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Introduction

• Profiling is an approach to measure application performance

• Simple Profiling:
- How long does an application take

• Advanced Profiling:
- Why does an operation take long time

• Goal: Find performance bottlenecks
- inefficient programming
- memory I/O bottlenecks
- parallel scaling
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Typical Optimization Workflow 

Profile 
application

Analyze 
profile data

Optimize

Iterative workflow till desired performance is reached 
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Broad classification

• Hardware counters 
count events from CPU/GPU perspective (#flops, memory loads, etc.)  
usually needs Linux kernel module installed or root permission

• Statistical profilers (sampling) 
interrupt program at given intervals to find the state of a program 

• Event based profilers (tracing)
collect information on each function call
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Plethora of Tools
• Cprofile
• Gprof
• Perf tool
• Intel Vtune
• HPCToolKit
• OpenSpeedShop
• TAU
• Nvidia Nvprof, Nsight
….
…
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Profiling DNN workloads
• Critical to understand workload performance

• Machine learning and deep learning models are implemented on a variety 
of hardware

• Most applications are written in Python using standard ML frameworks

• The frameworks generate kernels based on hardware and customized 
installation and libraries (MKL-DNN, CuDNN etc.)
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Challenges

• Profiling is hard, cumbersome and time-consuming

• Profiling tools generate lot of data and hard to understand

• The problem is further compounded with large, complex models with large 
volumes of data

• Need strategies to use right tools and detailed insights to how to analyze the 
profile data
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Profiling on Nvidia GPUs
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Profiling on Nvidia GPUs
Use Nvidia profiler ‘Nvprof’

• capture metrics from hardware counters
• invoked via command line or UI (Nvidia Visual Profiler NVVP)

See list  of options using
nvprof –h

Some useful options:
-o: create output file to import into nvvp
--metrics / -m : collect metrics
--events / -e   : collect events
--log-file : create human readable output file
--analysis-metrics :  collect all metrics to import into nvvp
--query-metrics/--query-events: list of available metrics/events
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Events and Metrics
• An event is a countable activity, action, or occurrence on a device. It corresponds to 

a single hardware counter value which is collected during kernel execution
• A metric is a characteristic of an application that is calculated from one or more 

event values
In general, events are only for experts, rarely used.

• Vary in number based on hardware family  (P100, K80, V100 etc)
• For example, on V100, nvprof gives 175 metrics
• Event and metric values are aggregated across all units in the GPU.
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Workflow

Option 1)
• Use ‘nvprof’ to collect metrics in an output file (compute node)
• Use ‘nvvp’ to visualize the profile (login node)

Option 2)
• Directly launch nvvp on compute node and profile the code interactively

export PATH=/soft/compilers/cuda/cuda-9.1.85/bin:$PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/cuda/cuda-
9.1.85/lib64
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Profile Commands

– Kernel timing analysis: 
nvprof –-log-file timing.log <myapp>
nvprof -–log-file timing.log python myapp.py args

– Traces (#threads, #warps, #registers)
nvprof –-print-gpu-traces -–log-file traces.log <myapp>
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Profile Commands

– Kernel timing analysis: 
nvprof –-log-file timing.log <myapp>
nvprof -–log-file timing.log python myapp.py args

– Traces (#threads, #warps, #registers)
nvprof –-print-gpu-traces -–log-file traces.log <myapp>

– Get all metrics for all kernels
nvprof --metrics all --log-file all-metrics.log <myapp>

– Get metrics for guided analysis
nvprof --analysis-metrics –o analysis.nvprof <myapp>

– Visual profile to use Nvidia Visual Profiler (nvvp)
nvprof –o analysis.nvprof <myapp>
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Selective Profiling
• As profiling adds significant overhead, a better strategy is to profile only regions of 

interest (kernels and metrics)

• All metrics for kernels of interest: 
nvprof --profile-from-start off –-kernels <kernel-name> –-metrics all      
--log-file selective-profile.log <myapp>

