
REINFORCEMENT LEARNING

erhtjhtyhy

SAMI KHAIRY
ILLINOIS TECH

08/09/2019

OUTLINE
§ Reinforcement learning, in a nutshell
§ On-policy and Off-policy learning
§ Q-learning
§ Deep Q-Network (DQN)
§ Policy Gradient Methods

2

3

Environment

Agent

Action !"State #"$% Reward &"$%	

WHAT IS REINFORCEMENT LEARNING?
§ A branch of machine learning that attempts to formalize the nature of learning in

human beings.
§ An autonomous agent learns how to map situations to actions in an interactive

environment, by trial and error.
§ Environment gives

the agent a reward
signal, which guides
the learning process.

§ Based on the signal,
agent reinforces the
action, or avoids it at
future encounters.

How to
maximize

my returns?

4

RL AS A MARKOV DECISION PROCESS
§ Classical formalization of sequential decision making: actions influence immediate

rewards, next states, and future rewards.
§ Def: An MDP is a tuple (𝒮,𝒜,ℛ, 𝑝) such that environment dynamics are Markovian, 𝑝:

𝒮𝘹ℛ𝘹𝒮𝘹𝒜 → [0,1], 𝑝 𝑠0, 𝑟 𝑠, 𝑎 = Pr 𝑆789 = 𝑠0, 𝑅789 = 𝑟 𝑆7 = 𝑠, 𝐴7 = 𝑎}.

§ At each 𝑡, agent observes environment state 𝑆7, selects
action 𝐴7, receives reward 𝑅789, arrives at 𝑆789.

§ Trajectory: 𝑆?, 𝐴?, 𝑅9, 𝑆9, 𝐴9, 𝑅@, 𝑆@, 𝐴@, 𝑅A, …
§ Return at 𝑡, GD = ∑FG?H 𝑅78F89 or
§ GD = ∑FG?I 𝛾F𝑅78F89 = 𝑅789 + 𝛾𝐺789.
§ Objective: maximize long-term expected total rewards by

choice of a policy (strategy).
§ In Model-free RL, 𝑝 𝑠0, 𝑟 𝑠, 𝑎 are not known to the agent!

Image source: Wikipedia

https://en.wikipedia.org/wiki/Markov_decision_process

5

RL JARGONS
§ A Policy is a mapping from states to action probabilities, 𝜋(𝐴7 = 𝑎|𝑆7 = 𝑠).
§ State-Value function of a state 𝑠 under a policy 𝜋, 𝑣P(𝑠), is the expected return

starting in 𝑠 and following 𝜋 thereafter, 𝑣P 𝑠 = 𝔼P 𝐺7 𝑆7 = 𝑠 , 𝔼P~𝑝(𝑟|𝑠).
§ Action-Value function of taking action 𝑎 in state 𝑠 under a policy 𝜋, 𝑞P(𝑠, 𝑎), is the

expected return starting in 𝑠, taking action 𝑎, and following 𝜋 thereafter, 𝑞P 𝑠, 𝑎 =
𝔼P 𝐺7 𝑆7 = 𝑠, 𝐴7 = 𝑎 .

§ Policy 𝜋∗ is optimal iff, vP∗ 𝑠 ≥ 𝑣P 𝑠 , ∀𝜋, 𝑠.
§ If agent learns the optimal 𝑣P 𝑠 , or 𝑞P 𝑠, 𝑎 , the optimal policy can be derived.
§ How to learn 𝑣P∗ 𝑠 , or 𝑞P∗ 𝑠, 𝑎 given 𝑝 𝑠0, 𝑟 𝑠, 𝑎 are not known?

→ Trade-off between exploration & exploitation.

6

OFF-POLICY VS ON-POLICY LEARNING
§ On-policy approach: evaluate and improve the policy that is used to make

decisions,
– Does not reuse old data, sample inefficient, but more stable
– Policy Gradient Algorithms: VPG, TRPO, PPO

§ Off-policy approach: evaluate and improve a different policy from that used to
generate the data,
– Reuses old data, sample efficient, but no stability/performance guarantees
– Q-learning, DQN, DDPG (~hybrid, actor-critic)

§ Exploration strategies,
§ Exploring Starts: every episode starts in some state-action pair.

