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Deep Learning in
Cosmology/Astronomy

Big data challenges:

» Volume of data (Gigabytes, Terabytes, Petabytes,
Exabytes)

« Complexity of data

» Rate of data (massive data streams, real time
knowledge extraction)

» Big scientific data visualization
« Hardware and software co-design
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Data and compute sizes:
Final volume of raw image data = 60 PB
Final catalog s‘ize (DR11) = 15 PB

' Peak compute,power in LSST data centers
= about 2 PFLOPS

Network bandwidths:
Summit (Cerro Pachén) - Base (La Serena)
=600 Gbps
Base (La Serena) to Archive (NCSA)
=2x 100 Gbps

Alert Production:
Real-tipe alert latency = 60 seconds

Estimated number of alerts per night
= up to about 10-million

Data Releases:
.Number of Data Releases = 11

Irhages‘collected
= 5.5.million 3.2 Gigapixel images

‘Estimated counts for DR1

(pro'duced from first 6 months of observing)

b_ . Objects = 18 billion; Sources = 350 billion

(single epoch); Forced Sources = 0.75 trillion

Estimated counts for DR11
Objects = 37 billion; Sources = 7 trillion

* (single epocﬁ);‘ Forced ’Sources = 30 trillion
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Deep Learning in
Cosmology/Astronomy

Applications:

* Mock catalogue creation

* Augment N-body simulations

« Detect gravitational lenses

« Detect transients in real time

» Detect gravitational waves in real time

» Classify galaxy images

» Parameter estimation from time series data
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Deep Transfer Learning to classify galaxy images

HEOOEREREE BSAERREROEE
HERERERERE SONSSRNENE
HEREERRRNN S0SRROEDaE
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Deep Transfer Learning to classify galaxy images

8]

: All base layers > 2 unfrozen

Network:

Xception + a few custom defined fully connected layers
Weights:

pretrained weights with the ImageNet dataset
Data:

resized all the galaxy images 299 x 299 pixels

Method:

Progressively unfreeze earlier layers of the whole network
Fine tune their weights for a few epochs of training

Retain earlier layers of a trained network: versatile filters
for features like lines and edges

NVIDIA. ArgonneA
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Using the network as a feature extractor

Network output:

output activation values from
second-to-last layer

3D representation

t-Distributed Stochastic Neighbor
Embedding (t-SNE)

Addresses common problem of large
unlabeled datasets
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SDSS spirals

SDSS ellipticals

« Elliptical
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Khan et al 2019

FIG. 4: t-SNE visualization of the clustering of HP SDSS and DES test sets, and unlabelled DES test.
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Deep Learning driven science

Novel data-parallel deep learning fusing
Multimessenger Astrophysics through the NCSA-Argonne Collaboration HPC and Al for MultiMessenger
Pls: Huerta, Zhao, Haas, Saxton (NCSA) Astrophysics (MMA).

N I % Detecting Gravitational Waves in Real-Time with Deep Learning Huge potential for scientific diSCOVGry

NCS. WOLFRAM NVIDIA.
Data from a LIGO Interferometer around the first event (GW150914)

« Convergence of all-sky GW
observations (LIGO) with deep, high-
cadence electromagnetic
observations (LSST)
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 Novel visualization of Neural
—[»]u]+] Networks

Convolut Layer 1
Convolution Layer 2
Convolution Layer 3

Fully Connected Layer

Output Layer

Gravitational Waves Not Detected

Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data - Daniel George and E. A. Huerta (2017)

Deep Learning for Multi-Messenger Astrophysics. A
Gateway for Discovery in the Big Data Era, Huerta et
al., Nature Review Physics

9  Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA




Deep Learning at Scale for Gravitational Wave Parameter
Estimation of Binary Black Hole Mergers

DL at scale for parameter estimation of Binary Black Hole (BH) mergers
(spins are aligned or anti-aligned, evolve on quasi-circular orbits)

Densely sample 4-D signal manifold ~300,000 simulated waveforms

Enhance dataset to 107 samples
time invariance in the data stream detectors
scale invariance in range of SNR
Add non-Gaussian and non-stationary noise.