• few metrics for kernels of interest
nvprof --profile-from-start off-–kernels <kernel-name> –-metrics ipc
--log-file selective-profile.log <myapp>

For example, if we want to profile heavy kernels only
Step 1) use nvprof to list all kernels sorted by the time
Step 2) re-run nvprof in selective profiling mode

• Profile GEMM kernels
nvprof --profile-from-start off –-kernels “::gemm:n” –-metrics all                                                    
--log-file selective-profile.log <myapp>
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GPU Memory - metrics

GPU Memory hierarchy 

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

on-chip memory off-chip memory

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth
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GPU Memory - metrics

1.dram_read_throughput, dram_read_transactions
2.dram_write_throughput, dram_write_transactions
3.sysmem_read_throughput, sysmem_read_transactions
4.sysmem_write_throughput, sysmem_write_transactions
5.l2_l1_read_transactions, l2_l1_read_throughput
6.l2_l1_write_transactions, l2_l1_write_throughput
7.l2_tex_read_transactions, l2_texture_read_throughput
8.texture is read-only, there are no transactions possible on 
this path
9.shared_load_throughput, shared_load_transactions
10.shared_store_throughput, shared_store_transactions
11.l1_cache_local_hit_rate
12.l1 is write-through cache, so there are no (independent) 
metrics for this path - refer to other local metrics
13.l1_cache_global_hit_rate
14.see note on 12
15.gld_efficiency, gld_throughput, gld_transactions
16.gst_efficiency, gst_throughput, gst_transactions

GPU Memory hierarchy 

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth
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GPU Memory - metrics

1.dram_read_throughput, dram_read_transactions
2.dram_write_throughput, dram_write_transactions
3.sysmem_read_throughput, sysmem_read_transactions
4.sysmem_write_throughput, sysmem_write_transactions
5.l2_l1_read_transactions, l2_l1_read_throughput
6.l2_l1_write_transactions, l2_l1_write_throughput
7.l2_tex_read_transactions, l2_texture_read_throughput
8.texture is read-only, there are no transactions possible on 
this path
9.shared_load_throughput, shared_load_transactions
10.shared_store_throughput, shared_store_transactions
11.l1_cache_local_hit_rate
12.l1 is write-through cache, so there are no (independent) 
metrics for this path - refer to other local metrics
13.l1_cache_global_hit_rate
14.see note on 12
15.gld_efficiency, gld_throughput, gld_transactions
16.gst_efficiency, gst_throughput, gst_transactions

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth

GPU Memory 

https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth
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Metrics and Events
Metrics relevant to identify compute, memory, IO characteristics

achieved_occupancy
ratio of the average active warps per active cycle to the 
maximum number of warps supported on a multiprocessor

ipc Instructions executed per cycle

gld_efficiency
Ratio of requested global memory load throughput to required 
global memory load throughput expressed as percentage.

gst_efficiency
Ratio of requested global memory store throughput to required 
global memory store throughput expressed as percentage.

dram_utilization
The utilization level of the device memory relative to the peak 
utilization on a scale of 0 to 10



Argonne Leadership Computing Facility19

Metrics and Events
Metrics relevant to identify compute, memory, IO characteristics

achieved_occupancy
ratio of the average active warps per active cycle to the 
maximum number of warps supported on a multiprocessor

ipc Instructions executed per cycle

gld_efficiency
Ratio of requested global memory load throughput to required 
global memory load throughput expressed as percentage.

gst_efficiency
Ratio of requested global memory store throughput to required 
global memory store throughput expressed as percentage.

dram_utilization
The utilization level of the device memory relative to the peak 
utilization on a scale of 0 to 10

Warp Execution Efficiency 

� All threads in warp may not execute instruction 
— Divergent branch 

— Divergent predication 

 

 

 

� nvprof metrics: warp_execution_efficiency, 
warp_nonpred_execution_efficiency (SM3.0+) 

 
 

1 of 32 threads = 3% 32 of 32 threads = 100% 

Warps efficiency/active cycles
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Calculating Performance Bounds 

