

OLCF: From Summit to Frontier ATPESC – August 1, 2022

Tom Papatheodore

HPC Engineer

System Acceptance & User Environment

Oak Ridge Leadership Computing Facility (OLCF)

ORNL is managed by UT-Battelle LLC for the US Department of Energy

DOE's Office of Science Computation User Facilities

- DOE is leader in open High-Performance Computing
- Provide the world's most powerful computational tools for open science
- Access is free to researchers who publish
- Boost US competitiveness
- Attract the best and brightest researchers

What is a Leadership Computing Facility (LCF)?

- Collaborative DOE Office of Science userfacility program at ORNL and ANL
- Mission: Provide the computational and data resources required to solve the most challenging problems.
- 2-centers/2-architectures to address diverse and growing computational needs of the scientific community

- Highly competitive user allocation programs (INCITE, ALCC).
- Projects receive 10x to 100x more resource than at other generally available centers.
- LCF centers partner with users to enable science & engineering breakthroughs (Liaisons, Catalysts).

From Petascale to Exascale

Mission: Providing world-class computational resources and specialized services for the most computationally intensive global challenges

Vision: Deliver transforming discoveries in energy technologies, materials, biology, environment, health, etc.

ATPESC – August 1, 2022

OLCF's Summit Supercomputer (#4 June22 Top500 List)

OLCF Summit Overview

The system includes

- 4,680 nodes
- Dual-port Mellanox EDR InfiniBand network
- 250 PB IBM file system transferring data at 2.5 TB/s

System Performance

- Peak of 200 Petaflops (FP₆₄) for modeling & simulation
- Peak of 3.3 ExaOps (FP₁₆) for data analytics and artificial intelligence

Each node has

- 2 IBM POWER9 processors
- 6 NVIDIA Tesla V100 GPUs
- 608 GB of fast memory (96 GB HBM2 + 512 GB DDR4)
- 1.6 TB of NV memory

Summit Node Schematic

Summit Node Schematic

CAK RIDGE

(2) IBM Power9 + (6) NVIDIA Volta V100

Summit Board (1 node) showing the Water Cooling

OLCF's Frontier Supercomputer (#1 June22 Top500 List)

Frontier Overview

Extraordinary Engineering

System

- 2.0 EF Peak DP FLOPS
- 74 compute racks
- 29 MW Power Consumption
- 9,408 nodes
- 9.2 PiB memory (4.6 PiB HBM, 4.6 PiB DDR4)
- Cray Slingshot network with dragonfly topology
- 37 PB Node Local Storage
- 716 PB Center-wide storage
- 4,000 ft² footprint

CAK RIDGE National Laboratory Built by HPE

Olympus rack

- 128 AMD nodes
- 8,000 lbs
- Supports 400 KW

Powered by AMD

AMD node

- 1 AMD "Optimized 3rd Gen EPYC" CPU
- 4 AMD MI250X GPUs
- 512 GiB DDR4 memory on CPU
- 512 GiB HBM2e total per node (128 GiB HBM per GPU)
- Coherent memory across the node
- 4 TB NVM
- GPUs & CPU fully connected with AMD
 Infinity Fabric
- 4 Cassini NICs, 100 GB/s network BW

All water cooled, even DIMMS and NICs

OLCF Supercomputers: 2 Generations Later

- One cabinet of Frontier has a 10% higher HPL than all of Titan
 - While only using 309 kW compared to the Titan's 7 MW

OLCF Systems by the numbers

System	Titan (2012)	Summit (2017)	Frontier (2021)
Peak	27 PF	200 PF	2.0 EF
# nodes	18,688	4,608	9,408
Node	1 AMD Opteron CPU 1 NVIDIA Kepler GPU	2 IBM POWER9™ CPUs 6 NVIDIA Volta GPUs	1 AMD EPYC "Trento" CPU 4 AMD Instinct MI250X GPUs
Memory	0.6 PB DDR3 + 0.1 PB GDDR	2.4 PB DDR4 + 0.4 HBM + 7.4 PB NVM	4.6 PB DDR4 + 4.6 PB HBM2e + 36 PB NVM
On-node interconnect	PCI Gen2 – no coherence across the node	NVIDIA NVLINK - coherent memory across the node	AMD Infinity Fabric - coherent memory across the node
System Interconnect	Cray Gemini network 6.4 GB/s	Mellanox Dual-port EDR IB 25 GB/s	Four-port Slingshot network 100 GB/s
Topology	3D Torus	Non-blocking Fat Tree	Dragonfly
Storage	32 PB, 1 TB/s, Lustre Filesystem	250 PB, 2.5 TB/s, IBM Spectrum Scale™ with GPFS™	695 PB HDD+11 PB Flash Performance Tier, 9.4 TB/s and 10 PB Metadata Flash, Lustre
Power	9 MW	13 MW	29 MW
CPU:GPU	1:1	1:3	1:8
CPU Mem BW	50 GB/s	170 GB/s per CPU	205 GB/s
GPU Mem BW	1x 250 GB/s 250 GB/s Total	3x 900 GB/s 2,700 GB/s Total	8x 1,635 GB/s 13,080 GB/s Total
Interconnect BW	1x 8 GB/s 8 GB/s Total	3x 50 GB/s 150 GB/s Total	8x 36 GB/s 288 GB/s Total
Fast-to-Slow Memory Ratio	5:1 GPU:CPU 32:1 GPU:CPU limited by PCIe	16:1 not limited by NVLink	64:1 not limited by xGMI-2

Frontier Programming Environment

Vendor-Provided

- Cray Programming Environment (CPE)
 - Cray, AMD, GCC compilers
 - Cray profiling, tuning, debugging tools
 - CrayMPI optimized for AMD GPU direct
- AMD ROCm programming environment
 - Support for HIP and GPU offload

Other Sources

- ECP
 - LLVM enhancements: Flang (front-end), OpenMP/ACC
 - Kokkos, RAJA, HIP LZ (HIP support for Aurora)
 - MPI, HPCToolkit, PAPI enhancements, ...
- OLCF
 - Pilot implementation: DPC++/SYCL for Frontier (+ALCF)
 - GCC enhancements: OpenACC, OpenMP, Fortran
- Compilers Offered: Cray PE (C/C++ LLVM-based; Cray Fortran), AMD ROCm (LLVM-based), GCC
- Programming Languages/Models Supported (in which compilers)
 - C, C++, Fortran (all)
 - OpenACC (GCC; 2.6 substantially complete, 2.7 planned)
 - OpenMP (all; 5.0-5.2 in progress most priority features complete, details vary)
 - HIP (Cray, AMD; semi-automatic translation from CUDA to HIP via hipify tools) (CUDA Fortran: HIP kernels called from Fortran)
 - Kokkos/RAJA

(Cray, GCC)

(all)

Items in green are also available on Summit

Energy Efficiency - One of the key Exascale challenges

Since 2008, one of the biggest concerns with reaching Exascale has been energy consumption

- ORNL pioneered GPU use in supercomputing beginning in 2012 with Titan thru today with Frontier. Significant part of energy efficiency improvements.
- **DOE *Forward vendor investments** in energy efficiency (2012-2020) further reduced the power consumption of computing chips (CPUs and GPUs).
- **150x reduction in energy per FLOPS** from Jaguar to Frontier at ORNL
- ORNL achieves additional energy savings from using warm water cooling in Frontier (32 C).
 ORNL Data Center PUE= 1.03

CAK RIDGE National Laboratory

papatheodore@ornl.gov

National Laboratory