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ABSTRACT
We describe our novel commereial software-defined approach for
large-scale interconnection networks of tensor streaming process-
ing (TSP) elements. The system architecture includes packaging,
routing, and flow control of the interconnection network of TSPs.
We describe th ication and ization primitives of
abandwidth-rich substrate for global communication. This scalable
communication fabric provides the backbone for large-scale sys-
tems based on a software-defined Dragonfly topology, ultimately
yielding a parallel machine learning system with elasticity to sup-
port a variety of workloads, both training and inference. We extend
the TSP's prod ing model to in-
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1 INTRODUCTION
Historically, high: computing (HPC) systems were

stream
clude global memory which is implemented as logically shared, but
physically distril i Each TSP contributes
220 MiBytes to the global memory capacity, with the maximum
capacity limited only by the network’s scale — the maximum num-
ber of endpoints in the system. The TSP acts as both a processing
element (endpoint) and network switch for moving tensors across

links. We describe a novel softw lled

broadly categorized as capability or capacity systems. This di-
chotomy ariss because of communication laténcy and bandwidth
trade-offs when we apply more processing elements (PEs) to a
fixed-size problem (strong scaling) with the goal of minimizing the
‘program’s execution time. Alternatively, we can deploy more PEs
to increase throughput (ic. weak scaling). This duality requires
both novel i [7){1)(36] in the underlying PEs and

networking approach that avoids the latency variation introduced

a scalable system architecture with high throughput (bisection
i low end-to-end latency (low ke di

by dynamic contention for network links. We describe the topol-
ogy, routing and flow control ize the f
the network that serves as the fabric,
chine learning system with up to 1
TeraBytes of global memory accessibl
of end-to-end system latency.
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ined i fficiently handle both

e d
vidual processing elements work in unison to collectively execute
the different “layers” of a deep learning network. It is this set of
sub-tasks, expressed as individual PE programs, that are distributed
among the computing elements and responsible for carrying out,
or executing, the specifics of the machine learning model.

‘The burgeoning parameter space of natural language processing
(NLP) models like GPT-3 [6] use 100s-of-billions of parameters to
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Grog in a Nutshell

Founded 2016 .
ML Compilers and Tools

Flagship Groqg Tensor Streaming Processor Chip (TSP) and
Product Software for use in Al, Machine and Deep DNN Libra ry Developers

Learning applications
Target Al and Machine Learning Hyperscalers, Host-10 Developers
Market(s) Government, HPC clusters, Autonomous vehicles,

high performance edge appliances ASlC/HW Designers
Employees ~250

Founder/CEO Jonathan Ross
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Supporting Workloads of Today

What would you build given the data flow nature of Machine Learning Workloads and HPC?
“Nodes” in the computational graph represent operators and “edges” are the operands and
results.

HIDDEN

OUTPUT

Grog re-examined the hardware-software contract
Created hardware that is much more predictable and streaming based
Gave more control to software!

gr‘oq Software-defined Tensor public 6
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Have we been here before? RISC » VLIW?

With RISC, CPU architecture hides a lot of complex control logic from software
Caching, prefetching, out-of-order execution, branch prediction
Area cost of this control hardware reduces available area for raw compute
Very Long Instruction Word (VLIW) to the rescue?
The next natural step in the trend of shifting work and control from hardware to software

Execution ordering, data prefetching, branch resolution
Compiler responsible for exploiting instruction-level parallelism (ILP) available in a program

Itanium...
Compiler struggled to achieve good ILP due to limited view of dynamic hardware behaviour

Cache misses, dynamic mem dependencies, dynamic branches

groq Software-defined Tensor
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A New Golden Age in Computing

The end of
CPU hegemony

Growing demand in
dataflow dominated
compute

Slowing of Moore'’s Law and
Dennard Scaling

CPU “abstraction” no longer
the only foundation for
developing software

. Software-defined Tensor
groq ©2022 Grog, Inc. | Streaming Multiprocessor

Dawn of a new golden
age in computing

Hennessy & Patterson: “A
New Golden Age for
Computer Architecture”

Lattner: “A New Golden
Age of Compilers”

Karpathy: “Software 2.0" » A
New Golden Age for
Algorithms

In the past, hardware (CPUs)
has defined our software

The hardware-software abstraction
contract has been reopened!

