
« Each model is weighted taking into account priors and how
« Each model is equally weighted well model fits data
» Faster to use at train and test time « Can be slow to train, difficult to scale
* Tune hyper parameters * Marginalize over hyperparameters

Argonne Leadership Computing Facility




Example: MNIST database of handwritten digits

label = 9

SHoN- N /W<

label = 2 label =1 label = 3 label =1 label = 4

label = 3 label =5 label = 3 label = 6 label = 1

label = 6 label =9

label =5 label = 0 label = 4

label = 7 label = 2 label
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Example: MNIST database of handwritten digits
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BNN results: .

Iter:400
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BNN results:

15

Iter:400

Iter:6000
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MNIST results:

Distribution of Predictive samples

1.6 1

0.2 1

1.4 4

1.2

1.0

0.8

0.6 1

0.4 1

P3| X*, X, y)

0.0

1.6 4

1.4 A

1.2 4

1.0 4

0.8

0.6

0.4 4

0.2 4

0.0

Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA



BNN results: Iter:400
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Iter:6000
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BNN results: weights

Iter:400

Iter:6000

weight means

weight stddevs
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Standard Neural Network:
Softmax outputs

.2586000e-29
.0000000e+00
.0000000e+00
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Softmax is not a measure of model or statistical uncertainty.

A model can be uncertain in prediction even with high softmax
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Thank you !

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLIERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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