� Utilizations 
— Both high Æ compute and memory highly utilized 

 

Compute Memory 

Both high compute and memory highly utilized
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Calculating Performance Bounds 

� Utilizations 
— Both high Æ compute and memory highly utilized 

 

Compute Memory 

High compute, low memory utilization  => compute bound

Calculating Performance Bounds 

� Utilizations 
— Compute high, memory low Æ compute resource bound 

 

Compute Memory 
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Calculating Performance Bounds 

� Utilizations 
— Both high Æ compute and memory highly utilized 

 

Compute Memory 

Low compute, high memory utilization  => memory bound

Calculating Performance Bounds 

� Utilizations 
— Memory high, compute low Æ memory bandwidth bound 

 

Compute Memory 
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Calculating Performance Bounds 

� Utilizations 
— Both high Æ compute and memory highly utilized 

 

Compute Memory 

Both low => latency bound

Calculating Performance Bounds 

� Utilizations 
— Both low Æ latency bound 

 

Compute Memory 
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Detailed Analysis
Use visual profiler nvvp

40  

More details 
Deep dive into a kernel 

• The profilers let us dig much deeper into 
individual kernels 

• Moving from “it is going slow?” to “why is 
it going slow?” 

• Let’s dive into the elementwise 
operation 

• Requires interactive nvvp session, or 
output from --analysis-metrics 
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41  
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42  
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Tips
• Start with the nvprof output

• Perform deeper analysis only if  a kernel takes significant amount of execution time.

• Know your hardware:
• If your GPU can do 6 TFLOPs, and you’re already doing 5.5 TFLOPs, you won’t go 

much faster! 

• Sometimes quite simple changes can lead to big improvements in performance 
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Example

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 
input_shape=input_shape)) 
model.add(Conv2D(64, (3, 3), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25)) 
model.add(Flatten()) 
model.add(Dense(128, activation='relu’)) 
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax’)) 

model.compile(…....)

model.fit(.....)

model.evaluate(.....)

Simple CNN in Keras
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Example

import numba.cuda

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 

input_shape=input_shape)) 

model.add(Conv2D(64, (3, 3), activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(128, activation='relu’)) 

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax’)) 

model.compile(…....)

## begin cuda profile

cuda.profile_start()

model.fit(.....)

## stop cuda profile

cuda.profile_stop()

model.evaluate(.....)

Simple CNN in Keras
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0 1 2 3 4 5 6 7

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

dram_utilization
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

executed_ipc
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0 0.2 0.4 0.6 0.8 1 1.2

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

achieved_occupancy
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0 0.2 0.4 0.6 0.8 1 1.2

 pooling_bw_kernel_max_nchw
BiasNCHWKernel

pooling_fw_4d_kernel
scudnn_128x32_relu_interior_nn_v1

sgemm_largek_lds64
volta_gcgemm_64x32_nt

volta_sgemm_128x64_nn
volta_sgemm_128x64_nt
volta_sgemm_128x64_tn

volta_sgemm_64x64_nt
volta_sgemm_64x64_tn

wgrad_alg0_engine
WinogradForward4x4

winogradForwardOutput4x4

global_mem_efficiency
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Impact of batch size

0 0.5 1 1.5 2 2.5

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

IPC

256 128 64
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0 1 2 3 4 5 6 7 8 9 10

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

dram utilization

256 128 64
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0 0.2 0.4 0.6 0.8 1 1.2

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

achieved_occupancy

256 128 64
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0.00% 20.00% 40.00% 60.00% 80.00%100.00%120.00%

wgrad_alg0_engine
volta_sgemm_128x64_nn

BiasNCHWKernel
volta_gcgemm_64x32_nt

winogradForwardOutput4x4
 pooling_bw_kernel_max_nchw_fully_packed

sgemm_largek_lds64
WinogradForward4x4

scudnn_128x32_relu_interior_nn_v1
volta_sgemm_128x64_nt

pooling_fw_4d_kernel
volta_sgemm_128x64_tn
volta_sgemm_64x64_tn
volta_sgemm_64x64_nt

global memory efficiency

256 128 64
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Example

https://www.robots.ox.ac.uk/seminars/Extra/2015_10_08_JeremyAppleyard.pdf

LSTM – Long Short Term Memory

Recurrent Neural Network with potential for long-term memory 

12  

LSTM 
Potentially many layers 

…. 

