Quantum Computing Trends

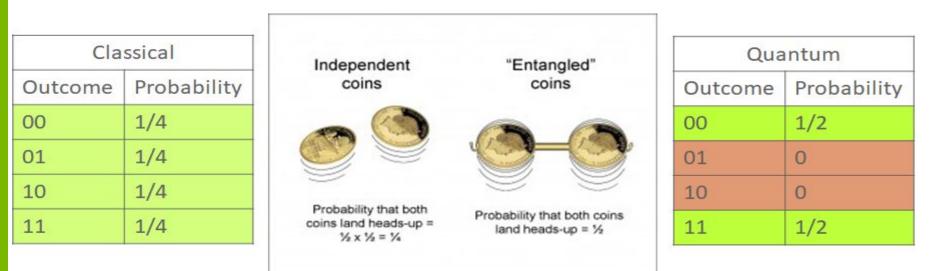
Yuri Alexeev Argonne National Laboratory

August, 2022

Quantum Information Science (QIS)

- Quantum mechanics explains how world works at microscopic level, which governs behavior of all physical systems, regardless of their size
- Information science revolutionized how information is collected, stored, computed, analyzed, manipulated, protected, and moved
- We see convergence of two 20th century greatest revolutions in the form of Quantum Information Science (QIS)

A new science!

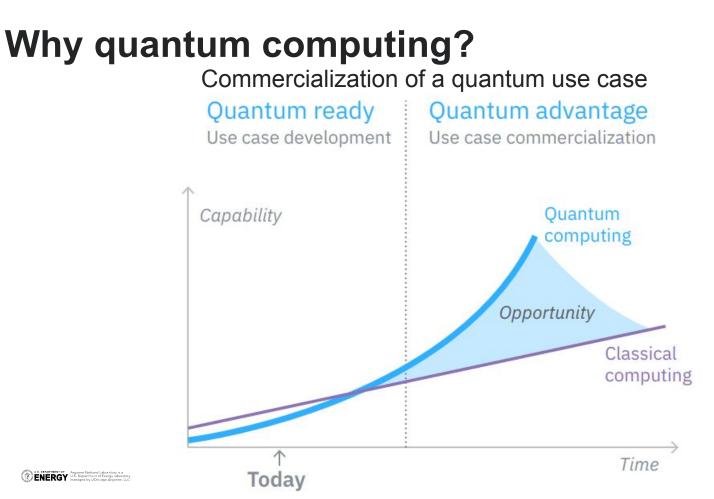

Quantum Mechanics (i.e. atoms, photons, JJ's, physics of computation) Information Science (*i.e.* computer science, communications, cryptography)

The second quantum revolution

Quantum Information Science

QIS exploits unique quantum effects such as superposition, interference, and entanglement to obtain, compute, and transmit information in the ways that are superior compared to classical technology (digital, Newtonian)

The key concept is entanglement ("spooky action at a distance", EPR pair). Works only for only very small object (electrons, photons, atoms etc). It is proven to be essential to achieve "quantum advantage" or for "quantum teleportation"



Key concepts

- Qubit basic unit of quantum information, which is the quantum version of the classical binary bit. It can exist in superposition any state between 0 and 1
- Qubit fidelity how long qubit stays coherent/operational
- Quantum effects superposition, interference, and entanglement
- NISQ Noisy Intermediate-Scale Quantum technology, often refers in the context of modern very noisy quantum computers
- QASM Quantum Assembly used for programming quantum computers
- Quantum supremacy demonstration of that a programmable quantum device can solve a problem (any problem) that no classical computer can solve in any feasible amount of time
- Quantum advantage same as supremacy, but for useful applications

Why quantum computing?

