AAAAAAAAAAAAAAAAAA

Data Parallel Deep Learning

Huihuo Zheng
Data science group at ALCF
August 9, 2019

huihuo.zheng@anl.gov

Outline

* Why do we need for distributed / parallel deep learning on HPC
 Distribution schemes: model parallelism vs data parallelism

» Challenges and tips on large batch size data parallel training

* |/O and data management

e« Science use cases

2 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Need for distributed (parallel) training on HPC

“Since 2012, the amount of compute used in the largest Al training runs has been increasing
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month

3

Petaflop/s-day (Training)

doubling period).” https://openai.com/blog/ai-and-compute/
AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
| Eras:
| Before 2012 ...

10 Xcention ® T17 Dota 1v1
1
1 ® Seq2Seq
01
.001
0001
00001

2013 2014 2015 2016 2017 2018 2019
Year

2012 — 2014: single to couple GPUs
2014 — 2016: 10 — 100 GPUs

2016 — 2017: large batch size training,
architecture search, special hardware
(etc, TPU)

Finishing a 90-epoch ImageNet-1k ~1s on OLCF Summit (~200

training with ResNet-50 on a NVIDIA M40——
GPU takes 14 days. (10'® SP Flops)

Argonne Leadership Computing Facility

petaFlops) if it “scales ideally”

AAAAAAAAAAAAAAAAAA

Need for distributed (parallel) training on HPC

Increase of model complexity leads to dramatic increase of computation;
Increase of the amount of dataset makes sequentially scanning the whole
dataset increasingly impossible;

Coupling of deep learning to traditional HPC simulations might require
distributed inference;

The increase in computational power has been mostly coming (and will

continue to come) from parallel computing.

Argonne Leadership Computing Facitty ... AgoNnNne ws

Parallelization schemes for distributed learning

Worker 4
% Worker 1 Worker 4 Worker N
@,

Worker'3 orker 2

VA"

Model parallelism

5 Argonne Leadership Computing Facility

Model parallelization in Horovod

Data Store

Training Process

5O

1. Read Data

¥
Model Gradients [l A'=t9% 1. Run multiple copies of the model
and each copy:
Trairing Process 1) reads a chunk of the data
e | e 2) runs it through the model
e 3) computes model updates
2. Average gradients among all the
Training Process c
q copies
Model |- Gradients | bl ¢rtoN 3. Update the model
: o 4. Repeat (from Step 1)
2. Compute Model 3. Average Gradients 4. Update Model
Updates (Gradients)
https://eng.uber.com/horovod/ Argonne &

6 Argonne Leadership Computing Facility

Deep dive on model parallelism (Horovod)

7

Minimizing the loss:

w)— Zl:c'w

a:EX
Dataset Weight

Stochastic Gradient Descent (SGD)
update

Wi41 — W — 11— ZVZiE wt)

mEB *
Minibatch
Model is updated at each step. .

Argonne Leadership Computing Facility

Training Process

Data Store Training Process

Training Process
—l Model

1. Read Data 2. Compute Model 3. Average Gradients 4. Updaie Model
Updates (Gradients)

One minibatch is divided into many
sub minibatches and each is feed
into one of the workers;

Gradients are averaged at each step
(not each epoch)

AAAAAAAAAAAAAAAAAA

Large minibatch training

1
Wi41 = Wt — 775 %Vl(xawt)

T

Minibatch

= Option 1. Keeping the same
global minibatch size with each
worker processing B/N batch

= Option 2. Increasing the global
minibatch size by N times, so that
each worker processes batches
of size B.

8 Argonne Leadership Computing Facility

400 4 AlexNet

200

ResNet50

Images/second

Inception V3

32 64 128 256 512 1024
Batch size

Per node throughput of different local batch size

H. Zheng, https://www.alcf.anl.gov/files/Zheng_SDL ML _Frameworks_1.pdf

1.

2.

Decrease of local batch size reduces the per
node throughput;

Increase of global minibatch size reduces the
number of updates on each epoch (n=X/B); thus
it increases the compute/communication ratio

AAAAAAAAAAAAAAAAAA

Linear scaling rule

9

When the minibatch size is multiplied by k, multiply the learning rate by K.

