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shows that the error is normally distributed around zero, which means that the model is not biased

thus the error is not systematic. As quantified using Euclidean distance in Figure 4c, most peaks

deviate little (e.g., 75% of peaks deviate less than 0.3 pixel) from the position identified by using the

conventional Voigt profiling. In comparison, the Maxima position (has resolution of one pixel) shown

in Figure 4d deviated much more than BraggNN from the truth (i.e., pseudo Voigt profiling).

4.2 Reconstruction Error Analysis

§4.1 discussed the direct model performance on peak localization. Since the 3D reconstruction is

our final goal, we also do reconstruction using peaks position located by the proposed BraggNN and

the conventional Voigt profiling separately. Figure 5 compares the positions of about 400 grains

reconstructed separately using Bragg peaks localized by BraggNN and conventional 2D pseudo-Voigt

profiling. The fact that the deviation directions are uniformly distributed indicates that BraggNN is

Figure 5: A comparison of grains in 3D space. Each ball represents one grain reconstructed by using

the conventional method, with color indicating the grain size(µm). An arrow indicates a deviation

from a grain to the corresponding grain reconstructed by using the BraggNN estimated peak.
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Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

and more..

BraggNN: Fast X-ray Bragg Peak Analysis Using Deep Learning A PREPRINT

(c)

(b)

(a)

Figure 6: A comparison of BraggNN, pseudo-Voigt FF-HEDM and NF-HEDM. (a) Grain positions from NF-HEDM
(black squares), pseudo-Voigt FF-HEDM (red circles) and BraggNN FF-HEDM (blue triangles) overlaid on NF-HEDM
confidence map. (b-c) Difference in position of grains between pseudo-Voigt FF-HEDM (b), BraggNN (c) and NF-
HEDM as a function of Grain Size. Color of markers in (b-c) represent the mean difference in position of expected and
observed diffraction spots. Size of markers in (b-c) represent the mean Internal Angle (see text).

CNN layers better extract feature representation in the latent space for fully-connected layers to better approximate its
center [Wang et al., 2018]. Here, we conduct an ablation study to show its effectiveness. We train two models, one with
attention block one without, using the same datasets, i.e., attention block is the only difference, and then we evaluate
their estimation accuracy. Fig. 7 shows the distribution of deviations. It is clear that both the 50th and 75th percentile
deviations are more than 20% worse than Fig. 4(c) where BraggNN has the non-local self-attention block, the 95th
percentile is about 15% worse.

4.2 Data Augmentation

We presented a novel data augmentation method to prevent model over-fitting and to address inaccurate patch cropping
using the connect component in the model inference phase. In order to study its effectiveness, we trained BraggNN on a
simulation dataset with and without augmentation. When trained with augmentation, we use an interval of [�1, 1] for
both m and n. Fig. 8 demonstrates three arbitrarily selected cases in our test dataset where the computed peak location
deviated from the corresponding patch’s geometric center (i.e., (5, 5) for a 11⇥ 11 pixel patch) in different directions.
We can see from the demonstration that BraggNN is able to locate the peak values precisely even when the peak is
deviated from the geometric center.

In order to quantitatively evaluate the effectiveness of data augmentation, we sample m and n independently from {-1,
0, 1} when preparing our test dataset to mimic imperfect patch cropping. That is, only 1/3⇥ 1/3 = 1/9 of the patches
have maxima at the geometric center.

Fig. 9 compares the prediction error on the test dataset in a statistical way. Comparing Fig. 9(a) with Fig. 9(b), we see
clear improvement when augmentation is applied for model training. The 50th, 75th, and 95th percentile errors are all
reduced to about 20% of those obtained when BraggNN is trained without data augmentation: a five times improvement.

5 Conclusions and Future work

We have described BraggNN, the first machine learning-based method for precisely characterizing Bragg diffraction
peaks in HEDM images. When compared with conventional 2D pseudo-Voigt fitting and higher resolution nf-HEDM,
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AGENDA – MONDAY, AUGUST 1, 2022
8:00AM Speaker check-in

8:30AM Vitali Morozov, ALCF: Introduction to Track 1 – Hardware Architectures

9:00AM Tom Papatheodore (papatheodore@ornl.gov)

The Oak Ridge Leadership Computing Facility’s Summit & Frontier Supercomputers

9:30AM Samantika Sury (s.sury@samsung.com):

Memory Coupled Compute: Innovating the future of HPC and AI

10:00AM Break - 30 minutes

10:30AM Andrew Ling (aling@groq.com):

Software-defined Machine Learning with Groq’s Tensor Streaming Processor 

11:00AM Milind S Pandit (mpandit@habana.ai): Training Deep Learning Models on Habana Gaudi

11:30AM Urmish Thakkar (urmish.thakker@sambanovasystems.com):

SW/HW Innovations in Emerging DL Training Systems 

12:00PM Richard Bohl (richardb@graphcore.ai): Graphcore IPUs: Accelerating Argonne’s ML/AI Applications

12:30PM Lunch in cafeteria – 1 hour

mailto:papatheodore@ornl.gov
mailto:s.sury@samsung.com
mailto:aling@groq.com
mailto:mpandit@habana.ai
mailto:urmish.thakker@sambanovasystems.com
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AGENDA – MONDAY, AUGUST 1, 2022
12:30PM Lunch in cafeteria – 1 hour

1:30PM Andy Hock (andy@cerebras.net): Accelerating AI and HPC for science at wafer-scale with Cerebras

Systems

2:00PM Servesh Muralidharan (servesh@anl.gov)

An overview of Argonne’s Aurora Exascale Supercomputer and its Programming Models,

2:30PM Keith D. Underwood (keith.underwood@hpe.com):

Considerations for programming Slingshot at scale

3:00PM Yuri Alexeev (yuri@alcf.anl.gov): Quantum computing trends

3:30PM Break - 30 minutes

4:00PM Q/A to all presenters – 1 hour

5:00PM Demos - Graphcore

6:30PM Dinner in cafeteria

7:30PM ATPESC after-dinner talk

mailto:andy@cerebras.net
mailto:servesh@anl.gov
mailto:keith.underwood@hpe.com
mailto:yuri@alcf.anl.gov
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QUESTION AND ANSWER SESSION: 4 PM

Quick question –

please, ask after the talk

Long question or a discussion –

please, send to Vitali Morozov (morozov@anl.gov)