…. 

…. 

https://www.robots.ox.ac.uk/seminars/Extra/2015_10_08_JeremyAppleyard.pdf
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10  

LSTM 

 

• Inputs and outputs are “batched 
vectors”.  

• ie. A minibatch 

• Typical length is 256-2048 

• Typical batch size is 32-128 

Viewed as a black box 

LSTM  
Cell hn, cn hn+1, cn+1 

i 

hn+1 

hidden layer size = 512 
minibatch size = 64 

nvprof ./LSTM 512 64 
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17  

==22964== NVPROF is profiling process 22964, command: ./LSTM 512 64 
==22964== Profiling application: ./LSTM 512 64 
==22964== Profiling result: 
Time(%)      Time     Calls       Avg       Min       Max  Name 
 93.93%  575.72us         8  71.964us  70.241us  78.945us  maxwell_sgemm_128x64_tn 
  3.60%  22.080us         8  2.7600us  2.3360us  3.5840us  addBias(float*, float*) 
  1.43%  8.7680us         4  2.1920us  2.0800us  2.4640us  vecAdd(float*, float*, float*) 
  1.04%  6.3680us         1  6.3680us  6.3680us  6.3680us  nonLin(float*, float*, float*, float*) 
 
==28493== API calls: 
Time(%)      Time     Calls       Avg       Min       Max  Name 
 97.04%  103.55ms        21  4.9308ms  10.606us  103.30ms  cudaLaunch 
  2.08%  2.2189ms       249  8.9110us     202ns  350.88us  cuDeviceGetAttribute 
  0.53%  568.27us        21  27.060us     286ns  557.64us  cudaConfigureCall 
  0.17%  176.23us         3  58.741us  57.818us  59.862us  cuDeviceTotalMem 
  0.14%  147.11us         3  49.036us  46.468us  52.966us  cuDeviceGetName 
  0.04%  42.216us       128     329ns     240ns  5.1400us  cudaSetupArgument 
  0.00%  4.3100us         8     538ns     354ns  1.7220us  cudaGetLastError 
  0.00%  3.7640us         2  1.8820us     308ns  3.4560us  cuDeviceGetCount 
  0.00%  1.8660us         6     311ns     204ns     648ns  cuDeviceGet 
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Optimization

22  

[A1][h] = [x1] 

[A2][h] = [x2] 

[A3][h] = [x3] 

[A4][h] = [x4] 

SGEMM Performance 
Improvement #1 

•  As our matrix operations share inputs we can combine them 

A    [h] =   x  

Combine many small data transfers to few large data transfers
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Optimization

22  

[A1][h] = [x1] 

[A2][h] = [x2] 

[A3][h] = [x3] 

[A4][h] = [x4] 

SGEMM Performance 
Improvement #1 

•  As our matrix operations share inputs we can combine them 

A    [h] =   x  

23  

Combined Matrices 
Improvement #1 

Time(%)      Time     Calls       Avg       Min       Max  Name  
 93.93%  575.72us         8  71.964us  70.241us  78.945us  maxwell_sgemm_128x64_tn 

Time(%)      Time     Calls       Avg       Min       Max  Name  
 84.40%  198.11us         2  99.057us  98.177us  99.937us  maxwell_sgemm_128x64_tn 

• From ~500 GFLOP/s to ~1350 GFLOP/s 

 

2.5x performance gain
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Profiling on CPUs using Intel Vtune
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Intel Vtune

• Performance profiling tool to identify where in the code time is being spent in both 
serial and threaded applications. 

