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• Bandwidth trends:
• Red Storm (2005): 1.1 GB/s/direction
• Frontier (2022): 100 GB/s/direction

• Compute trends:
• Red Storm (2005): 4 GF node
• Frontier (2022): 180 TF node

• Global bandwidth is expensive
• New topologies have improved bisection 

bandwidth relative to injection
• Ratios won’t be changing again soon

• Transistors are cheap (but not free)
• Networks will need to be smarter to cover gaps
• NIC offloads and switch optimizations will continue

• Supercomputer networks are converging with 
datacenter networks

Interconnect Trends
• Locality matters more 

• Keep the work on the node
• Be aware of how work is placed on the system

• Program for Overlap
• Use the network all the time – not just in 

“communication phase” bursts
• Use expected messaging 

• Pay attention to application layouts
• Use the offloads the hardware gives you

• Matching in hardware 
• Enabling of overlap

• The future:  direct connection of instruments to 
supercomputers over distance

Implications for Applications
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OVERVIEW



INTERCONNECT TECHNOLOGY
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Traditional Ethernet Networks
Ubiquitous & interoperable

Broad connectivity ecosystem

Broadly converged network

Native IP protocol

Efficient for large payloads only

High latency

Limited scalability for HPC

Limited HPC features

Standards based / interoperable

Broad connectivity

Converged network

Native IP Support

Low latency

Efficient for small to large payloads

Full set of HPC features

Very scalable for HPC & Big Data

CRAY SLINGSHOT
Traditional HPC Interconnects
Proprietary (single vendor)

Limited connectivity

HPC interconnect only

Expensive/ slow gateways

Low latency

Efficient for small to large payloads

Full set of HPC features

Very scalable for HPC & Big Data

SLINGSHOT BRINGS HPC TO ETHERNET – AND ETHERNET TO EXASCALE

Excellent for emerging infrastructures 
Mix tightly-coupled HPC, AI, analytics, and cloud workloads

Native connectivity to 
data center resources 

Consistent, predictable reliable high performance
High bandwidth + low latency, from one rack to Exascale
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A VISION OF EDGE TO EXASCALE
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THE FIRST EXASCALE ETHERNET NETWORK

• Ethernet (IEEE 802.3cd) links with Slingshot 
specific additions for performance and reliability
• Rosetta switch ASIC 64×200Gbps
• Cassini NIC ASIC: Two NICs @200Gbps each

• Embedded management and monitoring  system
• 2368 management agents (one per switch) in 

Frontier
• Management Ethernet network 1Gbps per switch

• HPE/Cray programming environment
• HPE/Cray MPI
• Libfabric provider for Cassini

Slingshot Components Frontier Slingshot Fabric
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• Compute nodes
• 9408 compute nodes each with 4 Cassini NICs
• Peak bandwidth of 800Gbps/dir per node

• Dragonfly network 74 groups of 32 Rosetta switches
• 37,632 Cassini NICs (18,816 ASICs)
• 18,816 L0 cable assemblies (2 links each)
• 9,472 L1 cable assemblies (4 links each)
• 5,402 L2 active optical cables (2 links each). 
• 161,844 active 200Gbps ports
+ 5 storage groups, each 292 ports

• Network properties
• Injection bandwidth of 800 Gbps per node
• Local link bandwidth is 200% of injection
• Global link bandwidth is 57% of injection
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• Provides Ethernet and HPC functionality concurrently
• Standard Ethernet Linux driver with support for NAPI, 

GSO, and GRO
• Includes checksum and flow steering offloads for IP and 

SoftRoCE drivers
• Standard Ethernet (IEEE 802.3) frames for Ethernet
• HPC Optimized frames for HPC

• Dual-NIC die:  two network links of 200 Gbps each
• PCIe Gen4 x16 host interface with Extended Speed Mode
• This is a system packaging optimization