Opportunity now to achieve
“software-defined hardware”

Public 8



Simplifying Compute
GroqChip™

Simplicity enables
Compute
Qf'O(T © 2022 Grog, |ncEtaem(!:(ng£mance

Nvidia GTX 1070

Complexity leads to more
Compute Costs

Public 9



GrogChip Scalable Architecture

220MB SRAM
80 TB/s of Stream

Bandwidth on-chip
Massive concurrency

480GBps Chip-2-Chip
Links

o
] md -
Dense MatMul S s
720 TeraOP/s (1 TeraOP /s/ X c 3 ‘o" 3 Dataflow
mm?) o= =
AR R AR
o 2 9
T 2
Vector Units
inzstruction .
[0t 10 Instruction Control
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Designing for determinism...

Design choices along the way need to accommodate the “design for determinism” design philosophy

Hardware must enable the compiler and runtime interfaces to reason about program execution
Memory consistency model must be well understood - disallowing memory references from being
reordered
No “reactive components” like arbiters, crossbars, replay mechanismes, caches, etc
Software must have access to the architectural-visible machine state in order to intercept the data
(operands) with the instruction that will execute on them.

Compiler “knows” the exact location of every tensor on-chip
In this way, the compiler is orchestrating the arrival of operands and the instructions which use them. The

producer-consumer stream programming model allows a set of “streaming register files” to track the
state of each tensor flowing through the chip.

gr‘oq Software-defined Tensor public M
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Avoiding Complexity at the Chip Level

Conventional CPUs add features and add complexity:

e Speculative execution and out-of-order retirement
o toimprove instr level parallelism - increases tail latency

e Implicit data flow through cache memory hierarchies introduce
complexity and non-determinism
o (e.g.DRAM > L3> L2> L1 GPRs) to hide DRAM access latency

& pressure - not energy or silicon efficient Requires dynamic profiling to understand
execution time and throughput
characteristics of deep learning models

The TSP simplifies data flow through Stream Programming:

e Alarge, single-level scratchpad SRAM - fixed, deterministic
latency

e Explicitly allocate tensors in space and time unlocking massive

memory concurrency, and compute flexibility along multiple
dimensions:

[device, hemisphere, memory slice, bank, address offset]

Predictable Performance at Scale
9r’oq‘ Software-defined Tensor
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Functionally Sliced Microarchitecture

Reorganizing the multicore mesh On-chip
Cores Network
11 11 11 ‘ 11 lll
1 1 1 1 1
|I |I |I |I |I |I @ |I |I |I |I
N N RN RN N I RN S
III III III III III III III III
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1 1 1 1 1 1 1 1
| I | | I | | I | | I | | I | | I | | I | | I |
1 | I 1 | I 1 1 | I | 1
N N —
11 11 11 11 11 11
1 1 1 1 1 1

Canonical 5-Stage Pipeline

IF ID EX ||MEM|| WB

groq Software-defined Tensor public 13
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Functionally Sliced Microarchitecture

Reorganizing the multicore mesh

1 1
INSTR Dispatch

IF ID EX [[MEM|| WB

gr'C)q~ ©2022 Grog, Inc, | 2oftware-defined Tensor Public 14
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Functionally Sliced Microarchitecture

Reorganizing the multicore mesh

Cores On-chip Network
. . I I I ‘ I lll
Reorganlze a conventional T — ‘ T
o o N 1J I
manycore 2D mesh T ) ) ) ) ) ) a—
T - g g g
. ; 94— T I I—- T1- T-— 11— 1
MEM.On—ChIpSRAM . ||I I||I I||I I||I I||I ||I I||I I||I
_ OO e oS o e e 1Y
VXM: vector unit (] trem v [ e [ e e [ e e
MXM tri it D o
- mMatrix uni I I I I I I I I
I III 1 III 1 II 1 II 1 III I III 1 III 1 III
SXM: data reshapes [ T ) ) [ ) () ) o=
I III 1 III 1 II 1 II 1 III I III 1 III 1 III
Tensor operands and T OO O O O O O (=
‘r‘esu|ts ﬂO,\,/\/ on. O e e e S e e
streams” horizontally — 3 T [ ) ) o
Instructions flow — === = =
Vertica”y executed in Canonical 5-Stage Pipeline
a SlMD manner IF ID EX ||MEM|| WB