Quantum computing's potential for significant speedup over classical computers

Type of scaling	Time to solve problem				
Classical algorithm with exponential runtime	10 secs	2 mins	330 years	3300 years	Age of the universe
Quantum algorithm with polynomial runtime	1 min	2 mins	10 mins	11 mins	~24 mins

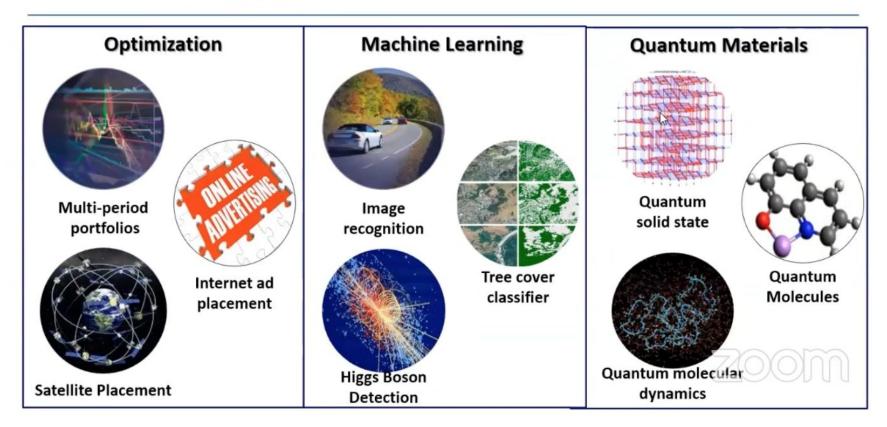
Quantum Simulator Use Cases: Simulation of Supremacy Circuits

Article Published: 23 October 2019

Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis 🖂

Nature **574**, 505–510(2019) Cite this article


799k Accesses 693 Citations 6025 Altmetric Metrics

(CNN Business): Google claims it has designed a machine that needs only 200 seconds to solve a problem that would take the world's fastest supercomputer 10,000 years to figure out.

Customers Early Applications

Quantum Computing for Finance

Stochastic Modeling:

Derivative Pricing: Options. Collateralized Debt Obligations Risk Modeling: Value at Risk, Economic Capital Requirement, Credit Value Adjustments

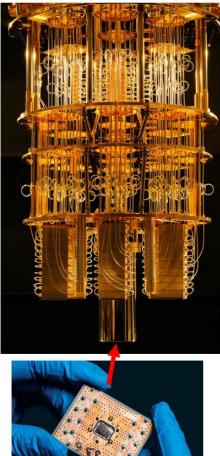
Combinatorial Optimization:

Portfolio Optimization: Combinatorial Formulations, Convex Formulations Swap Netting, Optimal Arbitrage, Identifying Creditworthiness, Financial Crashes

Machine Learning:

Anomaly Detection, Asset Pricing, Implied Volatility

Herman, D., Googin, C., Liu, X., Galda, A., Safro, I., Sun, Y., Pistoia, M. and Alexeev, Y., 2022. A survey of quantum computing for finance. arXiv preprint arXiv:2201.02773.

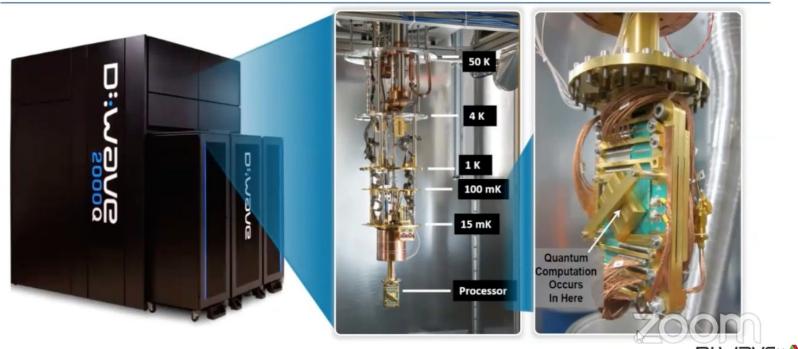


Modern Quantum Computers

Operate at almost absolute zero temperature -460 F or -273 C, colder than deep space	Laser Computers are ranked by number of qubits decoherency time	Superconducting (IBM, Google, Rigetti)	Trapped ions (IonQ, U. of Innsbruck)
	Materials	AI on the Silicon substrate	Yb+, Ca+, Sr+, Be+, Ba+, Mg+
Qubit Modality	Туре	Transmon	Optical transitions
	Control	Microwaves	Microwaves + optics
	State	Junction phase	Atomic state of election
Approximate Decoherency Times (ns)		~100-200	Very long
	1qb gate	10	5,000
	2qb gate	40	50,000
Fidelity	1qb gate	99.9%	99.999%
	2qb gate	99.0%	99.5%
Speed (MHz)	1qb gate	100.00	0.20
	2qb gate	25.00	0.02