• Provides full HPC offloads
• MPI Tag matching for both expected and unexpected 

messages
• Offloads eager and rendezvous transfers with strong 

progress in all cases
• PGAS specific optimizations to reduce overheads and

improve message rates
• Includes end-to-end reliability logic

• Architecture optimized for HPC traffic
• Integrates with switch-based collectives
• Has large translation cache with multiple page sizes

CASSINI OVERVIEW
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• The network API sits below the API the user sees (e.g., MPI, OpenSHMEM)
• Exposes the capabilities of the network
• Historically, this has changed with every generation of network

• Libfabric was introduced to provide a portable target for networks and middleware
• Based on Portals 4 and influenced by PSM
• Originally designed for OmniPath
• Now shipping from HPE, AWS, Cornelis, others

• Includes key semantics for MPI, PGAS, and filesystems
• One-sided operations (Put/Get)
• Two-sided operations (send/recv) including matching
• Atomic operations
• Triggered operations
• Locally managed offsets

LIBFABRIC: A MULTI-VENDOR NETWORK API



• A Frontier node (right) has a NIC on each GPU
• Each GPU has significant affinity to one NIC
• The CPU is further from all NICs

• Four NICs means 4x the bandwidth, but also:
• 4x the amount of processing needed to drive

small messages
• 4x the concurrency needed to drive all of the NICs

• An Aurora node is different:
• 2 CPUs
• 8 NICs
• 6 GPUs

• Managing locality and affinity is likely to 
require per-system thought
• Not necessarily code tweaks
• Definitely need to consider problem layout

NODE ARCHITECTURE
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• Topology still matters
• Be locality aware
• Be mindful of your process layout

• Topologies will keep changing as technology 
changes

• Upcoming technology drivers:
• Does electrical go away?

– They told me it would at 10 Gbps… 
– It’s still hanging around at 200 Gbps, but it doesn’t go

very far

• Ring resonators will happen… someday… soon?
– Lots of bandwidth in one fiber using lots of wavelengths

• In the old day:  studies demonstrated a 3D torus 
was best – why? 
• Applications were regular / structured
• Electrical wires were distance limited, but long 

enough
• Modern topologies optimize for bisection 

bandwidth – why? 
• Electrical wires cannot reach for multiple meters 

anymore
• Many applications are less regular / more 

unstructured / more sparse
• Many users / applications on a system, so harder to 

optimize placement

TOPOLOGIES EVOLVE WITH TECHNOLOGY AND APPLICATIONS
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FAT-TREE TOPOLOGY

• Common topology for current systems (Sierra & Summit)
• 3 Levels, maximum fabric hop count of 4

• Fully configured fat-tree (Summit)
• Tree with equal bandwidth at each level
• Non blocking between all pairs of nodes 

– Doesn’t always happen in practice

• Over provisioned bandwidth
– Performance is quite good

– Large percentage of fabric cables are optical

– Can get expensive at scale

• Bandwidth tapered fat-tree
• Unequal bandwidth at each level
• No longer non-blocking between all pairs of nodes
• Reduces number of cables (optical) and routers

• The number of cables and routers increases super-linearly with 
node count

• Scheduling a job across nodes to minimize fabric hops between 
hosts maximizes performance
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DRAGONFLY TOPOLOGY

• Every router has nodes connected
• A group contains routers that are all to all connected (1-D Dragonfly)
• All groups in the system are all to all connected

• Aurora, Frontier, El Capitan will use a 1-D Dragonfly
• Primarily driven by network cost as system scale grows

• Linear increase in the number of cables and routers with system size 
• Less than 33% of fabric cables are optical 
• Scales to 4x number of nodes as 3 level fat-tree 
• Maximum hop count of 3

• Requires sophisticated adaptive routing
• Job scheduling 

• Intra-group if job can fit in a single group (256-512 nodes/group)
• Randomly across system if job is larger than a single group 

– Bandwidth between individual group pairs is low compared to node injection 
bandwidth into group (and total bandwidth out of group)
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INTERCONNECT FEATURES THAT IMPROVE PERFORMANCE*

• Adaptive Routing
• Per packet - used to choose where a packet goes
• Targets topological based congestion (unrelated flows crossing in the network)
• Used to route around temporal hot spots in the network