Software-defined Tensor
©2022 Grog, Inc. | Streaming Multiprocessor

groq

Memory (load/store)
Instruction Pipeline

Instruction Flow

oD

MEM

MEM

wB
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MXM - Matrix Multiply Engines

groq

East

MXM MXM
West
Numeric Max Size Supported Result Tensor
Mode Density
int8 [1, 320] x [320, 320] Two per MXM int32
floatle [1,320] x [160, 320] One per MXM float32
3208 x 3208 dot product Int8 & floatle Used Independently or

Loads 320B x16 in 20 cycles
20 cycle execution
Fully pipelined, N

Software-defined Tensor

©2022 Grog, Inc. | Streaming Multiprocessor

Full precision expansion
32-bit accumulate

together

Public



VXM and Complex, Customized Functions

MatMul | | Dist | | Accum | | Add | | RelLu | | Cast |
Westward Travel
6 6 6 6 6 6 6} 6
7

o Az |7 A aws |7 o As |7 daus |l

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

o Aws |2 ol Awe |3 J Ao | o ALum |2

7 7 7 7 7 7 7 ¥4

2 4°2 2 2 2 _°1 —_—2 2

3 aws 3 A aws | 3 e |2 A A

5 5 5 5 5 5 ES 5

zeros

0} 0 0 0 0 ] 0 o

1 1 1 1 1 1 1 1

2] Awvo |, 2| AL |, of ALL2 |, 2| ALU3 |,

3 3 3 3 I— 3 3 | 3 3

result ]
Eastward Travel
Dataflow begins with Many concurrent VXM provides a flexible Compute occurs on data MEM bandwidth
memory Read onto streams are supported and programmable locality of passing Stream supports high
Stream Tensor in programming model fabric for Compute Tensor concurrency
. Software-defined Tensor .
groq ©2022 Grog, Inc. | Streaming Multiprocessor Public



SXM - Switch eXecution Module

SXM

Distributor: 4 per
hemisphere perform unto
mapping of input + mask to
output stream within a 16
byte superlane

groq" Software-defined lensor
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Swiss army knife for
data manipulation &
Intra-vector byte
operations

SXM

@ SXM Cc2C IO

Transposer: 2 per
hemisphere perform

intra-superlane transpose
over 16 lanes for 20
superlanes

M | ¢

[ i i
JlZla — |

MIN | (s 4 Qlinl & @ |

\7\1\1‘;}{Ey_’¢owﬁ~n§

Permuter/Shifter: arbitrary
mapping of input + mask,
shuffling between 320B vector Permute, Transpose,
elements - used for data

transforms like pads/reshapes

Shift, Rotate, Distribute,

Transport to SuperLanes

Public



Streaming Registers

Contrasts to CPU / Register file
- Memory semantics have an address and
a direction of data flow

DNO AR WN SO

Streaming registers are like a tensor assembly line
flowing eastward and westward. 2

STREAM

Each stream holds a vector of 320 bytes (i.e. each
element in the vector is 1-byte of data) 2
- Multiple streams are used to represent larger a
multi-byte data types (eg. FP32). n

groq" Software-defined Tensor Public 19
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4 banks of memory
320-byte

|
—
Rank-2 Tensor Dataflow S v vector
Rank-2 tensors, with inner dimension of 320
elements,
Western .~ Eastern
Hemisphere Hemisphere
- N -
Mem SXM
Stream Slices Switch
Unit
MXM VXM Small-ALU
Matrix Vector
Ontt Unit | | Big-ALU

Software-defined Tensor
©2022 Grog, Inc. | Streaming Multiprocessor
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Rank-2 Tensor Dataflow

Rank-2 tensors, with inner dimension of 320

elements,
Western
Hemisphere
A
4 N
M
Stream SI?;: s
MXM VXM Small-ALU
Ma_trix Vector
nit unit | | Big-ALU

. Software-defined Tensor
groq ©2022 Grog, Inc. | Streaming Multiprocessor

4 banks of memory

2 .~ Eastern
L Hemisphere

SXM
Switch
Unit
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Streaming Registers

