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Outline

• Why do we need for distributed / parallel deep learning on HPC

• Distribution schemes: model parallelism vs data parallelism

• Challenges and tips on large batch size data parallel training

• I/O and data management

• Science use cases
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Need for distributed (parallel) training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing 
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month 
doubling period).” https://openai.com/blog/ai-and-compute/

Eras:
• Before 2012 …

• 2012 – 2014: single to couple GPUs

• 2014 – 2016: 10 – 100 GPUs

• 2016 – 2017: large batch size training, 

architecture search, special hardware 

(etc, TPU)

Finishing a 90-epoch ImageNet-1k 
training with ResNet-50 on a NVIDIA M40 
GPU takes 14 days. (1018 SP Flops)

~1s on OLCF Summit (~200 
petaFlops) if it “scales ideally”
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Need for distributed (parallel) training on HPC
• Increase of model complexity leads to dramatic increase of computation;

• Increase of the amount of dataset makes sequentially scanning the whole 

dataset increasingly impossible;

• Coupling of deep learning to traditional HPC simulations might require 

distributed inference;

• The increase in computational power has been mostly coming (and will 

continue to come) from parallel computing.

• …
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Parallelization schemes for distributed learning
Worker 4

Worker 3 Worker 2

Worker 1

Worker 1 Worker 4 Worker N 

…

Model parallelism Data parallelism
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Model parallelization in Horovod

1. Run multiple copies of the model 
and each copy:
1) reads a chunk of the data
2) runs it through the model
3) computes model updates

2. Average gradients among all the 
copies 

3. Update the model
4. Repeat (from Step 1)

https://eng.uber.com/horovod/
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Deep dive on model parallelism (Horovod)

Stochastic Gradient Descent (SGD) 
update

Dataset Weight

Minibatch

Minimizing the loss: 

Model is updated at each step.  

• One minibatch is divided into many 
sub minibatches and each is feed 
into one of the workers;

• Gradients are averaged at each step
(not each epoch)
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Large minibatch training

Minibatch

Per node throughput of different local batch size

§ Option 1. Keeping the same 

global minibatch size with each 

worker processing B/N batch

§ Option 2. Increasing the global

minibatch size by N times, so that 

each worker processes batches 

of size B.

1. Decrease of local batch size reduces the per 

node throughput;

2. Increase of global minibatch size reduces the

number of updates on each epoch (n=X/B); thus 

it increases the compute/communication ratio

H. Zheng, https://www.alcf.anl.gov/files/Zheng_SDL_ML_Frameworks_1.pdf
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Linear scaling rule
When the minibatch size is multiplied by k, multiply the learning rate by k. 

• k steps with learning rate ! and minibatch size "

• Single step with new learning rate !̂ and large 
minibatch ∪% &% (batch size '")

If ∇) *, ,-.% ∼ ∇) *, ,- we have, 0,-.1 ∼ ,-.2.
Ideally, large batch training with a linear scaled 
learning rate will reach the similar goal with the 
same number of epochs (fewer steps per epoch)

The optimal learning for a range of batch sizes, for 
an SVHN classifier trained with SGD
(S. McCandlish, J. Kaplan, D. Amodei, 
arXiv:1812.06162)
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Challenges with large batch training
• Convergence issue: at the initial stages of training, the model is far away 

from optimal solution ∇" #, %&'( ∼ ∇" #, %& breaks down. Training is not 
stable with large learning rate in the beginning;

• Generalization gap: large batch size training tends to be trapped at local 
minimum with lower testing accuracy (generalize worse).

“... large-batch ... converge to sharp minimizers of the training 
function ... In contrast, small-batch methods converge to flat 
minimizers” 

Performance of small-batch (SB) and large-batch 
(LB) variants of ADAM on the 6 networks 

Keskar et al, arXiv:1609.04836 
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Challenges with large batch training
Solutions: using warm up steps 
• Using a smaller learning rate at the initial stage of training (couple 

epochs), and gradually increase to "̂ = $"
• Using linear scaling of learning rate ("̂ = $")

No warm up Gradual warm up This scheme works up to 
8k batch size

P. Goyal et al,arXiv: 1706.02677 
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Challenges with large batch training

Predicted critical maximum batch 
size beyond which the model 
does not perform well. 

S. McCandlish, J. Kaplan, D. Amodei, 
arXiv:1812.06162



Argonne Leadership Computing Facility13

Data parallel training with Horovod

• Import Horovod modules and initialize horovod

• Wrap optimizer in hvd.DistributedOptimizer

• Scale the learning rate by number of workers

• Broadcast the weights from worker 0 to all the 

workers and let worker 0 save check point files

• Divide the dataset and each worker only work on 

piece of dataset. 