– Used sparingly, routing via a longer path can reduce latency
– Used excessively, routing via a longer path can increase latency and decrease bandwidth

• Quality of Service classes
• Part of arbitration - used to choose which packet to advance
• Tunable classes may use priority, min & max bandwidth allocation, routing biases, etc

– Example classes: low latency, standard compute, bulk data, scavenger
• Job can use multiple classes
• Provides performance isolation for different classes of traffic

• Congestion management
• Targets workload-based congestion (incast, many to few)
• Identifies and controls causes of congestion

– Throttles sources to prevent excess traffic from entering the network
– Prevents highly filled buffers, congestion, contention

• Applications much less vulnerable to other traffic on the network
• Predictable runtimes
• Lower mean and tail latency – a big benefit in applications with global synchronization

13* Slingshot techniques described



ASSESSING CONGESTION MANAGEMENT – GPCNET ON FRONTIER
NetworkLoad Tests v1.3
Test with 72000 MPI ranks (9000 nodes)
1800 nodes running Network Tests
7200 nodes running Congestion Tests (min 1800 nodes per congestor)

+--------------------------------------------------------------------------+

|                          Isolated Network Tests                          |

+---------------------------------+------------+-------------+-------------+

|                            Name |        Avg |         99% |       Units |

+---------------------------------+------------+-------------+-------------+

|          RR Two-sided Lat (8 B) |        2.6 |         4.6 |        usec |

+---------------------------------+------------+-------------+-------------+

| RR Two-sided BW+Sync (131072 B) |     4246.8 |      2962.4 |  MiB/s/rank |

+---------------------------------+------------+-------------+-------------+

|        Multiple Allreduce (8 B) |       51.3 |        54.1 |        usec |

+---------------------------------+------------+-------------+-------------+

+--------------------------------------------------------------------------+

|                Network Tests running with Congestion Tests               |

+---------------------------------+------------+-------------+-------------+

|                            Name |        Avg |         99% |       Units |

+---------------------------------+------------+-------------+-------------+

|          RR Two-sided Lat (8 B) |        2.6 |         4.6 |        usec |

+---------------------------------+------------+-------------+-------------+

| RR Two-sided BW+Sync (131072 B) |     4242.2 |      2961.2 |  MiB/s/rank |

+---------------------------------+------------+-------------+-------------+

|        Multiple Allreduce (8 B) |       51.4 |        54.0 |        usec |

+---------------------------------+------------+-------------+-------------+

+------------------------------------------------------------------------+

|        Network Tests running with Congestion Tests - Key Results       |

+---------------------------------+--------------------------------------+

|                            Name |             Congestion Impact Factor |

+---------------------------------+------------------+-------------------+

|                                 |              Avg |               99% |

+---------------------------------+------------------+-------------------+

|          RR Two-sided Lat (8 B) |             1.0X |              1.0X |

+---------------------------------+------------------+-------------------+

| RR Two-sided BW+Sync (131072 B) |             1.0X |              1.0X |
+---------------------------------+------------------+-------------------+

|        Multiple Allreduce (8 B) |             1.0X |              1.0X |

+---------------------------------+------------------+-------------------+
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Behavior on 9000 nodes matches that published 
for 512 nodes in the GPCNeT paper



WHAT YOUR HARDWARE NEEDS FROM YOU
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• Older applications rarely exploit computation and communication overlap
• This meant the computer was either computing or communicating
• Network spent a lot of time idle

• Full overlap hides the communication behind the computation
• Express the communications, then find work you can do that is not dependent on it
• Use nonblocking sends and recvs

DO: FACILITATE OVERLAP

• Real world example:  recent Frontier application
• Was not using overlap
• Major “idle gaps” in the network
• Carefully scheduling communication and computation

enabled significant performance improvements
• Warning: be careful about what you wait for

• Ideally, call wait when the transfer is already done
• Waitall may not be your friend

