
Argonne Leadership Computing Facility1

Profiling and Understanding DL
Workloads on Supercomputing Systems

Murali Emani,
Data Science group, ALCF

memani@anl.gov

Argonne Leadership Computing Facility1

Argonne Leadership Computing Facility2

Introduction

• Profiling is an approach to measure application performance

• Simple Profiling:
- How long does an application take

• Advanced Profiling:
- Why does an operation take long time

• Goal: Find performance bottlenecks
- inefficient programming
- memory I/O bottlenecks
- parallel scaling

Argonne Leadership Computing Facility3

Typical Optimization Workflow

Profile
application

Analyze
profile data

Optimize

Iterative workflow till desired performance is reached

Argonne Leadership Computing Facility4

Broad classification

• Hardware counters
count events from CPU/GPU perspective (#flops, memory loads, etc.)
usually needs Linux kernel module installed or root permission

• Statistical profilers (sampling)
interrupt program at given intervals to find the state of a program

• Event based profilers (tracing)
collect information on each function call

Argonne Leadership Computing Facility5

Plethora of Tools
• Cprofile
• Gprof
• Perf tool
• Intel Vtune
• HPCToolKit
• OpenSpeedShop
• TAU
• Nvidia Nvprof, Nsight
….
…

Argonne Leadership Computing Facility6

Profiling DNN workloads
• Critical to understand workload performance

• Machine learning and deep learning models are implemented on a variety
of hardware

• Most applications are written in Python using standard ML frameworks

• The frameworks generate kernels based on hardware and customized
installation and libraries (MKL-DNN, CuDNN etc.)

Argonne Leadership Computing Facility7

Challenges

• Profiling is hard, cumbersome and time-consuming

• Profiling tools generate lot of data and hard to understand

• The problem is further compounded with large, complex models with large
volumes of data

• Need strategies to use right tools and detailed insights to how to analyze the
profile data

Argonne Leadership Computing Facility8

Profiling on Nvidia GPUs

Argonne Leadership Computing Facility9

Profiling on Nvidia GPUs
Use Nvidia profiler ‘Nvprof’

• capture metrics from hardware counters
• invoked via command line or UI (Nvidia Visual Profiler NVVP)

See list of options using
nvprof –h

Some useful options:
-o: create output file to import into nvvp
--metrics / -m : collect metrics
--events / -e : collect events
--log-file : create human readable output file
--analysis-metrics : collect all metrics to import into nvvp
--query-metrics/--query-events: list of available metrics/events

Argonne Leadership Computing Facility10

Events and Metrics
• An event is a countable activity, action, or occurrence on a device. It corresponds to

a single hardware counter value which is collected during kernel execution
• A metric is a characteristic of an application that is calculated from one or more

event values
In general, events are only for experts, rarely used.

• Vary in number based on hardware family (P100, K80, V100 etc)
• For example, on V100, nvprof gives 175 metrics
• Event and metric values are aggregated across all units in the GPU.

Argonne Leadership Computing Facility11

Workflow

Option 1)
• Use ‘nvprof’ to collect metrics in an output file (compute node)
• Use ‘nvvp’ to visualize the profile (login node)

Option 2)
• Directly launch nvvp on compute node and profile the code interactively

export PATH=/soft/compilers/cuda/cuda-9.1.85/bin:$PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/cuda/cuda-
9.1.85/lib64

Argonne Leadership Computing Facility12

Profile Commands

– Kernel timing analysis:
nvprof –-log-file timing.log <myapp>
nvprof -–log-file timing.log python myapp.py args

– Traces (#threads, #warps, #registers)
nvprof –-print-gpu-traces -–log-file traces.log <myapp>

Argonne Leadership Computing Facility13

Profile Commands

– Kernel timing analysis:
nvprof –-log-file timing.log <myapp>
nvprof -–log-file timing.log python myapp.py args

– Traces (#threads, #warps, #registers)
nvprof –-print-gpu-traces -–log-file traces.log <myapp>

