

REINFORCEMENT LEARNING

SAMI KHAIRY ILLINOIS TECH

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

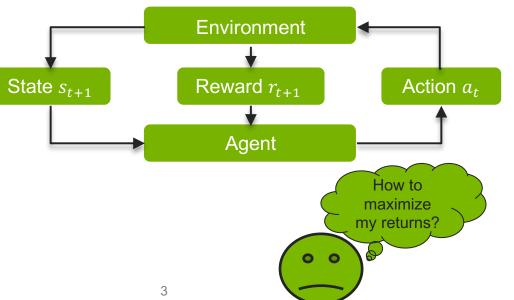
OUTLINE

- Reinforcement learning, in a nutshell
- On-policy and Off-policy learning
- Q-learning
- Deep Q-Network (DQN)
- Policy Gradient Methods

WHAT IS REINFORCEMENT LEARNING?

- A branch of machine learning that attempts to formalize the nature of learning in human beings.
- An autonomous agent learns how to map situations to actions in an interactive environment, by trial and error.
- Environment gives the agent a reward signal, which guides the learning process.
- Based on the signal, agent reinforces the action, or avoids it at future encounters.

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC



RL AS A MARKOV DECISION PROCESS

- Classical formalization of sequential decision making: actions influence immediate rewards, next states, and future rewards.
- **Def**: An MDP is a tuple (S, A, \mathcal{R}, p) such that environment dynamics are Markovian, p: $Sx\mathcal{R}xSx\mathcal{A} \rightarrow [0,1], p(s',r|s,a) = \Pr\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}.$
- At each t, agent observes environment state S_t , selects action A_t , receives reward R_{t+1} , arrives at S_{t+1} .
- **Trajectory**: $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$
- **Return at** $t, G_t = \sum_{k=0}^T R_{t+k+1}$ or

$$G_{t} = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} = R_{t+1} + \gamma G_{t+1}.$$

- Objective: maximize long-term expected total rewards by choice of a policy (strategy).
- In **Model-free RL**, p(s', r|s, a) are not known to the agent!

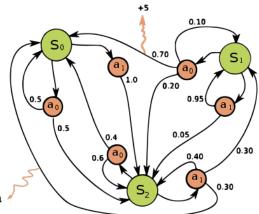


Image source: Wikipedia

RL JARGONS

- A **Policy** is a mapping from states to action probabilities, $\pi(A_t = a | S_t = s)$.
- State-Value function of a state *s* under a policy π , $v_{\pi}(s)$, is the expected return starting in *s* and following π thereafter, $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$, $\mathbb{E}_{\pi} \sim p(r|s)$.
- Action-Value function of taking action *a* in state *s* under a policy π, q_π(s, a), is the expected return starting in *s*, taking action *a*, and following π thereafter, q_π(s, a) = E_π[G_t|S_t = s, A_t = a].
- Policy π^* is optimal *iff*, $v_{\pi^*}(s) \ge v_{\pi}(s), \forall \pi, s$.
- If agent learns the optimal $v_{\pi}(s)$, or $q_{\pi}(s, a)$, the optimal policy can be derived.
- How to learn $v_{\pi}^*(s)$, or $q_{\pi}^*(s, a)$ given p(s', r|s, a) are not known?
 - \rightarrow Trade-off between exploration & exploitation.

OFF-POLICY VS ON-POLICY LEARNING

- On-policy approach: evaluate and improve the policy that is used to make decisions,
 - Does not reuse old data, sample inefficient, but more stable
 - Policy Gradient Algorithms: VPG, TRPO, PPO
- Off-policy approach: evaluate and improve a different policy from that used to generate the data,
 - Reuses old data, sample efficient, but no stability/performance guarantees
 - Q-learning, DQN, DDPG (~hybrid, actor-critic)
- Exploration strategies,
 - Exploring Starts: every episode starts in some state-action pair.
 - The Boltzmann approach: $\pi(a|s) > 0$, $\forall a, s, e.g.$, $\pi(a|s) = \frac{\exp(Q(s,a)/\tau)}{\sum_{b \in A(s)} \exp(Q(s,b)/\tau)}$
 - ϵ -greedy: with probability ϵ select a random action at random, with probability 1ϵ select the action with the maximal action-value.

TEMPORAL DIFFERENCE POLICY EVALUATION

- TD methods can learn directly from raw experience without a model of the environment's dynamics.
- One-step TD updates the estimated State-Value function every time step, using sample updates based on the observed reward R_{t+1} and estimate of new state $V(S_{t+1})$. Learn on-the-fly,

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

- TD estimation error, $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$.
- α is step-size parameter, e.g. $\alpha_n(a) = \frac{1}{n}$ or $\alpha(a) = \zeta$ (very small constant)

TABULAR Q-LEARNING

- Q-learning directly approximates q_{*} independent of the policy being followed.
- Converges with probability 1 to π^* and $q_*(s, a)$ *iff* 1) all state-action pairs are visited an infinite number of times, 2) Policy converges in the limit to be greedy w.r.t q_{π} .

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- Not practical when state space is continuous or large.
 - **Solution:** maintain $q_{\pi}(s, a)$ as parameterized functions, adjust parameters to match observed returns.
 - Learning $q_{\pi}(s, a)$ from 'samples' involves function approximation techniques from supervised learning (e.g. regression, NNs).

DEEP Q-NETWORK (DQN)

- For discrete action space.
- Uses a DNN or CNN to learn the state-action value function Q(s, a).
- For DNN training to converge, data samples should be *i.i.d.* This is no longer the case in reinforcement learning, since samples are temporally-correlated trajectories.
- DQN mitigates this issue by creating an experience replay buffer to store transition samples, from which a batch of samples are picked uniformly and used for training the NN.
- The network is trained with another target Q-network, which will be used to compute the loss for every action during training. Weights are slowly updated and synchronized with the primary Q-network.

POLICY GRADIENT METHODS

- Q-learning/DQN: learn the action-value function $q_{\pi}(s, a)$, from which the optimal policy is derived.
- In Policy Gradient Methods, adopt a parametrized policy that can select actions without consulting a state-value function (e.g., θ weights/biases of DNN),

$$\pi(a|s,\theta) = \Pr\{A_t = a|S_t = s, \theta_t = \theta\}$$

• Objective: learn the parameters θ of $\pi(a|s,\theta)$ by maximizing a performance measure, $J(\pi_{\theta}) \sim$ average rate of reward, and update parameters by gradient optimization, $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta})|_{\theta_k}$.

HANDS ON TUTORIAL

 Jupyter notebook: <u>https://github.com/argonne-</u> <u>lcf/ATPESC_2019/blob/master/ReinforcementLearning/RL_CARTPOLE_ATPES</u> <u>C_2019.ipynb</u>

USEFUL RESOURCES

- Sutton, Richard S., and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.
- Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971(2015).
- Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).
- OpenAl's Baselines, Gym, Spinning Up in Deep RL, <u>https://openai.com/resources/</u>
- DeepMind's Tensorflow RL, <u>https://github.com/deepmind/trfl</u>

THANK YOU

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