IBM quantum computers

The key piece of the Quantum Computer is the Dilution Refrigerator Working Temperature 15 <u>mK</u> uses mix of ³He/⁴He



Source: IBM Research

DWave quantum computer

What Is A Quantum Computer

Google's Sycamore quantum computer

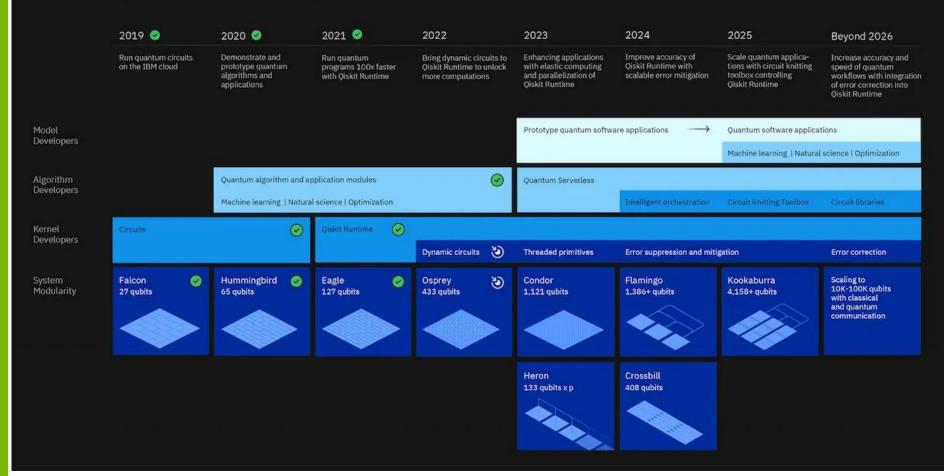
Ion trap quantum computer

Classical Computing (Electronic) 18 cores 32 cores 2k transistors Vacuum Integrated 5.5M transistors Transistor 5.5B transistors ENIAC TX-0 19.2B transistors i4004 tube circuit Pentium Pro Xeon Haswell (1946)(1947)(1956)Epvc GPU (1958)(1971)(1906)(1995)(2014)(2017)Grover's algorithm Quantum Computing (1996)Quantum computing is transitioning from scientific curiosity to technical reality. 159 759.) Advancing from ---discovery to prototype Quantum Shor's algorithm Quantum Few-qubit Cloudto useful machines simulator & CSS error annealing based processors takes time. proposed correction & adiabatic QC & error quantum (1981)(1994-95)(1998-2000)detection computers

(2012 - 2016)

(2017)

Available and announced quantum computers


Company*	Operational	Cloud Access	Framework	Announced
IBM	72 qubits	Open to Q hub members	Qiskit	120+ qubit in 2021
Rigetti	31 (8) qubits	Access by request	AWS and Forest	50+ qubit near future
Google	72 qubits	No access	Cirq	120+ qubit in 2021
Alibaba	11 qubits	-	Alyun	-
lonQ	32 qubits	Paid Access	AWS and Azure	-
Honeywell	10 qubits (512 volume)	Paid Access	Azure	-
D-Wave	5000Q (annealer)	Open (1 minute per month)	AWS and Leap	10,000Q near future

*Intel not included – announced 49 qubit chip in January 2018

Development Roadmap | Executed by IBM @

IBM Quantum

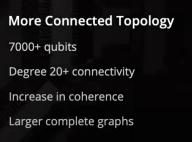
DWave

Annealing Roadmap: Continuous Innovation

ADVANTAGE

Larger Applications 5,000+ qubits Degree 15 connectivity More per-qubit connectivity

ADVANTAGE PERF UPDATE


More Complex Applications

Larger and more complex problems

More precision (higher probability of optimality)

Higher quality answers (lower energies and closer to optimal)