– Get all metrics for all kernels
nvprof --metrics all --log-file all-metrics.log <myapp>

– Get metrics for guided analysis
nvprof --analysis-metrics –o analysis.nvprof <myapp>

– Visual profile to use Nvidia Visual Profiler (nvvp)
nvprof –o analysis.nvprof <myapp>

Argonne Leadership Computing Facility14

Selective Profiling
• As profiling adds significant overhead, a better strategy is to profile only regions of

interest (kernels and metrics)

• All metrics for kernels of interest:
nvprof --profile-from-start off –-kernels <kernel-name> –-metrics all
--log-file selective-profile.log <myapp>

• few metrics for kernels of interest
nvprof --profile-from-start off-–kernels <kernel-name> –-metrics ipc
--log-file selective-profile.log <myapp>

For example, if we want to profile heavy kernels only
Step 1) use nvprof to list all kernels sorted by the time
Step 2) re-run nvprof in selective profiling mode

• Profile GEMM kernels
nvprof --profile-from-start off –-kernels “::gemm:n” –-metrics all
--log-file selective-profile.log <myapp>

Argonne Leadership Computing Facility15

GPU Memory - metrics

GPU Memory hierarchy

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

on-chip memory off-chip memory

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

Argonne Leadership Computing Facility16

GPU Memory - metrics

1.dram_read_throughput, dram_read_transactions
2.dram_write_throughput, dram_write_transactions
3.sysmem_read_throughput, sysmem_read_transactions
4.sysmem_write_throughput, sysmem_write_transactions
5.l2_l1_read_transactions, l2_l1_read_throughput
6.l2_l1_write_transactions, l2_l1_write_throughput
7.l2_tex_read_transactions, l2_texture_read_throughput
8.texture is read-only, there are no transactions possible on
this path
9.shared_load_throughput, shared_load_transactions
10.shared_store_throughput, shared_store_transactions
11.l1_cache_local_hit_rate
12.l1 is write-through cache, so there are no (independent)
metrics for this path - refer to other local metrics
13.l1_cache_global_hit_rate
14.see note on 12
15.gld_efficiency, gld_throughput, gld_transactions
16.gst_efficiency, gst_throughput, gst_transactions

GPU Memory hierarchy

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

Argonne Leadership Computing Facility17

GPU Memory - metrics

1.dram_read_throughput, dram_read_transactions
2.dram_write_throughput, dram_write_transactions
3.sysmem_read_throughput, sysmem_read_transactions
4.sysmem_write_throughput, sysmem_write_transactions
5.l2_l1_read_transactions, l2_l1_read_throughput
6.l2_l1_write_transactions, l2_l1_write_throughput
7.l2_tex_read_transactions, l2_texture_read_throughput
8.texture is read-only, there are no transactions possible on
this path
9.shared_load_throughput, shared_load_transactions
10.shared_store_throughput, shared_store_transactions
11.l1_cache_local_hit_rate
12.l1 is write-through cache, so there are no (independent)
metrics for this path - refer to other local metrics
13.l1_cache_global_hit_rate
14.see note on 12
15.gld_efficiency, gld_throughput, gld_transactions
16.gst_efficiency, gst_throughput, gst_transactions

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

GPU Memory

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

Argonne Leadership Computing Facility18

Metrics and Events
Metrics relevant to identify compute, memory, IO characteristics

achieved_occupancy
ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor

ipc Instructions executed per cycle

gld_efficiency
Ratio of requested global memory load throughput to required
global memory load throughput expressed as percentage.

gst_efficiency
Ratio of requested global memory store throughput to required
global memory store throughput expressed as percentage.

dram_utilization
The utilization level of the device memory relative to the peak
utilization on a scale of 0 to 10

Argonne Leadership Computing Facility19

Metrics and Events
Metrics relevant to identify compute, memory, IO characteristics

achieved_occupancy
ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor

ipc Instructions executed per cycle

gld_efficiency
Ratio of requested global memory load throughput to required
global memory load throughput expressed as percentage.

