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WHAT IS OPTIMIZATION?
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• “best route” (Minimize cost of delivery subject to all mail is delivered)
• “best product” (Minimize -profit subject to safety)
• “best prediction model” (Minimize prediction error)

“objective” or “loss” function



MACHINE LEARNING 
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• “best prediction model” (Minimize prediction error)
• “best recommendation” (Minimize # who don’t buy anything)
• “best clusters” (Minimize distance within clusters while 

maximizing distance between clusters)

Underneath most ML problems is an optimization problem



TYPES OF OPTIMIZATION

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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TYPES OF OPTIMIZATION

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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More time on formulating problem to fit 
these categories

More time on optimization algorithm

Roughly…



LINEAR PROGRAMMING

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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linear

Picture source: Ylloh at wikipedia.org/wiki/Linear_programming

Mature polynomial-time algorithms
Local minima are global optima

Convex polytope



QUADRATIC PROGRAMMING

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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quadratic

Picture source: Jph425 at optimization.mccormick.northwestern.edu

If Q is positive definite:
Weakly polynomial-time algorithms
Local minima are global optima

Convex polytope



CONVEX OPTIMIZATION

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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Convex function

In some cases: poly-time
Local minima are global optima
Reliable methods

Convex set



DIFFERENTIABLE OPTIMIZATION

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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Differentiable function

Picture source: Robert Johansson in “Optimization”

Generally NP-hard

Local minima problematic

Can use gradients and ideally 

Hessians in algorithm



GENERAL OPTIMIZATION

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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Generally NP-hard
Hopefully know some structure!



DISCRETE OPTIMIZATION

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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continuous
optimization

discrete
optimization

Picture source: wallpaperflare.com



CLASSIFICATION EXAMPLE
§ Problem: label each document ! as related to politics or not (1 or -1).
§ Hard to come up with rules by hand, so ML helps: learn function ℎ(!)
§ Really want to minimize expected risk of misclassification:

§ How do we pick family of functions to optimize over?
§ How do we know which one is optimal? 
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REALITIES
§ Really want to minimize expected risk of misclassification:

§ Don’t know probability distribution, so minimize empirical risk:

§ Easier if smooth loss and parameterized h:
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CHOOSING FUNCTION FAMILY
§ Possibility of low empirical risk on training data
§ Expected risk and empirical risk don’t have large gap
§ Can efficiently solve optimization
§ (convenient representation, smoothness,…)

14

Bias vs. variance
Overfitting vs. underfitting

Major themes of machine learning!



BIAS VS. VARIANCE
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Picture similar to: Seema Singh, “Understanding the Bias-Variance Tradeoff”

High variance

overfitting

High bias Low bias, low variance

underfitting balanced



LINEAR REGRESSION (LEAST-SQUARES)

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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if multiply out:

… quadratic program!



SUPPORT VECTOR MACHINE

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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Find linear classifier with maximum margin

… quadratic program!

Picture source: https://scikit-learn.org/stable/modules/svm.html



SUPPORT VECTOR MACHINE

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General

18

D
es

pe
ra

tio
n

Find linear classifier with maximum margin

Picture source: https://scikit-learn.org/stable/modules/svm.html

Kernel SVM can do nonlinear classification
while remaining a quadratic program



K-MEANS CLUSTERING

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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Find clustering that minimizes distances within clusters

NP-hard discrete problem, so use approx. algorithm
Picture source: Prasad Patil, “K Means Clustering : Identifying F.R.I.E.N.D.S in the World of Strangers”



DEEP LEARNING

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General

20

D
es

pe
ra

tio
n

Too expensive

Getting desperate, plus want to be scale well, 
so use gradient descent



RECALL: TYPES OF OPTIMIZATION

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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More time on formulating problem to fit 
these categories

More time on optimization algorithm

Roughly…



ANALOGOUSLY…

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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More time on formulating problem 
(choosing features) so that these 
(biased) methods are suitable

More time on optimization algorithm

Roughly…



REMINDER
§ Possibility of low empirical risk on training data

§ Expected risk and empirical risk don’t have large gap

§ Can efficiently solve optimization

§ Big neural networks can be very expressive (low bias)

§ So don’t need to be as clever about input features

§ But then easy to overfit…

§ Optimization is tricky: optimization stalls, plus local minima or saddle points
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Bias vs. variance

Overfitting vs. underfitting



GRADIENT DESCENT
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Picture source: Divakar Kapil in “Stochastic vs Batch Gradient Descent”



TYPES OF GRADIENT DESCENT
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i.e. for empirical risk, explicitly summing over data points

Stochastic GD: use one point per step

Batch GD: use all points every step

Mini-batch GD: use a subset each step



TYPES OF GRADIENT DESCENT
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Stochastic GD: use one point per step

Batch GD: use all points every step

Mini-batch GD: use a subset each step

Each step is accurate but expensive

Each step is noisy but fast

Happy medium?

Very common in deep learning, but often call it SGD



GRADIENT DESCENT CONSIDERATIONS
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Li, et al. “Visualizing the Loss Landscape of Neural Nets” NeurIPS 2018

• Step size
• Too big: overshoot
• Too small: very slow
• (But can be good to escape

local minima)
• Initialization
• Can you make the problem easier?



VARIANT: ADAM
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Popular improvement on GD: Adam optimizer
• Separate learning rate for each weight
• Momentum: uses moving average of the gradient
• Also incorporates squared gradients

Cool exploration/visualization of momentum: https://distill.pub/2017/momentum/

(For those familiar: combines the best properties of 
AdaGrad, momentum, and RMSProp)



REGULARIZATION
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• Common way to avoid overfitting: regularization
• Most common: L2 regularization

error regularization

balance

Roughly: big coefficients/weights correspond to large variation



OVERFITTING CAUTION
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• Can you generalize outside of your training set to validation/testing set?
• What about interpolating to data you haven’t collected?
• Extrapolation extra unlikely to work



SUMMARY

§ Linear

§ Quadratic

§ Convex

§ Have 2nd derivs

§ Have gradients

§ General
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Major themes in machine learning:
• Overfitting vs. underfitting
• Ability to efficiently solve optimization problem

For more, see:



ANY QUESTIONS?

Thinking ahead to next talk: how would you parallelize gradient descent?