» Kk steps with learning rate n and minibatch size n

1
Wtk = Wt — 77; Z Z Vi(z, wi5)

j<k ZBEBj

« Single step with new learning rate 7} and large

minibatch U; B; (batch size kn)

. 1

Wi41 = Wt — 77% Z Z vz(wa ’wt)
j<k xz€B;

If Vl(x, (l)t+j) ~ Vl(x, Cl)t) we have, (/l)\t+1 ~ (Ut_|_k.

|deally, large batch training with a linear scaled
learning rate will reach the similar goal with the
same number of epochs (fewer steps per epoch)

Argonne Leadership Computing Facility

Optimal Learning Rate

SVHN (SGD) - Optimal Learning Rate

] —e— Best Learning Rate
1 === Best Fit
101 4

1072 4

109 10! 102 103
Batch Size

The optimal learning for a range of batch sizes, for
an SVHN classifier trained with SGD

(S. McCandlish, J. Kaplan, D. Amodei,
arXiv:1812.06162)

AAAAAAAAAAAAAAAAAA

Challenges with large batch training

« Convergence issue: at the initial stages of training, the model is far away
from optimal solution Vl(x, wt+j) ~ VI(x, w;) breaks down. Training is not

stable with large learning rate in the beginning;
« Generalization gap: large batch size training tends to be trapped at local
minimum with lower testing accuracy (generalize worse).

Training Accuracy

SB

LB

Testing Accuracy

SB

LB

Training Function

.
! Testing Function

Fy 99.66% £ 0.05% | 99.92% = 0.01% | 98.03% =+ 0.07% | 97.81% £ 0.07%
Fy 99.99% 4 0.03% | 98.35% £ 2.08% | 64.02% = 0.2% | 59.45% + 1.05%
Ch 99.89% +0.02% | 99.66% = 0.2% | 80.04% + 0.12% | 77.26% =+ 0.42%
Cs 99.99% +0.04% | 99.99% = 0.01% | 89.24% %+ 0.12% | 87.26% £ 0.07%
Cs 99.56% + 0.44% | 99.88% = 0.30% | 49.58% + 0.39% | 46.45% + 0.43%
Cy 99.10% +1.23% | 99.57% = 1.84% | 63.08% = 0.5% | 57.81% = 0.17%

Performance of small-batch (SB) and large-batch

(LB) variants of ADAM on the 6 networks

10 Argonne Leadership Computing Facility

Flat Minimum Sharp Minimum

“... large-batch ... converge to sharp minimizers of the training
function ... In contrast, small-batch methods converge to flat
minimizers”

Keskar et al, arXiv:1609.04836

AAAAAAAAAAAAAAAAAA

Challenges with large batch training

Solutions: using warm up steps

« Using a smaller learning rate at the initial stage of training (couple
epochs), and gradually increase to j = Nn

« Using linear scaling of learning rate (i) = Nn)

100 ‘ : ; ‘ . 5401
kn=256, 1= 0.1, 23.60%+0.12 =
I kn=256, n= 0.1, 23.60%+0.12| | } B - N 1 =
90 } kn= 8k, n= 3.2, 24.84%+0.37 kn= 8k, 7= 3.2, 23.74%+0.09 ﬂCJ
80 f .%3&
B S
§ 70 F E
qé., 60 - 30+
Ig 50 | S
a0 2] —— .
)
30 + >
20 ‘ . ‘ ‘ 1 | ‘ l g 20 1 1 I | I I | | | |
0 20 40 60 80 0 20 40 60 80 64 128 256 512 1!(. 2k '4k 8k 16k 32k 64k
epochs epochs mini-batch size
No warm up Gradual warm up This scheme works up to

8k batch size

11 Argonne Leadership Computing Facility P. Goyal et al,arXiv: 1706.02677 Argonne &

Challenges with large batch training

® Generative Models Dota 5v5 — @->
107 o Image Classifiers (lower bound)
® Reinforcement Learning
10° 4 Dota 1vl
Billion Word LSTM °®
10° -
102 - SVHN
Pong . ® Space Invaders
\ MNIST ® ®
1071 e CIFAR10
102 4
1 i
10 ® VAE (SVHN)
) ® Autoencoder (SVHN)
]'() B]]] .] 1] T . 1 _
10t 102 10° 10* 10° 108 107

12 Argonne Leadership Computing Facility

Predicted critical maximum batch
size beyond which the model
does not perform well.