gst_efficiency
Ratio of requested global memory store throughput to required
global memory store throughput expressed as percentage.

dram_utilization
The utilization level of the device memory relative to the peak
utilization on a scale of 0 to 10

Warp Execution Efficiency

� All threads in warp may not execute instruction
— Divergent branch

— Divergent predication

� nvprof metrics: warp_execution_efficiency,
warp_nonpred_execution_efficiency (SM3.0+)

1 of 32 threads = 3% 32 of 32 threads = 100%

Warps efficiency/active cycles

Argonne Leadership Computing Facility20

Calculating Performance Bounds

� Utilizations
— Both high Æ compute and memory highly utilized

Compute Memory

Both high compute and memory highly utilized

Argonne Leadership Computing Facility21

Calculating Performance Bounds

� Utilizations
— Both high Æ compute and memory highly utilized

Compute Memory

High compute, low memory utilization => compute bound

Calculating Performance Bounds

� Utilizations
— Compute high, memory low Æ compute resource bound

Compute Memory

Argonne Leadership Computing Facility22

Calculating Performance Bounds

� Utilizations
— Both high Æ compute and memory highly utilized

Compute Memory

Low compute, high memory utilization => memory bound

Calculating Performance Bounds

� Utilizations
— Memory high, compute low Æ memory bandwidth bound

Compute Memory

Argonne Leadership Computing Facility23

Calculating Performance Bounds

� Utilizations
— Both high Æ compute and memory highly utilized

Compute Memory

Both low => latency bound

Calculating Performance Bounds

� Utilizations
— Both low Æ latency bound

Compute Memory

Argonne Leadership Computing Facility24

Detailed Analysis
Use visual profiler nvvp

40

More details
Deep dive into a kernel

• The profilers let us dig much deeper into
individual kernels

• Moving from “it is going slow?” to “why is
it going slow?”

• Let’s dive into the elementwise
operation

• Requires interactive nvvp session, or
output from --analysis-metrics

Argonne Leadership Computing Facility25

41

Argonne Leadership Computing Facility26

42

Argonne Leadership Computing Facility27

Tips
• Start with the nvprof output

• Perform deeper analysis only if a kernel takes significant amount of execution time.

• Know your hardware:
• If your GPU can do 6 TFLOPs, and you’re already doing 5.5 TFLOPs, you won’t go

much faster!

• Sometimes quite simple changes can lead to big improvements in performance

Argonne Leadership Computing Facility28

Example

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu’))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax’))

model.compile(…....)

model.fit(.....)

model.evaluate(.....)

Simple CNN in Keras

Argonne Leadership Computing Facility29

Example

import numba.cuda

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',

input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu’))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax’))

model.compile(…....)

begin cuda profile

cuda.profile_start()

model.fit(.....)

stop cuda profile

cuda.profile_stop()

model.evaluate(.....)

Simple CNN in Keras

Argonne Leadership Computing Facility30

0 1 2 3 4 5 6 7

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

dram_utilization

Argonne Leadership Computing Facility31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

executed_ipc

Argonne Leadership Computing Facility32

0 0.2 0.4 0.6 0.8 1 1.2

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

achieved_occupancy

Argonne Leadership Computing Facility33

0 0.2 0.4 0.6 0.8 1 1.2

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

global_mem_efficiency

Argonne Leadership Computing Facility34

Impact of batch size

0 0.5 1 1.5 2 2.5

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

IPC

256 128 64

Argonne Leadership Computing Facility35

0 1 2 3 4 5 6 7 8 9 10

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

dram utilization

256 128 64

Argonne Leadership Computing Facility36

0 0.2 0.4 0.6 0.8 1 1.2

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

achieved_occupancy

256 128 64

Argonne Leadership Computing Facility37

0.00% 20.00% 40.00% 60.00% 80.00%100.00%120.00%

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

global memory efficiency

256 128 64

Argonne Leadership Computing Facility38

Example

https://www.robots.ox.ac.uk/seminars/Extra/2015_10_08_JeremyAppleyard.pdf

LSTM – Long Short Term Memory

Recurrent Neural Network with potential for long-term memory

12

LSTM
Potentially many layers

….

