
www.anl.gov

Data Parallel Deep Learning
Huihuo Zheng

Data science group at ALCF
August 9, 2019

huihuo.zheng@anl.gov

Argonne Leadership Computing Facility2

Outline

• Why do we need for distributed / parallel deep learning on HPC

• Distribution schemes: model parallelism vs data parallelism

• Challenges and tips on large batch size data parallel training

• I/O and data management

• Science use cases

Argonne Leadership Computing Facility3

Need for distributed (parallel) training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month
doubling period).” https://openai.com/blog/ai-and-compute/

Eras:
• Before 2012 …

• 2012 – 2014: single to couple GPUs

• 2014 – 2016: 10 – 100 GPUs

• 2016 – 2017: large batch size training,

architecture search, special hardware

(etc, TPU)

Finishing a 90-epoch ImageNet-1k
training with ResNet-50 on a NVIDIA M40
GPU takes 14 days. (1018 SP Flops)

~1s on OLCF Summit (~200
petaFlops) if it “scales ideally”

Argonne Leadership Computing Facility4

Need for distributed (parallel) training on HPC
• Increase of model complexity leads to dramatic increase of computation;

• Increase of the amount of dataset makes sequentially scanning the whole

dataset increasingly impossible;

• Coupling of deep learning to traditional HPC simulations might require

distributed inference;

• The increase in computational power has been mostly coming (and will

continue to come) from parallel computing.

• …

Argonne Leadership Computing Facility5

Parallelization schemes for distributed learning
Worker 4

Worker 3 Worker 2

Worker 1

Worker 1 Worker 4 Worker N

…

Model parallelism Data parallelism

Argonne Leadership Computing Facility6

Model parallelization in Horovod

1. Run multiple copies of the model
and each copy:
1) reads a chunk of the data
2) runs it through the model
3) computes model updates

2. Average gradients among all the
copies

3. Update the model
4. Repeat (from Step 1)

https://eng.uber.com/horovod/

Argonne Leadership Computing Facility7

Deep dive on model parallelism (Horovod)

Stochastic Gradient Descent (SGD)
update

Dataset Weight

Minibatch

Minimizing the loss:

Model is updated at each step.

• One minibatch is divided into many
sub minibatches and each is feed
into one of the workers;

• Gradients are averaged at each step
(not each epoch)

Argonne Leadership Computing Facility8

Large minibatch training

Minibatch

Per node throughput of different local batch size

§ Option 1. Keeping the same

global minibatch size with each

worker processing B/N batch

§ Option 2. Increasing the global

minibatch size by N times, so that

each worker processes batches

of size B.

1. Decrease of local batch size reduces the per

node throughput;

2. Increase of global minibatch size reduces the

number of updates on each epoch (n=X/B); thus

it increases the compute/communication ratio

H. Zheng, https://www.alcf.anl.gov/files/Zheng_SDL_ML_Frameworks_1.pdf

Argonne Leadership Computing Facility9

Linear scaling rule
When the minibatch size is multiplied by k, multiply the learning rate by k.

• k steps with learning rate ! and minibatch size "

• Single step with new learning rate !̂ and large
minibatch ∪% &% (batch size '")

If ∇) *, ,-.% ∼ ∇) *, ,- we have, 0,-.1 ∼ ,-.2.
Ideally, large batch training with a linear scaled
learning rate will reach the similar goal with the
same number of epochs (fewer steps per epoch)

The optimal learning for a range of batch sizes, for
an SVHN classifier trained with SGD
(S. McCandlish, J. Kaplan, D. Amodei,
arXiv:1812.06162)

Argonne Leadership Computing Facility10

Challenges with large batch training
• Convergence issue: at the initial stages of training, the model is far away

from optimal solution ∇" #, %&'(∼ ∇" #, %& breaks down. Training is not
stable with large learning rate in the beginning;

• Generalization gap: large batch size training tends to be trapped at local
minimum with lower testing accuracy (generalize worse).

“... large-batch ... converge to sharp minimizers of the training
function ... In contrast, small-batch methods converge to flat
minimizers”

Performance of small-batch (SB) and large-batch
(LB) variants of ADAM on the 6 networks

Keskar et al, arXiv:1609.04836

Argonne Leadership Computing Facility11

Challenges with large batch training
Solutions: using warm up steps
• Using a smaller learning rate at the initial stage of training (couple

epochs), and gradually increase to "̂ = $"
• Using linear scaling of learning rate ("̂ = $")

No warm up Gradual warm up This scheme works up to
8k batch size

P. Goyal et al,arXiv: 1706.02677

Argonne Leadership Computing Facility12

Challenges with large batch training

Predicted critical maximum batch
size beyond which the model
does not perform well.

S. McCandlish, J. Kaplan, D. Amodei,
arXiv:1812.06162

Argonne Leadership Computing Facility13

Data parallel training with Horovod

• Import Horovod modules and initialize horovod

• Wrap optimizer in hvd.DistributedOptimizer

• Scale the learning rate by number of workers

• Broadcast the weights from worker 0 to all the

workers and let worker 0 save check point files

• Divide the dataset and each worker only work on

piece of dataset.