ADVANTAGE 2

5th Generation Annealing System

Advantage Mid-Life Performance Boost

Advantage Next Gen Annealing System


IonQ Quantum Computers

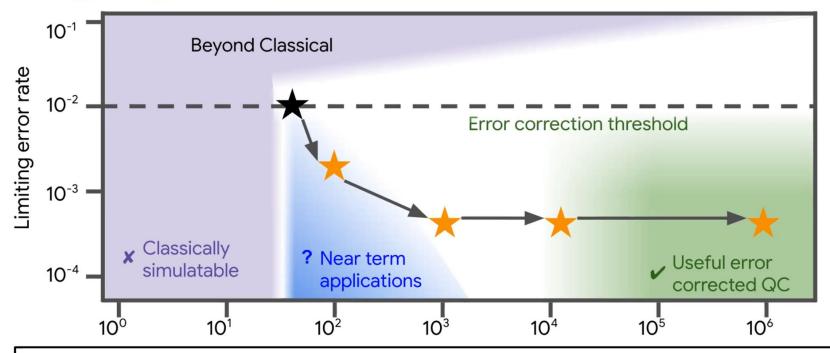
2016

Lab Scale¹

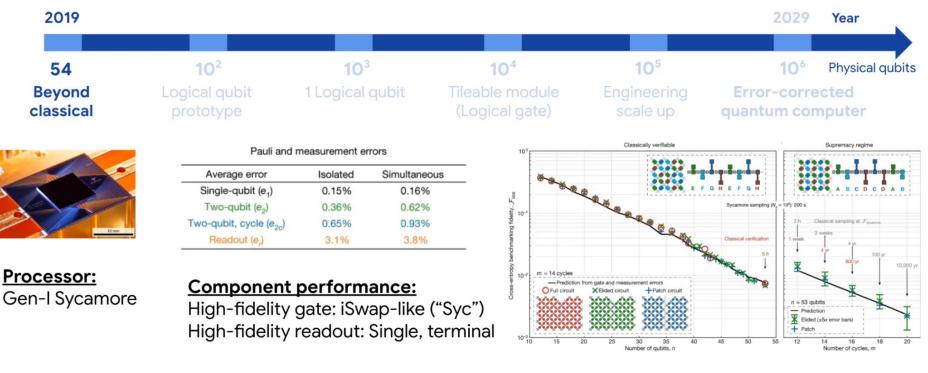
2020 Tabletop

2021 Benchtop²

2023 Rackmount ³



3 Employs 32:1 error-correction encoding

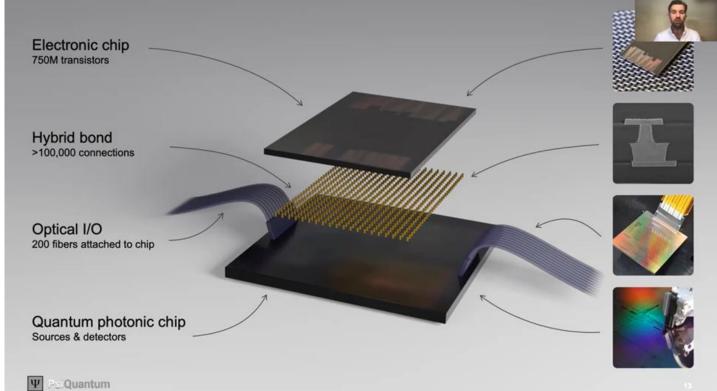

Google's path to an error corrected machine

- Can quantum outperform classical on any computation task?
- Can we demonstrate a path toward achieving low *enough* error rates for practical tasks?
- Can we achieve such a low error rate?
- Can we build a large enough system with low error rate?

Beyond-classical milestone: Random sampling

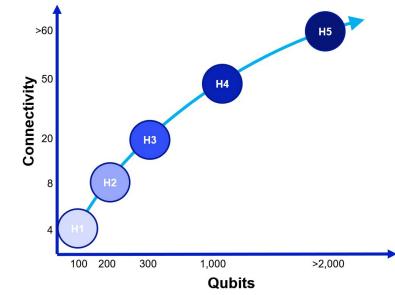
Computation task:

Beyond-classical sampling with random circuits



PsiQuantum

Goal build: 1 million qubit device in 5 years


Activities: manufacturing 300-millimeter wafers containing a 25 layer stack, single-photon detectors, and high-performance optical switches

ColdQuanta

Hilbert Commercial Roadmap

- Scaling to unexplored parts of the NISQ-era quantum parameter space
- Hardware + algorithms + use cases
- Active work with near-term customer use cases

Chinese quantum computers

1. Zuchongzi - 56 superconducting qubit quantum computer. It was used for sampling from a random distribution. They found Zuchongzi completed such a sampling task in 1.2 hours, one they estimated would take Summit at least 8.2 years to finish.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180501