….

….

https://www.robots.ox.ac.uk/seminars/Extra/2015_10_08_JeremyAppleyard.pdf

Argonne Leadership Computing Facility39

10

LSTM

• Inputs and outputs are “batched
vectors”.

• ie. A minibatch

• Typical length is 256-2048

• Typical batch size is 32-128

Viewed as a black box

LSTM
Cell hn, cn hn+1, cn+1

i

hn+1

hidden layer size = 512
minibatch size = 64

nvprof ./LSTM 512 64

Argonne Leadership Computing Facility40

17

==22964== NVPROF is profiling process 22964, command: ./LSTM 512 64
==22964== Profiling application: ./LSTM 512 64
==22964== Profiling result:
Time(%) Time Calls Avg Min Max Name
 93.93% 575.72us 8 71.964us 70.241us 78.945us maxwell_sgemm_128x64_tn
 3.60% 22.080us 8 2.7600us 2.3360us 3.5840us addBias(float*, float*)
 1.43% 8.7680us 4 2.1920us 2.0800us 2.4640us vecAdd(float*, float*, float*)
 1.04% 6.3680us 1 6.3680us 6.3680us 6.3680us nonLin(float*, float*, float*, float*)

==28493== API calls:
Time(%) Time Calls Avg Min Max Name
 97.04% 103.55ms 21 4.9308ms 10.606us 103.30ms cudaLaunch
 2.08% 2.2189ms 249 8.9110us 202ns 350.88us cuDeviceGetAttribute
 0.53% 568.27us 21 27.060us 286ns 557.64us cudaConfigureCall
 0.17% 176.23us 3 58.741us 57.818us 59.862us cuDeviceTotalMem
 0.14% 147.11us 3 49.036us 46.468us 52.966us cuDeviceGetName
 0.04% 42.216us 128 329ns 240ns 5.1400us cudaSetupArgument
 0.00% 4.3100us 8 538ns 354ns 1.7220us cudaGetLastError
 0.00% 3.7640us 2 1.8820us 308ns 3.4560us cuDeviceGetCount
 0.00% 1.8660us 6 311ns 204ns 648ns cuDeviceGet

Argonne Leadership Computing Facility41

Optimization

22

[A1][h] = [x1]

[A2][h] = [x2]

[A3][h] = [x3]

[A4][h] = [x4]

SGEMM Performance
Improvement #1

• As our matrix operations share inputs we can combine them

A [h] = x

Combine many small data transfers to few large data transfers

Argonne Leadership Computing Facility42

Optimization

22

[A1][h] = [x1]

[A2][h] = [x2]

[A3][h] = [x3]

[A4][h] = [x4]

SGEMM Performance
Improvement #1

• As our matrix operations share inputs we can combine them

A [h] = x

23

Combined Matrices
Improvement #1

Time(%) Time Calls Avg Min Max Name
 93.93% 575.72us 8 71.964us 70.241us 78.945us maxwell_sgemm_128x64_tn

Time(%) Time Calls Avg Min Max Name
 84.40% 198.11us 2 99.057us 98.177us 99.937us maxwell_sgemm_128x64_tn

• From ~500 GFLOP/s to ~1350 GFLOP/s

2.5x performance gain

Argonne Leadership Computing Facility43

Profiling on CPUs using Intel Vtune

Argonne Leadership Computing Facility44

Intel Vtune

• Performance profiling tool to identify where in the code time is being spent in both
serial and threaded applications.

• For threaded applications, it can also determine the amount of concurrency and
identify bottlenecks created by synchronization primitive

• Different analysis groups
• Hotspots (Advanced-hotspots is integrated here)
• Memory consumption
• Microarchitectural exploration

- Hardware issues
- Memory access analysis and high bandwidth issues

Argonne Leadership Computing Facility45

Intel Vtune

Take a quick look at your application's performance
to see if it is well optimized for modern hardware
(Linux* only).