Larger data types are formed by
“Interleaving” 320-element vectors on
multiple streams 4

fp32 datatype

/
/

[2

Nl COOSNOSENOSEEEEEEES ... .. OOOSOE0)
\ 1
1

1

1

/

| IINIEFENANONEEEEEE ... ... $O§OO§0 B

L

 INNANNENNENEEEEEEE .- ... DOOSO05
N

[

] DENONONEEENEEEEEEEE - .- ... OOoooo i
N
AY

. Software-defined Tensor
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Dataflow
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AN ISA That
Empowers
Software

Explicit time and space of
instruction execution exposed by
ISA to the compiler

Each Functional Unit (FU) type
provides its own low-level
instruction set

Number of FUs of each type and
relative positions on chip are
exposed to software

Compiler can choose to leverage
multiple FUs for more concurrency
or more pipelining

©2022 Groq, Inc. | Software-defined Tensor
. Inc. Streaming Multiprocessor

groq

Instruction Set
Low level
320-vector ops

Explicit resource
selection

Explicit
scheduling

Function

Instruction

ICU

MEM

VXM

MXM

SXM

c2Cc

NOP N
Ifetch
Sync
Notify
Config
Repeat n,d

Read a,s

Write a,s
Gather s, map
Scatter s, map
Countdown d
Step a
Iterations n

unary operation
binary operation
type conversions
ReLU

TanH

Exp

RSqrt

LW
Iw
ABC
ACC

Shift up/down N
Permute map
Distribute map
Rotate stream
Transpose sglé

Deskew
Send
Receive

Public
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Power of Data Orchestration

Given to Grog Compiler

t £ — — ——
m £
S
X
| wv
M S
“ at
m 9 e HE=
i !
I : .
m 5 =S
[ T L )
H
- : (1] e n
E FIIPH.- g Mmmmuy U
O ¥
™ n =2 n my
T [ L ) LA 11
= H H
e ], P | .
= R T
I I
ll.._d,r‘.-._ 8
;
)

m [
> )
— !
=—ullnn,ll=l_". ™
o b

,1_ HE

I
I

mi',lil -nll‘uﬁ i
=]

== i — o
[y . FFII. F u _-F 2 __* 4 .“]i i_.
——— .5 ol
= ; : : e
=% us 2 5 e -
_l,__ mn _l | | -cll
.TF\W L L q
“ = s 8
Lo, mm - 5
|

Sxm 10

Mxm

Public 24

Software-defined Tensor
Streaming Multiprocessor

© 2022 Groq, Inc. |

groq



groq

Compilation




Traditional HPC
Compiler Flow

NVIDIA CUDNN DOCUMENTATION

A: The following graphic shows how cuDNN relates to other software in the stack.

Figure 11. Software stack with cuDNN.

—
_

l
(I

|

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

groq

© 2022 Groq, Inc. |

Software-defined Tensor
Streaming Multiprocessor

Nvidia results from publicly available data on nvidia.com

Public 26


https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

"The most dangerous
ohrase in the l[anguage
s "We've always done
it this way.”

REAR ADMIRAL GRACE HOPPER
Pioneering Computer Scientist
1906-1992

. Software-defined Tensor
groq ©2022 Grog, Inc. | Streaming Multiprocessor



GROQ™ COMPILER

Flow

Software-defined hardware relies on
several interfaces: 2
Static-Dynamic interface - w 1F O PYTOI’Ch ) w I" ‘_' I
compile-time versus runtime N
Hardware-software interface -

Y
exposing the architectural ONNX Optimization
visible-state
Rewrites

Detailed Vector

Groq Vector IR

- - 10

Scheduling

Kernel-less approach to HPC Compilation

Public 28
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GEMM - General Matrix Multiplication

Vector-Matrix multiplication and o
Matrix-Matrix multiplication are the A TSP @ Nvidia A100
workhorse for many ML and HPC

1.00 A=A NPV NPV NPT NN e W
workloads
On-chip memory bandwidth determines 0.75
how quickly we can ramp up ALUs for
vector and matrix operations
Consistent performance across a range of
tensor sizes - less “hardware fitting”
State-of-the-art (SOTA) results across a
range of models and applications 0.00
CNNs 1500 2000 2500 3000 3500
RNNs, LSTMs

NLP, BERT Matrix Size N
Dense linear algebra V*M and M*M

0.50

0.25

Utilization

groq" ©2022 Grog, Inc, | 2oftware-defined Tensor Public 29
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GrogFamily

GroqChip™ GroqCard™ GrogqNode™ GrogRack™

grOCT Software-defined Tensor Public 30
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Scale-out organization