• For threaded applications, it can also determine the amount of concurrency and 
identify bottlenecks created by synchronization primitive

• Different analysis groups
• Hotspots (Advanced-hotspots is integrated here)
• Memory consumption
• Microarchitectural exploration

- Hardware issues
- Memory access analysis and high bandwidth issues
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Intel Vtune

Take a quick look at your application's performance
to see if it is well optimized for modern hardware
(Linux* only).

MPI parallelism
OpenMP* parallelism
Memory access
FPU Utilization
I/O efficiency

DOWNLOAD

(revision 601413)
This software is provided
to you under the terms of

a Community License Type
as specified in the EULA

It also includes recommendations for further analysis if
you need more in-depth information.

It is easy to install, easy to run and provides results in a
text or HTML report.

What's new for 2019What's new for 2019
Update 5:Update 5:

Max and Bound
metrics added to
estimate the
efficiency of the
DRAM, MCDRAM,
Persistent Memory
and Intel® Omni-
Path Architecture
interconnect usage

Intel® VTune™ Amplifier

Get Started  Storage Performance Snapshot  Parallel Studio XE  Forum

See Application Performance Snapshot reports in action

Application Performance Snapshot

https://software.intel.com/sites/products/snapshots/application-snapshot/

https://software.intel.com/sites/products/snapshots/application-snapshot/
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Application Performance Snapshot (APS)
APS generates a high level performance snapshot of your application. 

source /soft/compilers/intel-2019/vtune_amplifier_2019/apsvars.sh
export 
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel-2019/vtune_amplifier_2019/lib64
export PMI_NO_FORK=1

aps --result-dir=aps_results/ -- python /full/path/to/script.py
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Application Performance Snapshot (APS)

• Very easy to use
• Tracks important hardware metrics:

• Thread Load Balancing
• Vectorization
• CPU Usage

Pros Cons
• Only high level information – but then 

again, that is the design of this tool.
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Application Performance Snapshot (APS)
APS generates a highlevel performance snapshot of your application.  

Results can be viewed in a single html file, or via command line:

| Summary information
|--------------------------------------------------------------------
HW Platform                : Intel(R) Processor code named Knights Landing
Logical core count per node: 256
Collector type             : Driverless Perf system-wide counting
Used statistics            : aps_results

|
| Your application might underutilize the available logical CPU cores
| because of insufficient parallel work, blocking on synchronization, or too much I/O. 
Perform function or source line-level profiling with tools like Intel(R) VTune(TM) 
Amplifier to discover why the CPU is underutilized.
CPU Utilization:                                6.50%

| Your application might underutilize the available logical CPU cores because of
| insufficient parallel work, blocking on synchronization, or too much I/O.
| Perform function or source line-level profiling with tools like Intel(R)

source /soft/compilers/intel-2019/vtune_amplifier_2019/apsvars.sh
export 
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel-2019/vtune_amplifier_2019/lib64
export PMI_NO_FORK=1

aps --result-dir=aps_results/ -- python /full/path/to/script.py
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Intel Vtune – Hotspots
Provides list of functions in an application ordered by the amount of time spent in 
each function.

Pros Cons
• Can track activity from python code
• Quickly identify heavy functions

• Will not run with more than a few 
threads, making it impossible to profile 
the “real” application.

source /soft/compilers/intel-2019/vtune_amplifier_2019/amplxe-vars.sh
export 
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/soft/compilers/intel-2019/vtune_amplifier_2019/lib64
export PMI_NO_FORK=1

amplxe-cl -collect hotspots -finalization-mode=none -r vtune-result-dir_hotspots/ --
python /full/path/to/script.py
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Intel Vtune – Hotspots

sampling-mode=sw - User-Mode Sampling (default) used for profiling:
• Targets running longer than a few seconds
• A single process or a process-tree
• Python and Intel runtimes

sampling-mode=hw - (Advanced hotspots) Hardware Event-Based Sampling 
used for profiling:

• Targets running less than a few seconds
• All processes on a system, including the kernel
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Intel Vtune – Advanced Hotspots

amplxe-cl -collect hotspots -knob sampling-mode=hw -finalization-mode=none -r vtune-
result-dir_advancedhotspots/ -- python /full/path/to/script.py

Advanced Hotspots analysis

• Detailed report of how effective the computation is on CPUs

• uses the OS kernel support or VTune Amplifier kernel driver 

• extends the hotspots analysis by collecting call stacks, context switch and 

statistical call count data and analyzing the CPI (Cycles Per Instruction) metric. 