MPI parallelism
OpenMP* parallelism
Memory access
FPU Utilization
I/O efficiency

DOWNLOAD

(revision 601413)
This software is provided
to you under the terms of

a Community License Type
as specified in the EULA

It also includes recommendations for further analysis if
you need more in-depth information.

It is easy to install, easy to run and provides results in a
text or HTML report.

What's new for 2019What's new for 2019
Update 5:Update 5:

Max and Bound
metrics added to
estimate the
efficiency of the
DRAM, MCDRAM,
Persistent Memory
and Intel® Omni-
Path Architecture
interconnect usage

Intel® VTune™ Amplifier

Get Started Storage Performance Snapshot Parallel Studio XE Forum

See Application Performance Snapshot reports in action

Application Performance Snapshot

https://software.intel.com/sites/products/snapshots/application-snapshot/

https://software.intel.com/sites/products/snapshots/application-snapshot/

Argonne Leadership Computing Facility46

Application Performance Snapshot (APS)
APS generates a high level performance snapshot of your application.

source /soft/compilers/intel-2019/vtune_amplifier_2019/apsvars.sh
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel-2019/vtune_amplifier_2019/lib64
export PMI_NO_FORK=1

aps --result-dir=aps_results/ -- python /full/path/to/script.py

Argonne Leadership Computing Facility47

Application Performance Snapshot (APS)

• Very easy to use
• Tracks important hardware metrics:

• Thread Load Balancing
• Vectorization
• CPU Usage

Pros Cons
• Only high level information – but then

again, that is the design of this tool.

Argonne Leadership Computing Facility48

Application Performance Snapshot (APS)
APS generates a highlevel performance snapshot of your application.

Results can be viewed in a single html file, or via command line:

Summary information
HW Platform : Intel(R) Processor code named Knights Landing
Logical core count per node: 256
Collector type : Driverless Perf system-wide counting
Used statistics : aps_results

|
| Your application might underutilize the available logical CPU cores
| because of insufficient parallel work, blocking on synchronization, or too much I/O.
Perform function or source line-level profiling with tools like Intel(R) VTune(TM)
Amplifier to discover why the CPU is underutilized.
CPU Utilization: 6.50%

| Your application might underutilize the available logical CPU cores because of
| insufficient parallel work, blocking on synchronization, or too much I/O.
| Perform function or source line-level profiling with tools like Intel(R)

source /soft/compilers/intel-2019/vtune_amplifier_2019/apsvars.sh
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel-2019/vtune_amplifier_2019/lib64
export PMI_NO_FORK=1

aps --result-dir=aps_results/ -- python /full/path/to/script.py

Argonne Leadership Computing Facility49

Intel Vtune – Hotspots
Provides list of functions in an application ordered by the amount of time spent in
each function.

Pros Cons
• Can track activity from python code
• Quickly identify heavy functions

• Will not run with more than a few
threads, making it impossible to profile
the “real” application.

source /soft/compilers/intel-2019/vtune_amplifier_2019/amplxe-vars.sh
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel-2019/vtune_amplifier_2019/lib64
export PMI_NO_FORK=1

amplxe-cl -collect hotspots -finalization-mode=none -r vtune-result-dir_hotspots/ --
python /full/path/to/script.py

Argonne Leadership Computing Facility50

Intel Vtune – Hotspots

sampling-mode=sw - User-Mode Sampling (default) used for profiling:
• Targets running longer than a few seconds
• A single process or a process-tree
• Python and Intel runtimes

sampling-mode=hw - (Advanced hotspots) Hardware Event-Based Sampling
used for profiling:

• Targets running less than a few seconds
• All processes on a system, including the kernel

Argonne Leadership Computing Facility51

Intel Vtune – Advanced Hotspots

amplxe-cl -collect hotspots -knob sampling-mode=hw -finalization-mode=none -r vtune-
result-dir_advancedhotspots/ -- python /full/path/to/script.py

Advanced Hotspots analysis

• Detailed report of how effective the computation is on CPUs

• uses the OS kernel support or VTune Amplifier kernel driver

• extends the hotspots analysis by collecting call stacks, context switch and

statistical call count data and analyzing the CPI (Cycles Per Instruction) metric.