MPI_Irecv(PeerResultsPhaseA);
do_work_PhaseA();
MPI_Irecv(PeerResultsPhaseB);
MPI_Isend(ResultsPhaseA);
do_work_PhaseB();
MPI_Irecv(PeerResultsPhaseC);
MPI_Isend(ResultsPhaseB);
do_work_PhaseC();
MPI_Isend(ResultsPhaseB);

This code will 
need Wait calls 

somewhere
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• A message is “expected” if the receive is “posted” before the message arrives
• Unexpected otherwise:  Unexpected messages lead to data copies

• Please post your receives early
• May need to double buffer to make this work
• Many applications have a communication buffer that data is copied out of 

• Interleave communication and computation

DO: USE EXPECTED MESSAGES

• Real world example:  recent Frontier application
• Encountered unexpected messages
• Increases time spent copying data
• Decreases achievable overlap
• Moving the receives earlier in the code eliminated 

unexpected messages, and improved performance

MPI_Irecv(PeerResultsPhaseA[1]);
MPI_Irecv(PeerResultsPhaseB[1]);
MPI_Irecv(PeerResultsPhaseC[1]);
do_work_PhaseA(PeerResultsPhaseA[0]);
MPI_Isend(ResultsPhaseA);
do_work_PhaseB(PeerResultsPhaseB[0]);
MPI_Isend(ResultsPhaseB);
do_work_PhaseC(PeerResultsPhaseC[0]);
MPI_Isend(ResultsPhaseB);



• Alternate approach: tell the implementation more
• Example: partitioned communications

• Facilitates exposing even more concurrency to the 
NIC

• Per-”message” overheads are amortized by pre-
setup operations

• Implementation can use various strategies to match 
the capabilities of the hardware

• Caution: Newest MPI features tend to have a 
chicken and egg problem
• Work with your vendor to focus on optimizing the 

right pieces

• You have 4 NICs… or 8… use them!
• One message is not going to be split across multiple 

NICs
– Locality matters a lot, so it would not be beneficial

• Need to make sure there is enough concurrent 
messages to drive all of the NICs

• Potentially hard choices to make
• If the messages are “too small”, you will need more 

cores to drive them 
• Assuming 3 Mmsgs/s/core, need 8KB messages for 

one core to drive one direction of one NIC
• Same computation yields 4 cores for 4 NIC
• 64 cores may be able to drive 4 NICs with 512B 

messages – in one direction
• How many ranks will you have per node?

DO: EXPRESS CONCURRENCY
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• Most NICs try to offload MPI matching now
• MPI Matching typically uses a “posted receive queue” of Irecv operations the user has issued
• Typically uses a linked list, but sometimes a hash table can be used
• Unexpected messages form their own list

• Long lists have hidden costs
• New message searches posted receive queue
• New Irecv searches unexpected messages

• Most NICs have a limited number of places to hold entries
• That’s ok:  traversing enormous lists is a huge waste of time.
• Falling back to software erodes your:

– Overlap: need software to make progress
– Network performance: software matching isn’t as fast as benchmarks tell you

DON’T: OVERWHELM YOUR NIC RESOURCES



• MPI message matching rate 
• 100 million messages per second
• ~6.4 billion match attempts/sec

CASSINI REAL-WORLD MESSAGE MATCHING

• Target: two searches with an average of 64 match 
attempts for every message at peak rate
• Small number of unexpected messages 
• Posted receives for each neighbour (maximum of 16K)
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• Congestion management is designed to reduce collateral damage
• Stops your app from hurting other people’s apps
• It is really good, but it is not magic

• An app performing an incast is still bound by the laws of physics
• Messages cannot complete faster than the target can absorb them
• Most networks (and network operators) would be willing to punish an app with an incast to protect others

• Unfortunately, people routinely do this
• Example: every rank checks in with the root 

– Rank 0 winds up posting 100,000 to 1,000,000 receives
– What order do those arrive in? 