S. McCandlish, J. Kaplan, D. Amodei,
arXiv:1812.06162

AAAAAAAAAAAAAAAAAA

Data parallel training with Horovod

How to change a series code into a data parallel code:

 Import Horovod modules and initialize horovod
« Wrap optimizer in hvd.DistributedOptimizer
« Scale the learning rate by number of workers
« Broadcast the weights from worker O to all the
workers and let worker O save check point files
* Divide the dataset and each worker only work on

piece of dataset.

13 Argonne Leadership Computing Facility

Tensorflow with Horovod

import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib. layers
learn = tf.contrib. learn
def main():
Horovod: initialize Horovod.
hvd.init()
Download and load MNIST dataset.
mnist = learn.datasets.mnist.read data_sets('MNIST-data-%d' % hvd.rank()) —
Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [
hvd.BroadcastGlobalVariablesHook(0),
tf.train.StopAtStepHook(last_step=20000 // hvd.size()),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},
every_n_iter=10),
]
checkpoint_dir = './checkpoints' if hvd.rank() == @ else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
hooks=hooks,
config=config) as mon_sess

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

14 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

PyTorch with Horovod

...
import torch.nn as nn
import horovod.torch as hvd
hvd.init() <———
train dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
1))
train_sampler = torch.utils.data.distributed.DistributedSampler ((=
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train loader = torch.utils.data.DatalLoader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, sxxkwargs)
Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0) <=
Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr x hvd.size(), <
momentum=args.momentum)
Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
optimizer, named_parameters=model.named_parameters()) < s

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

15 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Keras with Horovod

import keras

import tensorflow as tf

import horovod.keras as hvd

Horovod: initialize Horovod.

hvd.init() <

Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 x hvd.size()) <=
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt) —
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=opt,
metrics=['accuracy'])
callbacks = [
Horovod: broadcast initial variable states from rank @ to all other processes.
hvd. callbacks.BroadcastGlobalVariablesCallback(9), <
]
Horovod: save checkpoints only on worker @ to prevent other workers from corrupting them.
if hvd.rank() == 0:
callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5"))
model.fit(x_train, y_train, batch_size=batch_size,
callbacks=callbacks, <
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

16 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Scaling TensorFlow using Horovod on Theta @ ALCF
(Intel Knights Landing): batch size = 512

leb
107 — |deal B
0.8- B Horovod
O
T
30.6
Q
o
§0.4
0.2
0.0 —
YVYEDONT LY TR
'\/’\/"7,9,\?

Number of KNL nodes

AlexNet

17 Argonne Leadership Computing Facility

1.5

1.0

1le5

[1 ldeal
B Horovod

'\/’\/V%éon’;\/(ov‘&

ResNet-50

1.0

0.8 1

'V’\/VOO,\(/on’)\/(g&

1e5

[1 ldeal
B Horovod

AAAAAAAAAAAAAAAAAA

Overlap of communication and compute in Horovod

140 { WEE total 250 A 800 -
120 4
200 - 600 -
100 A
S 150
S 80 -]
§ 400 -
60 T 100 A
40 A 200 -
50 A
20
0- 0 - 0 -
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of nodes Number of nodes Number of nodes
AlexNet ResNet-50 Inception V3
(batch size = 512, (batch size =64, (batch size =128,
50 steps) 50 steps) 50 steps)

Increase of total time is smaller than the increase of the communication time,
which indicates large overlap between compute and communication.

18 Argonne Leadership Computing Facility ArgonneO

AAAAAAAAAAAAAAAAAA

MPI flat profile for Horovod (AlexNet, batch size=512,

128 KNL nodes)

Times and statistics from MPI_Init() to MPI_Finalize().

502.888 seconds.
4765.250 MBytes.

MPI_Allreduce #calls avg. bytes time(sec)
MPI Routine #calls avg. bytes time(sec) 16 4004.0 1.045
2418 16384.0 1.269
MPI_Comm_rank 3 0.0 0.000 10 32768.0 0.521
MPI_Comm_size 3 0.0 0.000 8 1322752.0 0.263
MPI_Bcast 4997 49559.7 1ii242 5 3627673.6 0.368
MPI_Allreduce 254 48694759.8 171.666 100 14338464.3 28.882
MPI_Gatherv 2490 0.0 13.384 50 150994944 .0 105.104
MPI_Allgather 2 4.0 0.001 ' =
MPI task @ of 128 had the minimum communication time. MPI_Gather #calls avg. bytes time(sec)
synchronization time = 42.141 seconds. 2490 4.0 12.971
total communication time = 241.404 seconds (including synchronization).
total elapsed time = 247.258 seconds. MPI_Allgather #calls avg. bytes time(sec)
User cpu time = 4618.292 seconds. 2 4.0 9.001

system time
max resident set size

Rank 24 reported the largest memory utilization : 5066.29 MBytes
Rank 117 reported the largest elapsed time : 247.26 sec