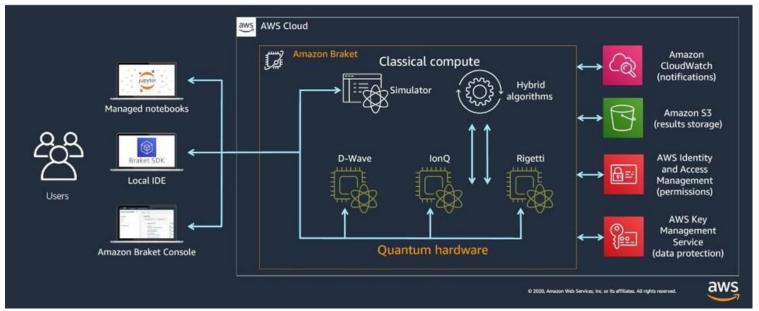
2. Jiuzhang 2.0 - a photonic quantum computer. It is used for Gaussian boson sampling, a task where the machine analyzes random patches of data. Using 113 detected photons, they estimated Jiuzhang 2.0 could solve the problem roughly 10^24 faster than classical supercomputers.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180502

Microsoft

Azure Quantum

The full-stack, cloud ecosystem to enable quantum impact today.



Amazon

Amazon Braket

CONTRACTOR ACCOUNT OF A Contract of Contra

QCUP

Oak Ridge Leadership Computing Facility (OLCF) Quantum Computing User Program (QCUP)

https://www.olcf.ornl.gov/olcf-resources/compute-systems/quantum-computing-userprogram/

Quantum Project Application:

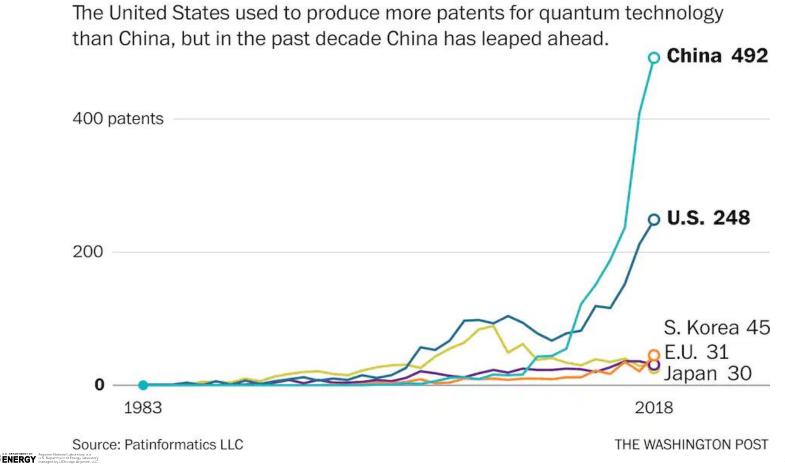
https://www.olcf.ornl.gov/for-users/documents-forms/quantum-project-proposal/

Quantum Account Application:

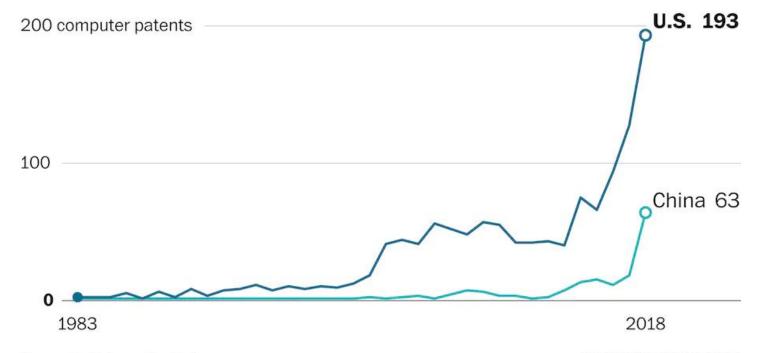
https://www.olcf.ornl.gov/for-users/documents-forms/quantum-account-application/

Available quantum systems: IBM, Rigetti, Honeywell

Current Public and Private Funding Situation


China: \$15 billion European Union: \$7.2 billion U.K. \$1.2 billion Russia: \$790 million India and Japan \$1 billion each U.S. \$1.3 billion Private funding \$1.7 billion in 2021

National Laboratory for Quantum Information Science in Hefei


Patent filings for quantum technology by country

Patent filings for quantum computers by country

China has overtaken the United States in quantum technology patents overall, but the United States still has a large lead in patents for quantum computers.