How to change a series code into a data parallel code: 

https://eng.uber.com/horovod/
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Tensorflow with Horovod
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

# Horovod: initialize Horovod.
hvd.init() 
# Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
# Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
# Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0), 
tf.train.StopAtStepHook(last_step=20000 // hvd.size()), 
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]
checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

More examples can be found in https://github.com/uber/horovod/blob/master/examples/
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PyTorch with Horovod
#…
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(

optimizer, named_parameters=model.named_parameters())

More examples can be found in https://github.com/uber/horovod/blob/master/examples/
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Keras with Horovod
import keras
import tensorflow as tf
import horovod.keras as hvd
# Horovod: initialize Horovod.
hvd.init()
# Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
# Horovod: add Horovod Distributed Optimizer. 
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
# Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

More examples can be found in https://github.com/uber/horovod/blob/master/examples/
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Scaling TensorFlow using Horovod on Theta @ ALCF 
(Intel Knights Landing): batch size = 512

AlexNet ResNet-50 Inception V3
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Overlap of communication and compute in Horovod
18

AlexNet
(batch size = 512, 

50 steps)

ResNet-50 
(batch size =64, 

50 steps)

Inception V3
(batch size =128, 

50 steps)

Increase of total time is smaller than the increase of the communication time, 
which indicates large overlap between compute and communication. 
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MPI flat profile for Horovod (AlexNet, batch size=512, 
128 KNL nodes)

19

• Majority of time is spent on MPI_Allreduce with message size ranging from KB-GB
• There is load imbalance (synchronization time)
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I/O and data management
20

• Parallel IO is needed: each worker only 
reads part of the dataset they 
needed(using MPIIO / parallel HDF5);

• Preprocess the raw data (resize, 
interpolation, etc) into binary format 
before the training;

• Store the dataset in a reasonable way 
(avoiding file per sample)

• Prefetch the data (from disk; from host to 
device)

I/O and data 
management
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I/O and data management
21

IO benchmarks for ImageNet dataset on Lustre file system on 
Theta @ ALCF (128 KNL nodes, lustre Stripe Size = 1m and 
lustre Stripe =1 except the point anointed), 

File per dataset 
(stripe Size = 32m, 
Stripe Count = 48)

Sergio Servantez

Collective IO

Independent file 
per processor

File per batch is the optimal 
way of setting – scales well 
and lower overhead from 
open/ close file.
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Science use case 1 - Galaxy classification using 
modified Xception model

22

~ 5 Hrs using 1 K80 GPU to 8 mins using 64 K80 
GPUs using computing resource from Cooley @ ALCF

Galaxy images

A Khan et al, Physics Letters B, 793, 70-77 (2019)
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Science use case 2 - Brain Mapping: reconstruction of
brain cells from volume electron microscopy data

23

Scaling results in terms of throughput Scaling results in terms of training 
efficiency (measured by time needed for 
the training to reach to certain accuracy) 

W. Dong et al, arXiv:1905.06236 [cs.DC]

Work done on 
Theta @ ALCF 
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Science use case 3 - CANDLE benchmarks: deep 
learning for cancer problems

24

Strong scaling study of CANDLE P1B1 on Theta and Summit 

I/O does not scale – room for 
further improvement.  

X. Wu et al SC18 Workshop on Python for High-Performance 
and Scientific Computing
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Conclusion
25

• Distributed training is necessary because increase of model complexity 

and the amount of dataset;

• Data parallelism can scale efficiently in HPC supercomputersl

• Warm up steps might be needed to stabilize the initial stage of training 

and avoid the generation gap for large batch size training;

• Distributed learning requires efficient and scalable I/O and data 

management.
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Thank you!

huihuo.zheng@anl.gov



Argonne Leadership Computing Facility27

Mix data parallelism and model parallelism in CNN

A. Krizhevsky, arXiv:1404.5997 [cs.NE]

• Convolutional layers cumulatively 
contain about 90-95% of the 
computation, about 5% of the 
parameters, and have large 
representations. 

• Fully-connected layers contain 
about 5-10% of the computation, 
about 95% of the parameters, and 
have small representations. 
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HOROVOD_FUSION_THRESHOLD (default: 64MB)

Alexnet (16 KNL nodes) Inception3 (16 KNL nodes)
FUSION_THRESHOLD = 64 MB already gets optimal performance.

Horovod has tensor fusion implemented, which fuses smaller tensor into a 
big buffer before doing MPI_Allreduce right away. 
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Alexnet (Horovod 0.16.1) on 128 KNL nodes 

FUSION_THRESHOLD=0

FUSION_THRESHOLD=256M
# of Allreduce decreases as we 
increase FUSION_THRESHOLD, and 
message size increases.