« Maijority of time is spent on MPI_Allreduce with message size ranging from KB-GB
« There is load imbalance (synchronization time)

19 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

/O and data management

« Parallel 10 is needed: each worker only
reads part of the dataset they
needed(using MPIIO / parallel HDF5);

* Preprocess the raw data (resize, 5 L e B S
interpolation, etc) into binary format -
before the training; / j \

« Store the dataset in a reasonable way
(avoiding file per sample)

* Prefetch the data (from disk; from host to
device)

I/O and data
management

20 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

/O and data management

Independent file
—e— 7 JPer processor

‘
.
.
N

o0 o~

| —e— File per batch
1 —e— File per dataset C;\

| —e— File per image \
Collective 10

File per dataset
/ / (stripe Size = 32m,
- R . f . . . Stripe Count = 48)
g2 A 9 © 2 Y ® 40
_ > ./b © '\'/)’ 7/6 File per batch is the optimal
Batch Size (# images) way of setting — scales well

and lower overhead from

|O benchmarks for ImageNet dataset on Lustre file system on open/ close file.
Theta @ ALCF (128 KNL nodes, lustre Stripe Size = 1m and
lustre Stripe =1 except the point anointed),

Sergio Servantez

=
o
w

Read Bandwidth (MB/s)
=
(@)

21 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Science use case 1 - Galaxy classification using
modified Xception model

SDSS spirals SDSS ellipticals Speed Up vs. Number of GPUs

. 8 | 1600 2
£ 250 1400
E _ »n
£ 200! 1200 g
\ = 11000
. - E . <
= 150 1800
SDSS DES én 600 g
£ 100 o
= A
= 20 200 g’
«

S ol , ! — 0 ™

= D4 8 16 32 64

NEE D00

Galaxy images ~ 5 Hrs using 1 K80 GPU to 8 mins using 64 K80
GPUs using computing resource from Cooley @ ALCF

Number of GPUs

22 Argonne Leadership Computing Facility A Khan et aI, PhySiCS Letters B, 793, 70-77 (2019) Argonneé

AAAAAAAAAAAAAAAAAA

Science use case 2 - Brain Mapping: reconstruction of
brain cells from volume electron microscopy data

103 -

102 _

FOVs / Sec

100_

109

Scaling results in terms of throughput

- = |deal scaling //X
X Our scaling ’
X
/
»X
/’
P
7
»X
’
X
/
/«
/7
/,’X
X
//
//X
101 102 103

Number of nodes

23 Argonne Leadership Computing Facility

Training efficiency

103_

=
o
N

=
o
|

[
o
o

10°

Scaling results in terms of training
efficiency (measured by time needed for
the training to reach to certain accuracy)

- = |deal scaling
A Ourscaling

Work done on
Theta @ ALCF

101

102

Number of nodes

W. Dong et al, arXiv:1905.06236 [cs.DC]

AAAAAAAAAAAAAAAAAA

Science use case 3 - CANDLE benchmarks: deep
learning for cancer problems

. Performance Comparison for Horovod P1B1 (strong scaling) on Summit
Performance Comparison for Horovod P1B1 on Theta

—@— Total Runtime —&— Tensor Flow Data Loading
«=@==Total Runtime «=@-=TensorFlow Data Loading
Total Runtime (Optimized) «=@==TensorFlow (Optimized) «=@=Data Loading (Optimized) 4096
2048
16384 N o
———
4096 t’ 512
256
1024)
[}
= 8 128
o 256 ® P —C <= ®)
£ 2 64
= 64 =
@ 32
=
16 =

=
()

F=Y
0o

! 4
6 12 24 48 96 ,
Number of Nodes /

I/O does not scale — room for ° S a8 o

further improvement.