How to change a series code into a data parallel code:

https://eng.uber.com/horovod/

Argonne Leadership Computing Facility14

Tensorflow with Horovod
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

Horovod: initialize Horovod.
hvd.init()
Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0),
tf.train.StopAtStepHook(last_step=20000 // hvd.size()),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]
checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Argonne Leadership Computing Facility15

PyTorch with Horovod
#…
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)
Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(

optimizer, named_parameters=model.named_parameters())

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Argonne Leadership Computing Facility16

Keras with Horovod
import keras
import tensorflow as tf
import horovod.keras as hvd
Horovod: initialize Horovod.
hvd.init()
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Argonne Leadership Computing Facility17

Scaling TensorFlow using Horovod on Theta @ ALCF
(Intel Knights Landing): batch size = 512

AlexNet ResNet-50 Inception V3

Argonne Leadership Computing Facility18

Overlap of communication and compute in Horovod
18

AlexNet
(batch size = 512,

50 steps)

ResNet-50
(batch size =64,

50 steps)

Inception V3
(batch size =128,

50 steps)

Increase of total time is smaller than the increase of the communication time,
which indicates large overlap between compute and communication.

Argonne Leadership Computing Facility19

MPI flat profile for Horovod (AlexNet, batch size=512,
128 KNL nodes)

19

• Majority of time is spent on MPI_Allreduce with message size ranging from KB-GB
• There is load imbalance (synchronization time)

Argonne Leadership Computing Facility20

I/O and data management
20

• Parallel IO is needed: each worker only
reads part of the dataset they
needed(using MPIIO / parallel HDF5);

• Preprocess the raw data (resize,
interpolation, etc) into binary format
before the training;

• Store the dataset in a reasonable way
(avoiding file per sample)

• Prefetch the data (from disk; from host to
device)

I/O and data
management

Argonne Leadership Computing Facility21

I/O and data management
21

IO benchmarks for ImageNet dataset on Lustre file system on
Theta @ ALCF (128 KNL nodes, lustre Stripe Size = 1m and
lustre Stripe =1 except the point anointed),

File per dataset
(stripe Size = 32m,
Stripe Count = 48)

Sergio Servantez

Collective IO

Independent file
per processor

File per batch is the optimal
way of setting – scales well
and lower overhead from
open/ close file.

Argonne Leadership Computing Facility22

Science use case 1 - Galaxy classification using
modified Xception model

22

~ 5 Hrs using 1 K80 GPU to 8 mins using 64 K80
GPUs using computing resource from Cooley @ ALCF

Galaxy images

A Khan et al, Physics Letters B, 793, 70-77 (2019)

Argonne Leadership Computing Facility23

Science use case 2 - Brain Mapping: reconstruction of
brain cells from volume electron microscopy data

23

Scaling results in terms of throughput Scaling results in terms of training
efficiency (measured by time needed for
the training to reach to certain accuracy)

W. Dong et al, arXiv:1905.06236 [cs.DC]

Work done on
Theta @ ALCF

Argonne Leadership Computing Facility24

Science use case 3 - CANDLE benchmarks: deep
learning for cancer problems

24

Strong scaling study of CANDLE P1B1 on Theta and Summit

I/O does not scale – room for
further improvement.

X. Wu et al SC18 Workshop on Python for High-Performance
and Scientific Computing

Argonne Leadership Computing Facility25

Conclusion
25

• Distributed training is necessary because increase of model complexity

and the amount of dataset;

• Data parallelism can scale efficiently in HPC supercomputersl

• Warm up steps might be needed to stabilize the initial stage of training

and avoid the generation gap for large batch size training;

• Distributed learning requires efficient and scalable I/O and data

management.

Argonne Leadership Computing Facility26

Thank you!

huihuo.zheng@anl.gov

Argonne Leadership Computing Facility27

Mix data parallelism and model parallelism in CNN

A. Krizhevsky, arXiv:1404.5997 [cs.NE]

• Convolutional layers cumulatively
contain about 90-95% of the
computation, about 5% of the
parameters, and have large
representations.

• Fully-connected layers contain
about 5-10% of the computation,
about 95% of the parameters, and
have small representations.

Argonne Leadership Computing Facility28

HOROVOD_FUSION_THRESHOLD (default: 64MB)

Alexnet (16 KNL nodes) Inception3 (16 KNL nodes)
FUSION_THRESHOLD = 64 MB already gets optimal performance.

Horovod has tensor fusion implemented, which fuses smaller tensor into a
big buffer before doing MPI_Allreduce right away.

Argonne Leadership Computing Facility29

Alexnet (Horovod 0.16.1) on 128 KNL nodes

FUSION_THRESHOLD=0

FUSION_THRESHOLD=256M
of Allreduce decreases as we
increase FUSION_THRESHOLD, and
message size increases.