• By default, this analysis uses higher frequency sampling at lower overhead 

compared to the Basic Hotspots analysis.
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Intel Vtune – Advanced Hotspots

amplxe-cl -collect hotspots -knob sampling-mode=hw -finalization-mode=none -r vtune-
result-dir_advancedhotspots/ -- python /full/path/to/script.py

Advanced Hotspots analysis

• Detailed report of how effective the computation is on CPUs

• uses the OS kernel support or VTune Amplifier kernel driver 

• extends the hotspots analysis by collecting call stacks, context switch and 

statistical call count data and analyzing the CPI (Cycles Per Instruction) metric. 

• By default, this analysis uses higher frequency sampling at lower overhead 

compared to the Basic Hotspots analysis.

Run the finalization step after the run completes from the login nodes

amplxe-cl -finalize -search-dir / -r vtune-result-dir_advancedhotspots
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Intel Vtune – Advanced Hotspots

• Visualize each thread activity and the 
functions that cause it.

• Give a bottom up and top down view, very 
useful for seeing which functions are 
hotspots 

Pros Cons
• Doesn’t keep information at python level.
• If your workflow uses JIT, you can lose 

almost all useful information.
• Understanding the information present takes 

some practice.

amplxe-gui vtune-result-dir_advancedhotspots

Run the GUI to view your 
results:
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Intel Vtune – Microarchitectural Exploration

https://software.intel.com/en-us/vtune-amplifier-help-microarchitecture-exploration-analysis
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Intel Vtune – Microarchitectural Exploration

amplxe-cl -collect uarch-exploration –r vtune-uarch -- python /full/path/to/script.py
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Intel Vtune – Microarchitectural Exploration

amplxe-cl -collect uarch-exploration –r vtune-uarch -- python /full/path/to/script.py

Architecture-specific Tuning Guides, visit https://software.intel.com/en-
us/articles/processor-specific-performance-analysis-papers.

collect-memory-bandwidth, pmu-collection-mode, dram-bandwidth-
limits,sampling-interval, collect-frontend-bound, collect-bad-speculation, collect-
memory-bound, collect-core-bound, collect-retiring.

knobs

$ amplxe-cl -collect uarch-exploration -knob collect-memory-bandwidth=true -–r vtune-
uarch-mem -- python /full/path/to/script.py

http://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
https://software.intel.com/node/b6116835-909a-4005-8c36-3ce9420486ff
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Intel Vtune – Memory Access
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Example

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 
input_shape=input_shape)) 
model.add(Conv2D(64, (3, 3), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25)) 
model.add(Flatten()) 
model.add(Dense(128, activation='relu’)) 
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax’)) 

model.compile(…....)

model.fit(.....)

model.evaluate(.....)

Simple CNN in  Keras

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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primitive propagation-time auxilliary info time
convolution backward_weights alg:convolution_direct 110.393
convolution backward_data alg:convolution_direct 36.48
convolution forward_training alg:convolution_direct 1.41211
eltwise backward_data alg:eltwise_relu 0.726074
pooling backward_data alg:pooling_max 0.51001
eltwise forward_training alg:eltwise_relu 0.0969238

0 50 100 150

relu-forward-training
maxpool-backward-data

relu-backward-data
conv-forward-training
conv-backward-data

conv-backward-weights

time
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0 100 200 300 400 500

    INST_RETIRED.ANY

CPU_CLK_UNHALTED.THREAD

CYCLE_ACTIVITY.STALLS_ME
M_ANY

    L1D_PEND_MISS.PENDING

conv-bwd-weights conv-bwd-data

conv-fwd pooling-bwd
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Operations on backward weights, data have stalls à high memory requirements
– Convolution layer is sensitive to compute units, memory and cachelines
– Dense layer is sensitive to communication -> bandwidth
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Profiling Example – Tensorflow FFTs
An application that had very slow performance with Tensorflow on Theta, though with all 
optimized settings.  Using vtune hotspots and advanced hotspots, it is reported that
• 31% of the application time was spent doing FFTs with tensorflow

• 10% was spent creating tensorflow traces

• 8% was computing loss functions.