Topology objectives

Low network diameter

Direct network

Hierarchical packaging-aware topology
System packaging hierarchy
Chip-to-chip (C2C) links and flow control

(=) [+]
-

dobdd b

(b) Direct network

[ R R R

(@) Indirect network

(c) Software-scheduled direct network

. Software-defined Tensor
groq ©2022 Grog, Inc. | Streaming Multiprocessor

(a) Chip

(b) Card

Top-view of node

(d) Rack

Public 31



L ow-diameter Network

Minimize the number of hops in the network

The total observed latency and variance increases with the number of hops in the network

Dragonfly is a hierarchical topology minimizes the number of hops taken

Local group topology
All-to-all global topology

Exploits packaging locality
Local topology 2x speedup

Scalable from 1 TSP to thousands

9r’oq‘ Software-defined Tensor

©2022 Grog, Inc. | Streaming Multiprocessor

\

+_NODE

TSP GLOBAL
card .
Hre topology
LOCAL A
topology

TSPs within the node with all-to-all connections
\

25Gbps X 4lanes X 2 dir X 28 links = 700 GB/s Y

25Gbps X 4lanes X 2 dir X 4X36 links
=3.6 TB/s

Control-plane

Public
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Chip-to-chip (C2C) links and flow control

Simplified communication model provides logically shared access to global SRAM which is physically
distributed among the TSPs

C2C links directly connect TSPs
Comparing conventional RDMA with Grog C2C communication

0

[DRAM]

[DRAM]

Local DRAM

memory

groq

y

-

Source
TSP

\\

(2

Recv(X)
use(X)

/

Software-defined Tensor
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@ Read(X)
—

\_/

Reply(X)

—

vector(X)

-

Destination
TSP

L)
Send(X)

R | Local
O ~ SRAM

\l?ead(X) memoryj

Local DRAM
memory
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e Pt
Cholesky Factorization T i
i s ] 23322
AT i
Cho|e5ky decomposition isan importa Nt (a) 320 rows interleaved (b) blOCkil‘lg across 2 rows
technique for solving large-scale system of linear across each chip and 2-chips
equations. - 125,000,000
Compute is N3/3 for a SPD matrix of size N §
Block-cyclic distributions of 320 rows across chips g 100,000,000
$-
Cholesky Decomposition 3
== Groq TSP == Nvidia P100 §, 75.m.m
20 [
E
s & 50,000,000
3
2 2
g W 25,000,000
=
5 s — z i
2500 5000 7500 10000 12500 15000 17500
: 5000 10000 15000 20000 'anIt matrix size (NXN)
Input Size (p) (¢) execution time vs problem size (input matrix size) with multiple TSPs
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Multichip Compilation
Available soon in next Quarter
Inter Op Partitioning

Model graph split into multiple graphs
Intermediate activations become inputs to successive graphs
Reduces weights on chip

Inter Op

Intra Op Partitioning

Tile the face of the input
Operate on a “fractional” portion of the input at any given time
Reduces peak activation /input size on the chip

grOCT Software-defined Tensor

©2022 Grog, Inc. | Streaming Multiprocessor
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Multichip Inter Op Partitioning

partition O

unk_73x3x1208x1920

Reshape

shape (2)

ReduceMean

Reshape

partition 1

Conv

W (48x3x4x4)

Conv.

W (32x48x3x3)

partition 2

Conv

W (32x32x3x3)

Conv.

W (32x32x3x3)

partition 3

© 2022 Grog, Inc. |

Conv.

W (64x32x3x3)

Conv.

W (64x64x3x3)

Software-defined Tensor
Streaming Multiprocessor

Device O

Device 1

Device 2

Device 3

unk_73x3x1208x1920

Reshape

ReduceMean

Reshape

c2C

Conv

W (48x3x4x4)

Conv

W (32x48x3x3)

Conv.