• By default, this analysis uses higher frequency sampling at lower overhead

compared to the Basic Hotspots analysis.

Argonne Leadership Computing Facility52

Intel Vtune – Advanced Hotspots

amplxe-cl -collect hotspots -knob sampling-mode=hw -finalization-mode=none -r vtune-
result-dir_advancedhotspots/ -- python /full/path/to/script.py

Advanced Hotspots analysis

• Detailed report of how effective the computation is on CPUs

• uses the OS kernel support or VTune Amplifier kernel driver

• extends the hotspots analysis by collecting call stacks, context switch and

statistical call count data and analyzing the CPI (Cycles Per Instruction) metric.

• By default, this analysis uses higher frequency sampling at lower overhead

compared to the Basic Hotspots analysis.

Run the finalization step after the run completes from the login nodes

amplxe-cl -finalize -search-dir / -r vtune-result-dir_advancedhotspots

Argonne Leadership Computing Facility53

Intel Vtune – Advanced Hotspots

• Visualize each thread activity and the
functions that cause it.

• Give a bottom up and top down view, very
useful for seeing which functions are
hotspots

Pros Cons
• Doesn’t keep information at python level.
• If your workflow uses JIT, you can lose

almost all useful information.
• Understanding the information present takes

some practice.

amplxe-gui vtune-result-dir_advancedhotspots

Run the GUI to view your
results:

Argonne Leadership Computing Facility54

Intel Vtune – Microarchitectural Exploration

https://software.intel.com/en-us/vtune-amplifier-help-microarchitecture-exploration-analysis

Argonne Leadership Computing Facility55

Intel Vtune – Microarchitectural Exploration

amplxe-cl -collect uarch-exploration –r vtune-uarch -- python /full/path/to/script.py

Argonne Leadership Computing Facility56

Intel Vtune – Microarchitectural Exploration

amplxe-cl -collect uarch-exploration –r vtune-uarch -- python /full/path/to/script.py

Architecture-specific Tuning Guides, visit https://software.intel.com/en-
us/articles/processor-specific-performance-analysis-papers.

collect-memory-bandwidth, pmu-collection-mode, dram-bandwidth-
limits,sampling-interval, collect-frontend-bound, collect-bad-speculation, collect-
memory-bound, collect-core-bound, collect-retiring.

knobs

$ amplxe-cl -collect uarch-exploration -knob collect-memory-bandwidth=true -–r vtune-
uarch-mem -- python /full/path/to/script.py

http://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff

Argonne Leadership Computing Facility57

Intel Vtune – Memory Access

Argonne Leadership Computing Facility58

Example

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu’))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax’))

model.compile(…....)

model.fit(.....)

model.evaluate(.....)

Simple CNN in Keras

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Argonne Leadership Computing Facility59

primitive propagation-time auxilliary info time
convolution backward_weights alg:convolution_direct 110.393
convolution backward_data alg:convolution_direct 36.48
convolution forward_training alg:convolution_direct 1.41211
eltwise backward_data alg:eltwise_relu 0.726074
pooling backward_data alg:pooling_max 0.51001
eltwise forward_training alg:eltwise_relu 0.0969238

0 50 100 150

relu-forward-training
maxpool-backward-data

relu-backward-data
conv-forward-training
conv-backward-data

conv-backward-weights

time

Argonne Leadership Computing Facility60

0 100 200 300 400 500

 INST_RETIRED.ANY

CPU_CLK_UNHALTED.THREAD

CYCLE_ACTIVITY.STALLS_ME
M_ANY

 L1D_PEND_MISS.PENDING

conv-bwd-weights conv-bwd-data

conv-fwd pooling-bwd

Argonne Leadership Computing Facility61

Operations on backward weights, data have stalls à high memory requirements
– Convolution layer is sensitive to compute units, memory and cachelines
– Dense layer is sensitive to communication -> bandwidth

Argonne Leadership Computing Facility62

Profiling Example – Tensorflow FFTs
An application that had very slow performance with Tensorflow on Theta, though with all
optimized settings. Using vtune hotspots and advanced hotspots, it is reported that
• 31% of the application time was spent doing FFTs with tensorflow

• 10% was spent creating tensorflow traces

• 8% was computing loss functions.