• 25% was spent creating and optimizing the tensorflow graph (measured for a short run, this is 
a smaller fraction for production runs)

Most important hotspot (FFT) was underperforming on Theta by up to 50x compared with the 
optimized FFT in Numpy.

For this workflow, replacing tensorflow with numpy FFT + autograd for gradient calculations 
made a huge impact in their performance.
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Optimization

Different configurations have different 
performance impact

intra_op_parallelism_threads: Nodes 
that can use multiple threads to 
parallelize their execution will schedule 
the individual pieces into this pool.

inter_op_parallelism_threads: All ready 
nodes are scheduled in this pool.

config = tf.ConfigProto()
config.intra_op_parallelism_threads = num_intra_threads
config.inter_op_parallelism_threads = num_inter_threads
tf.Session(config=config) 

https://www.tensorflow.org/guide/performance/overview
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Performance Setting Guidelines
Performance with Tensorflow on KNLs requires management of many parameters at 
both build and run time.

Intel Performance Guidelines: https://software.intel.com/en-us/articles/maximize-
tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference 

ALCF Performance Guidelines: https://www.alcf.anl.gov/user-guides/machine-learning-
tools

Key Takeaways:
• Set OMP_NUM_THREADS=[number of physical cores = 64 on Theta]
• Set KMP_BLOCKTIME=0 (sometimes =1 can be better for non-CNN)
• (tensorflow only) Set intra_op_parallelism_threads == OMP_NUM_THREADS == 

number of physical cores == 64
• (tensorflow only) Set inter_op_parallelism_threads for your application.  0 will 

default to the number of cores, the optimal value can be different for different 
applications.  

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference
https://www.alcf.anl.gov/user-guides/machine-learning-tools
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Useful Commands
amplxe-cl -c hotspots -- python3 myapp.py
amplxe-cl -R hotspots -report-output report-hotspots.csv -format csv

amplxe-cl -c uarch-exploration -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R uarch-exploration -report-output report-uarch-exploration.csv -format csv

amplxe-cl -c memory-access -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-access -report-output report-memory-access.csv -format csv

amplxe-cl -c memory-consumption -k sampling-interval=100 -- python3 myapp.py
amplxe-cl -R memory-consumption -report-output report-memory-consumption.csv -format csv

change sampling interval
-k sampling-interval=<number>
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Useful Commands
amplxe-cl -report hw-events/summary -r r000ue/ -report-output ./report-uarch.csv -format 
csv

amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py

## get MKL-DNN verbose
export MKLDNN_VERBOSE=2
amplxe-cl -collect hotspots -strategy ldconfig:notrace:notrace -- python myapp.py
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Thank you!
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GEMM – 2*m*n*k operations
m, k – hidden layer size 
n = minibatch size

2 * 512 * 512 * 64   = 0.03 GFLOP

Peak upper limit = 6000 GFLOP/s

Runtime ~ 5.6 usec

18  

SGEMM Performance 

• GEMM performs ~2mnk floating point operations 

• In this case, m and k are the hidden layer size, n is the minibatch size 

• 512 * 512 * 64 * 2 = 0.034 GFLOP 

• The GPU I’m using can perform ~6,000 GFLOP per second 

• Best GEMM runtime is therefore: 5.7us 

 

 

• 72us => ~500 GFLOP/s 

Back of the envelope 

Time(%)      Time     Calls       Avg       Min       Max  Name  
 93.93%  575.72us         8  71.964us  70.241us  78.945us  maxwell_sgemm_128x64_tn 