Strong scaling study of CANDLE P1B1 on Theta and Summit

X. Wu et al SC18 Workshop on Python for High-Performance
24 Argonne Leadership Computing Facility and Scientific Computing Argonne &

AAAAAAAAAAAAAAAAAA

Conclusion

 Distributed training is necessary because increase of model complexity
and the amount of dataset;

« Data parallelism can scale efficiently in HPC supercomputersl|

« Warm up steps might be needed to stabilize the initial stage of training
and avoid the generation gap for large batch size training;

 Distributed learning requires efficient and scalable |/O and data

management.

25 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Thank you!

huihuo.zheng@anl.gov

Mix data parallelism and model parallelism in CNN

Fully-connected

Model parallelism:

all workers train on same batch;
workers communicate as frequently as
netwo

I

Convolutional

Worker 1

Data parallelism:

each worker trains the same
convolutional layers on a different
data batch.

Worker K

A. Krizhevsky, arXiv:1404.5997 [cs.NE]

27 Argonne Leadership Computing Facility

Convolutional layers cumulatively
contain about 90-95% of the
computation, about 5% of the
parameters, and have large
representations.

Fully-connected layers contain
about 5-10% of the computation,
about 95% of the parameters, and
have small representations.

AAAAAAAAAAAAAAAAAA

HOROVOD_FUSION_THRESHOLD (default: 64MB)

Horovod has tensor fusion implemented, which fuses smaller tensor into a
big buffer before doing MPI_Allreduce right away.

800 1
3500 -
3000 -
600 -
o 2500 - o
g 2
gzooo— g 400-
E 1500 - 3
1000 - 200 -
500 -
0 0
0 1 4 16 64 256 0 1 4 16 64 256
FUSION THRESHOLD MBI FUSION THRESHOLD [MB]
Alexnet (16 KNL nodes) Inception3 (16 KNL nodes)

FUSION_THRESHOLD = 64 MB already gets optimal performance.

28 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Alexnet (Horovod 0.16.1) on 128 KNL nodes

Times and statistics from MPI_Init() to MPI_Finalize().
Data for MPI rank © of 128:

Times and statistics from MPI_Init() to MPI_Finalize().

MPI Routine #calls avg. bytes time(sec)
MPI Routine #calls avg. bytes time(sec) MPI Comm rank 3 0.9 0.000
MPI_Comm_size 3 0.0 0.000
MPI_Comm_rank 3 0.0 0.000 MPI_Bcast 7743 31979.6 2.369
MPI_Comm_size 3 0.0 0.000 MPI_Allreduce 126 98162452.4 148.776
MPI_Bcast 6617 37476.0 2.174 MPI_Gather 3863 4.9 57.352
MPI_Allreduce 800 15460586.2 168.680 MPI_Gatherv 3863 9.0 1.006
MPI_Gather 3300 4.0 OER32, MPI_Allgather il 4.0 9.000
MPI_Gatherv 3300 0.0 0.702
MPI_Allgather 1 4.0 0.000 total communication time = 209.503 seconds.
total elapsed time = 220.001 seconds.
total communication time = 225.288 seconds. user cpu time = 5141.012 seconds.
total elapsed time = 229.604 seconds. system time = 369.980 seconds.
user cpu time = 5795.724 seconds. max resident set size = 5300.309 MBytes. .
system time = 260.292 seconds. 'MPI_Allreduce #calls avg. bytes time(sec)
max resident set size = 3428.168 MBytes. 21 4004.0 3.579
MPI_Allreduce #calls avg. bytes time(sec) _ 3i 1643:%?22 Zg??:;i
50 256.0 0.056 > * *
100 896.0 9.191 19 85208441.3 52.643
100 1536.0 0.168 50 204807633.9 72.075
50 4004.0 0.188
122 ;gggg-g éii; MPI_Gather #calls avg. bytes time(sec)
50 1228800.0 9.541 3863 b ol
100 3096576.0 26.835 .
50 5308416.0 3.762 MPI_Allgather #calls avg. bytes time(sec)
50 16400384.0 6.612 1 4.0 0.000
50 67108864.0 30.896
50 150994944.0 97.598
MPI_Gather #calls avg. bytes time(sec) FUSION TH RESHOLD_256M
3300 4.0 53.732 -
MPI_Allgather #calls avg. bytes time(sec) # fAll d d
s fes) (0) requce decreases as we

FUSION_THRESHOLD=0

29 Argonne Leadership Computing Facility

increase FUSION_THRESHOLD, and
message Ssize increases.

Argonne &

NATIONAL LABORATORY