Distinct NN models to estimate
Individual BH masses
BH remnants - final spin, GW quasi-normal frequencies
Curriculum learning with decreasing SNR

Inference carried out for each binary BH merger observed so far from LIGO and Virgo detectors

Parameters reconstructed within 2 milliseconds
Consistent with Bayesian analyses (days to weeks)
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Data

Number of features:
8192Hz (nsteps) downsampled compared to real data frequency

Number of samples:

300,000 simulated unique waveforms (1D time series data),
augmented to 107 waveforms ~28GB. Collaboration with Princeton 50M
waveforms

NN for spin of BHs — 300M waveforms

Encoding the data:
HDF5, TFRecords m1 € [9Mg,65M )]

Feature selection ma € [5'2M®’ 42M®]
— in network Root and Leaf model ag2) € [_008, 0.8]
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Models oo

Root: Convolutional Layers

Model 1: Leaf1: Fully Leaf2: Fully Leaf3: Fully
. ; ) Connected Connected Connected
* BH remnants - final spin, GW quasi-normal Layers Layers Layers

frequencies

« HSD-CNN Hierarchically self decomposing CNN
(SaiRam et al 201 8)’ SUbnetworkS for SpGlelC Set Of (kernel size, # of output channels, stride, dilation rate, max pooling kernel, max pooling stride)

classes (16,64, 1,1,4,4)
(16,128,1,2,4,4)
. Root Layer: (16,256, 1’ 2,4,4)

« EraseRelLU (Dong et al 2017): erasing RelLUs of Convolutional (5»42,122586 1,22,04,04)) ReLU
certain layers to enhance propagation of useful (4.128,1,2.0,0)
information (2,64,1,1,0,0)

Leaf Layer :
FC (1024,0.0) ReLU
C (1024, 0.0) ReLU
C (1024, 0.0) Identity
Argonne Leadership Computing Facility C (1’ 0'0) Tanh Argggngug




Models

Model 2:
« BH masses

« Squeeze-Excitation structure(Hu et al 2018)
models interdependencies in channels

« 'Highway’ block (Srivastava et al 2015) learns
the residual components, short cut for learning
features

Argonne Leadership Computing Facility

Input
Data

lx

Root: Convolutional Layers
| Inception |

Is
Inception Module Ixixc
1x1 Xg Leafll Leaf21
1x1xS SE + Highway SE + Highway
1x1xC
1x1xC
Leafl2 Leaf22
Fully Connected Fully Connected
Layers Layers

SE-Inception Module

(kernel size, # of output channels, stride, dilation rate, max pooling kernel, max pooling stride)

Layer Layer Activation
Component Configurations | Functions
Root Layer: (16,64,1,2,4,4)

(16,128,1,2,4,4) | ReLU

Convolutional (16,128, 1,2, 4, 4)
128, 3
Leaf Layer: SE §128, 33 ReLLU
Leaf Layer: Highway| (4,128,2,30) ReLU

Leaf Layer :

FC (1024,0.1) ReLU

FC (1024,0.1) ReLU

FC (1024, 0.0) Identity

FC (1,0.0) Tanh Argonne &



Bayesian Neural Network implementation

» |L2loss re-defined to be ELBO loss

» Posterior distribution = Normal with network outputs as
mean, std could be implemented also

labels_distribution = tfd.Normal(loc=outputs,scale=fixed var*tf.ones(1))
sample_distribution = labels_distribution.sample()

# Compute the -ELBO as the loss, averaged over the batch size.
neg_log_likelihood = -

tf.reduce _mean(input_tensor=labels_distribution.log prob(output_vector))

KL = sum(model.losses)/ tf.cast(self.N,dtype=tf.float32)

elbo Loss = neg_log_likelihood + alpha_ KL * KL
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Thank you !
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