• 25% was spent creating and optimizing the tensorflow graph (measured for a short run, this is
a smaller fraction for production runs)

Most important hotspot (FFT) was underperforming on Theta by up to 50x compared with the
optimized FFT in Numpy.

For this workflow, replacing tensorflow with numpy FFT + autograd for gradient calculations
made a huge impact in their performance.

Argonne Leadership Computing Facility63

Optimization

Different configurations have different
performance impact

intra_op_parallelism_threads: Nodes
that can use multiple threads to
parallelize their execution will schedule
the individual pieces into this pool.

inter_op_parallelism_threads: All ready
nodes are scheduled in this pool.

config = tf.ConfigProto()
config.intra_op_parallelism_threads = num_intra_threads
config.inter_op_parallelism_threads = num_inter_threads
tf.Session(config=config)

https://www.tensorflow.org/guide/performance/overview

Argonne Leadership Computing Facility64

Performance Setting Guidelines
Performance with Tensorflow on KNLs requires management of many parameters at
both build and run time.

Intel Performance Guidelines: https://software.intel.com/en-us/articles/maximize-
tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference

ALCF Performance Guidelines: https://www.alcf.anl.gov/user-guides/machine-learning-
tools

Key Takeaways:
• Set OMP_NUM_THREADS=[number of physical cores = 64 on Theta]
• Set KMP_BLOCKTIME=0 (sometimes =1 can be better for non-CNN)
• (tensorflow only) Set intra_op_parallelism_threads == OMP_NUM_THREADS ==

number of physical cores == 64
• (tensorflow only) Set inter_op_parallelism_threads for your application. 0 will

default to the number of cores, the optimal value can be different for different
applications.

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference
https://www.alcf.anl.gov/user-guides/machine-learning-tools

Argonne Leadership Computing Facility65

Useful Commands
amplxe-cl -c hotspots -- python3 myapp.py
amplxe-cl -R hotspots -report-output report-hotspots.csv -format csv

amplxe-cl -c uarch-exploration -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R uarch-exploration -report-output report-uarch-exploration.csv -format csv

amplxe-cl -c memory-access -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-access -report-output report-memory-access.csv -format csv

amplxe-cl -c memory-consumption -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-consumption -report-output report-memory-consumption.csv -format csv

change sampling interval
-k sampling-interval=<number>

Argonne Leadership Computing Facility66

Useful Commands
amplxe-cl -report hw-events/summary -r r000ue/ -report-output ./report-uarch.csv -format
csv

amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py

get MKL-DNN verbose
export MKLDNN_VERBOSE=2
amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py

Argonne Leadership Computing Facility67

Thank you!

Argonne Leadership Computing Facility67

Argonne Leadership Computing Facility68

GEMM – 2*m*n*k operations
m, k – hidden layer size
n = minibatch size

2 * 512 * 512 * 64 = 0.03 GFLOP

Peak upper limit = 6000 GFLOP/s

Runtime ~ 5.6 usec

18

SGEMM Performance

• GEMM performs ~2mnk floating point operations

• In this case, m and k are the hidden layer size, n is the minibatch size

• 512 * 512 * 64 * 2 = 0.034 GFLOP

• The GPU I’m using can perform ~6,000 GFLOP per second

• Best GEMM runtime is therefore: 5.7us

• 72us => ~500 GFLOP/s

Back of the envelope

Time(%) Time Calls Avg Min Max Name
 93.93% 575.72us 8 71.964us 70.241us 78.945us maxwell_sgemm_128x64_tn