§ The Boltzmann approach: π a s > 0, ∀a, s, e.g., π a s = \]^(_ `,a /c)
∑d∈f(g) \]^(_ `,h /c)

§ ϵ-greedy: with probability ϵ select a random action at random, with probability 1 − ϵ select the
action with the maximal action-value.

7

TEMPORAL DIFFERENCE POLICY EVALUATION
⚬ TD methods can learn directly from raw experience without a model of the

environment’s dynamics.
⚬ One-step TD updates the estimated State-Value function every time step, using

sample updates based on the observed reward 𝑅789 and estimate of new state
𝑉 𝑆789 . Learn on-the-fly,

⚬ TD estimation error, 𝛿7 = 𝑅789 + 𝛾𝑉 𝑆789 − 𝑉(𝑆7).

⚬ 𝛼 is step-size parameter, e.g. 𝛼n 𝑎 = 9
n

or 𝛼 𝑎 = 𝜁 (very small constant)

TABULAR Q-LEARNING

8

§ Q-learning directly approximates 𝑞∗ independent of the policy being followed.
§ Converges with probability 1 to 𝜋∗ and 𝑞∗(𝑠, 𝑎) iff 1) all state-action pairs are visited

an infinite number of times, 2) Policy converges in the limit to be greedy w.r.t 𝑞P.

§ Not practical when state space is continuous or large.
– Solution: maintain 𝑞P 𝑠, 𝑎 as parameterized functions, adjust parameters

to match observed returns.
– Learning 𝑞P 𝑠, 𝑎 from ‘samples’ involves function approximation

techniques from supervised learning (e.g. regression, NNs).

DEEP Q-NETWORK (DQN)

9

§ For discrete action space.
§ Uses a DNN or CNN to learn the state-action value function 𝑄(𝑠, 𝑎).
§ For DNN training to converge, data samples should be i.i.d. This is no longer

the case in reinforcement learning, since samples are temporally-correlated
trajectories.

§ DQN mitigates this issue by creating an experience replay buffer to store
transition samples, from which a batch of samples are picked uniformly and
used for training the NN.

§ The network is trained with another target Q-network, which will be used to
compute the loss for every action during training. Weights are slowly updated
and synchronized with the primary Q-network.

POLICY GRADIENT METHODS

10

§ Q-learning/DQN: learn the action-value function 𝑞P(𝑠, 𝑎), from which the
optimal policy is derived.

§ In Policy Gradient Methods, adopt a parametrized policy that can select
actions without consulting a state-value function (e.g., 𝜃 weights/biases of
DNN),

𝜋 𝑎 𝑠, 𝜃 = Pr{𝐴7 = 𝑎|𝑆7 = 𝑠, 𝜃7 = 𝜃}
§ Objective: learn the parameters 𝜽 of 𝜋 𝑎 𝑠, 𝜃 by maximizing a performance

measure, 𝐽(𝜋u) ~ average rate of reward, and update parameters by gradient
optimization, 𝜃F89 = 𝜃F + 𝛼∇u𝐽 𝜋u |uw.

HANDS ON TUTORIAL

§ Jupyter notebook: https://github.com/argonne-
lcf/ATPESC_2019/blob/master/ReinforcementLearning/RL_CARTPOLE_ATPES
C_2019.ipynb

11

https://github.com/argonne-lcf/ATPESC_2019/blob/master/ReinforcementLearning/RL_CARTPOLE_ATPESC_2019.ipynb

USEFUL RESOURCES
§ Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

MIT press, 2018.
§ Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning."

Nature 518.7540 (2015): 529.
§ Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement

learning." arXiv preprint arXiv:1509.02971(2015).
§ Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint

arXiv:1707.06347 (2017).
§ OpenAI’s Baselines, Gym, Spinning Up in Deep RL, https://openai.com/resources/
§ DeepMind’s Tensorflow RL, https://github.com/deepmind/trfl

12

https://openai.com/resources/
https://github.com/deepmind/trfl

THANK YOU