• Remember:  MPI (typically) uses linked lists
• If you post 1,000,000 receives and hit the end, that goes badly

• Side note: MPI_ANY_TAG and MPI_ANY_SOURCE
• Use them always or never
• Mixing the two makes a mess of things (i.e., it gets hard to make a hash table)

DON’T: PROGRAM AN INCAST



CONGESTION MANAGEMENT PROVIDES PERFORMANCE ISOLATION
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Job Interference in 
today’s networks

Congesting (green) 
traffic hurts well-
behaved (blue) 

traffic, and really 
hurts latency 

sensitive, 
synchronized (red) 

traffic.

With Slingshot 
Congestion 

Management
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“At the same time that HPC centers are getting 
increasingly in need of congestion control is precisely 
the moment when Cray-now-HPE has a new switch 
that is doing congestion control in a new fashion…

The congestion control features in HPE Slingshot 
seem to be working like a charm.”
Timothy Prickett Morgan – The Next Platform

GROMACS Variability Study

MINIMIZE OR ELIMINATE RUN-TO-RUN VARIABILITY
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• Historical application example 1: MPI_Gather()
• Monte Carlo application computed a lot of independent results
• Gathered them to the root and summed the results
• Scaled poorly because the total amount of data gathered at the root grew linearly with the number of nodes

– Root node was receiving gigabytes
– Then it had to sum those results

• Right answer (for that application): MPI_Reduce()
• Summation happened in parallel
• Logarithmic scaling of reduction of data

• Your mileage may vary
• Maybe there is not a built-in operator for what you need to do
• Do the work to think about the scaling implications

• Another painful example: Alltoallv

DON’T: USE NON-SCALABLE CONSTRUCTS



• Lower overhead
• No tag matching
• No unexpected messages

• More scalable operations
• No lists or linked list traversal
• Directly access peer memory

• Also, not a panacea
• Two-sided operations have inherent management 

of buffer access
• Synchronization adds overhead

• MPI-3 also has a non-scalable resource:  the 
window
• Limited number of “fastest” windows
• Implementation can be forced to track a surprising 

amount of state per peer

MPI-3 RMA and OpenSHMEM
• Leverages persistent communication 

infrastructure
• A lot of the “expensive parts” can be setup when 

the communication is created
• Numerous optimizations available to 

implementations
• Enables underlying implementation to leverage 

operations similar to RMA operations
• Sometimes lower overhead
• Sometimes higher message rates

• Originally intended to facilitate threading
• May later be extensible to GPU operations

Partitioned Communications
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DO: USE FASTER, MORE SCALABLE CONSTRUCTS



• CXL:  the future of NIC to host interconnects
• Until PCIe subsumes the capabilities…
• In the near term, hard to use for a NIC

– Even harder to use portably

• SmartNICs: everything old is new again
• HPC has used programmable NICs before (e.g.,

Quadrics, Myricom)
• Two differences this time:

– The processors are less connected to the datapath
– There are commercial customers

• What AWS, Google, and Microsoft do with a
SmartNIC is not typical for HPC

• Optical interconnects are a critical enabling 
technology
• For the near term, it is just wires using light
• Glass is lower loss for photons than copper is for EM 

waves
• Longer term: will we see optical switching?

• Interesting, exciting, and harder than it sounds
• What will it take beyond technology development?

– Can you use a network where bandwidth is semi-
statically partitioned between long term “connections”?

• Machine Learning “super pods”
• Interesting for problems that fit in a super pod

– Includes (at least) 3 tiers of locality inside – does 
anybody want to add yet-another-tier of locality?

COMMENTARY ON OTHER NETWORK TRENDS – AND FADS
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• Low ratio of bandwidth to compute means we have to be smart about using the bandwidth we have 
• Network hardware is adding features to help

– Enabling overlap
– Advanced adaptive routing
– Advanced congestion control

• We still need help from the programmers
• Operations must be organized in order to enable overlap with expected messages
• Hardware will continue to deliver features, but many will depend on developers to use them

• Not every interface available in software can be optimized
• Choose wisely!
• Benchmark what you do and engage with your network vendor

SUMMARY



THANK YOU
Keith D. Underwood
keith.underwood@hpe.com
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