(w (s23203x3) |

Conv

W (32x32x3x3)

Conv

W (64x32x3x3)

Conv

W (64x64x3x3)

Public
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Multichip Pipelining
Invocation is composed of compute on each of the devices followed by C2C to next
subgraph’s device
Pipeline parallel execution

Time
Input -
Device 0 _ _ Inference 2, partition 0 | Inference 3, partition 0
Device 3 Inference 0, parttion 3
Latency = 4 x (Compute + 1O time)
Output

Throughput = Clock freq / (Compute + IO time)

gf'oq~ ©2022 Grog, Inc, | 2oftware-defined Tensor Public 37
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Inter Op Partitioning Results Today

Linear Scaling Achieved

20
Scaling BERT encoders
15
Scaling to 6, 24, 48, and 96 BERT &
encoderson 1, 4,8, and 16 TSPs é o0
respectively 5
%
2
5
0

1 4
NUMBER OF DEVICES

gf'oq~ ©2022 Grog, Inc, | 2oftware-defined Tensor Public 38
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Results e
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Natural Language Processing with BERT

Seq Len=128

Spread the layers across TSPs in each node for multi-TSP

model parallelism

Mini-batch (data parallelism) across nodes for throughput

Goal: Accelerate BERT minimizing latency and

maximizing throughput

Minimize latency variance to provide predictable

throughput

T4, CURRENT SOTA (A100) [21] AND THIS WORK BERT-BASE LATENCY

(128 SEQUENCE LENGTH).

T4 (us) Current This work Speedup
SOTA (us) (This work
A100 (ps) vs SOTA)
Average 1330 630 128.9 4.8%
95t 1550 780 129.1 6
Percentile
99t 1570 790 129.5 6.1x
Percentile
QrOq < aomcron el ST

Count

A100 [22], T4 [23] AND TSP [13], [24] SPECIFICATIONS.

3000 A

2500 1

2000 4

1500 A

1000 4

500 4

Chip Die Area Tech Transistor TDP (W)
(mm?) Process count (B)
(nm)
NVIDIA 545 12 13.6 70
T4
NVIDIA 826 7 54.2 400
A100
Groq TSP 725 14 26.8 275
124 126 128 130 134 _
Public 40
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GROQ™ COMPILER

Achieving SOTA Results

LSTM-512 TOPs vs Batch Size

TOPs

Software-defined Tensor

200

150

100

50

® IntelNXint8 @ V100int8 @ T4int8 @ GrogChip int8

256

32

@
2
8

-be

Batch Size

Nvidia results from publicly available data on nvidia.com
LSTM results from Intel sponsored paper, FPT 2020, available on intel.com

groq ©2022 Grog, Inc. | Streaming Multiprocessor
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Grog Exponentially Supporting More Workloads

Random Forest

What we've enabled thus far... ® GNN
T5 encoder
® WebGPT
splinter ®
® COMPUTER VISION P CLIP
® TEXT-TO-SPEECH realm
MobileBERT Segformer L
® NATURAL LANGUAGE PROCESSING ° ® ° SVM
® HIGH PERFORMANCE COMPUTING SqueezeNet MT5 °
DETR ° ° Bidir LSTM
® EfficientNet MT5 encoder @
® o STAC
GPT-Neo
° Electra BERT-64 LSTMA/B/C
o [ J [ J
T.5 VoV:\let BERT-Large EfficientDet MobNet2
Y [ J [ J
FFT LSTM Yolo MobileNet RN-18/34/101 WaveGlowsmall-XLNet
° °® °® ° ° ° °
ToyRNN Toy MLP ToyLSTM Q8BERT  DistiBERT RN-50/101 Bregman  Tacotron 2 LSTM set LSTM-ST ¢y
° ° ° ° ° °® ° ° ) ° °
O O ° O O ° O O ° O O ° O O °
Q2 Q3 Q4 Ql Q2
2021 2021 2021 2022 2022

. Software-defined Tensor . . .
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Summary and Takeaways

Low-latency and high-throughput are necessary...

Delivering predictable and repeatable performance is critical for many user-facing applications
Batch-1 inference is important for responsiveness and delivering quality-of-service (QoS) that is
impossible to do with more traditional microarchitectures using crossbars, cache hierarchies, etc.

Determinism enables software-defined hardware and entails a design philosophy that spans both
hardware and software

ISA is not about abstraction of hardware details, but about exerting control of underlying hardware
144 independent instruction control units (ICUs) of the TSP
Expose the architecturally-visible state (GPRs, SRAM, instruction buffers, etc)

Software-based replay and exception handling

Extending the single-chip TSP determinism to the multiprocessor using software scheduled networking
to explicitly schedule tensors on the network links

Synchronous communication model allows for large-scale machine learning
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