ENERGY Source: Patinformatics LLC

THE WASHINGTON POST

Major Players in U.S.

Technological giants: IBM, Google, Microsoft, Amazon, Intel, Tesla, Alibaba, JPMorgan Chase

NSF Quantum Leap Challenge Institutes (total 5)

DOE National Quantum Centers:

ANL: Q-NEXT · Next Generation Quantum Science and Engineering

BNL: C2QA · Co-design Center for Quantum Advantage

FNAL: SQMS · Superconducting Quantum Materials and Systems Center

LBNL: QSA · Quantum Systems Accelerator

ORNL: QSC · The Quantum Science Center

Q-NEXT: Quantum Information Science Research Center at Argonne

- Major Cross-Cutting Challenge: Manipulating and interconnecting entangled states of matter.
- Mission: Deliver quantum interconnects and establish a national resource to provide pristine materials for new quantum devices.
- Nearly 100 researchers from 3 national laboratories, 10 universities, and 10 industry partners
- \$115M from DOE and an additional \$93M from industry partners

Thrusts and Argonne Leadership:

Partner institutions:

Q-NEXT Mission

- ✓ Deliver quantum interconnects
- Establish national foundries
- Demonstrate communication links, networks of sensors, and simulation testbeds

Acknowledgements

Q-NEXT: Quantum Simulation Team

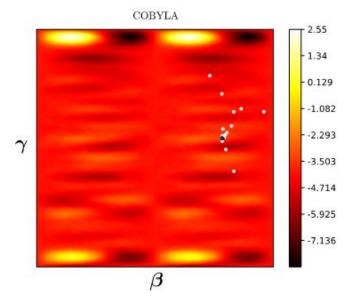
Sahil Gulania, ANL

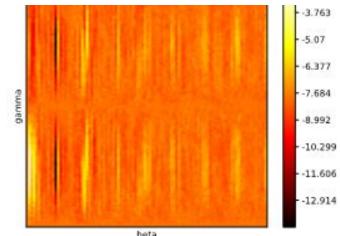
Bo Peng, PNNL

Niri Govind, PNNL

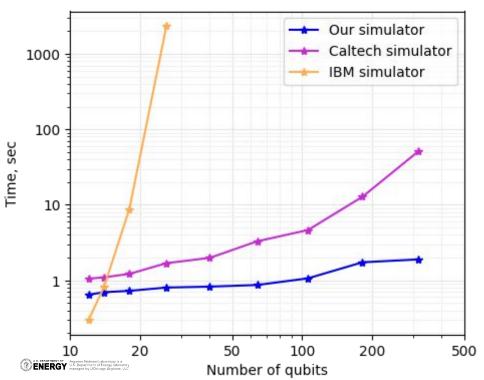
Funding:

DOE Q-NEXT: This work was supported by the DOE Office of Science (National Quantum Information Science Research Centers)


DOE ASCR: This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.


DOD DARPA: This research was partially supported by the the Defense Advanced Research Projects Agency (DARPA) project

Quantum Simulator Use Cases


- Verification of quantum advantage and supremacy claims
- Verification of large quantum devices
- Co-design quantum computers
- Energy efficiency studies of quantum computers
- Design of new quantum algorithms
- Finding parameters for variational quantum algorithms

Quantum simulators developed at Argonne National Laboratory: QTensor and QuaC

Time for a quantum circuit simulation

Simulated 1,000,000 qubit QAOA circuit with depth p=6 in 1 hour and 20 minutes on 512 nodes of supercomputer Theta

Limitations of quantum simulators

Qubits	Memory	Time per operation
10	16 KB	Microseconds on a smartwatch
20	16 MB	Milliseconds on a smartphone
30	16 GB	Seconds on a laptop
40	16 TB	Seconds on a PC cluster
50	16 PB	Minutes on modern supercomputers
60	16 EB	Hours on post-exascale supercomputers?
70	16 ZB	Days on supercomputers in distant future?
As demander of Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.		