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A hardware-software approach

Software-defined 
Hardware with Groq’s 
Tensor Streaming 
Processor
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Sr. Director Software
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MY GOAL TODAY

Introduce you to Groq’s 
approach to SW defined 
hardware in the era beyond 
CPUs
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Details…
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ISCA 2020 ISCA 2022
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Groq in a Nutshell
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Founded 2016

Flagship 
Product

Groq Tensor Streaming Processor Chip (TSP) and 
Software for use in AI, Machine and Deep 
Learning applications

Target 
Market(s)

AI and Machine Learning Hyperscalers, 
Government, HPC clusters, Autonomous vehicles, 
high performance edge appliances

Employees ~250

Founder/CEO Jonathan Ross

ML Compilers and Tools

DNN Library Developers

Host-IO Developers

ASIC/HW Designers
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Supporting Workloads of Today

■ What would you build given the data flow nature of Machine Learning Workloads and HPC?
□ “Nodes” in the computational graph represent operators and “edges” are the operands and 

results. 

■ Groq re-examined the hardware-software contract
■ Created hardware that is much more predictable and streaming based
■ Gave more control to software!
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Have we been here before? RISC → VLIW?

With RISC, CPU architecture hides a lot of complex control logic from software

Caching, prefetching, out-of-order execution, branch prediction

■ Area cost of this control hardware reduces available area for raw compute

Very Long Instruction Word (VLIW) to the rescue?

The next natural step in the trend of shifting work and control from hardware to software

■ Execution ordering, data prefetching, branch resolution
■ Compiler responsible for exploiting instruction-level parallelism (ILP) available in a program

Itanium…

Compiler struggled to achieve good ILP due to limited view of dynamic hardware behaviour

■ Cache misses, dynamic mem dependencies, dynamic branches
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The end of 
CPU hegemony

Dawn of a new golden 
age in computing

In the past, hardware (CPUs) 
has defined our software

Growing demand in 
dataflow dominated 
compute

Slowing of Moore’s Law and 
Dennard Scaling

CPU “abstraction” no longer 
the only foundation for 
developing software

Hennessy & Patterson: “A 
New Golden Age for 
Computer Architecture”

Lattner: “A New Golden 
Age of Compilers”

Karpathy: “Software 2.0” → A 
New Golden Age for 
Algorithms

The hardware-software abstraction 
contract has been reopened!

Opportunity now to achieve 
“software-defined hardware”

A New Golden Age in Computing
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Simplicity enables
Compute 

Performance

Complexity leads to more
Compute Costs 

GroqChip™ Nvidia GTX 1070
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Simplifying Compute
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PCIe IO

IO IO

IO
Inzstruction 

Unit

Vector Units

480GBps Chip-2-Chip 
Links

Dense MatMul 
720 TeraOP/s (1 TeraOP / s / 

mm2)

220MB SRAM
80 TB/s of Stream 
Bandwidth on-chip 
Massive concurrency

Dataflow 

Instruction Control
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GroqChip Scalable Architecture
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■ Design choices along the way need to accommodate the “design for determinism” design philosophy

■ Hardware must enable the compiler and runtime interfaces to reason about program execution
□ Memory consistency model must be well understood - disallowing memory references from being 

reordered 
□ No “reactive components” like arbiters, crossbars, replay mechanisms, caches, etc
□ Software must have access to the architectural-visible machine state in order to intercept the data 

(operands) with the instruction that will execute on them.

■ Compiler “knows” the exact location of every tensor on-chip

■ In this way, the compiler is orchestrating the arrival of operands and the instructions which use them. The 
producer-consumer stream programming model allows a set of “streaming register files” to track the 
state of each tensor flowing through the chip.

Designing for determinism…



© 2022 Groq, Inc. | PublicSoftware-defined Tensor 
Streaming Multiprocessor

Avoiding Complexity at the Chip Level
Conventional CPUs add features and add complexity:

● Speculative execution and out-of-order retirement
○ to improve instr level parallelism - increases tail latency

● Implicit data flow through cache memory hierarchies introduce 
complexity and non-determinism

○ (e.g. DRAM → L3 → L2 → L1 → GPRs) to hide DRAM access latency 
& pressure - not energy or silicon efficient

The TSP simplifies data flow through Stream Programming:
● A large, single-level scratchpad SRAM - fixed, deterministic 

latency

● Explicitly allocate tensors in space and time unlocking massive 
memory concurrency, and compute flexibility along multiple 
dimensions:

[device, hemisphere, memory slice, bank, address offset]

Requires dynamic profiling to understand 
execution time and throughput 

characteristics of deep learning models

Intel Cascade Lake

Groq TSP

Predictable Performance at Scale
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Functionally Sliced Microarchitecture
Reorganizing the multicore mesh

IF ID EX MEM WB

Canonical 5-Stage Pipeline

On-chip 
NetworkCores
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Functionally Sliced Microarchitecture

IF ID EX MEM WB

Canonical 5-Stage Pipeline

On-chip NetworkCores

INSTR Dispatch

NET1$

LSUD$

INT FP

Reorganizing the multicore mesh
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Functionally Sliced Microarchitecture

IF ID EX MEM WB

Canonical 5-Stage Pipeline

On-chip NetworkCores

In
st

ru
ct

io
n 

Fl
ow

Data Flow

MXM SXM MEM MEM SXM MXM

Functional Slice

IF OD EX EX WBInteger ALU 
Instruction Pipeline ID

IF OD MEM MEM WBID
Memory (load/store)
Instruction Pipeline

Instructional Control Dispatch

VXM

Reorganize a conventional 
manycore 2D mesh

MEM: on-chip SRAM

VXM: vector unit

MXM: matrix unit

SXM: data reshapes

Tensor operands and 
results flow on 
“streams” horizontally

Instructions flow 
vertically executed in 
a SIMD manner

INSTR Dispatch

NET1$

LSUD$

INT FP

Reorganizing the multicore mesh
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SXM

MXM - Matrix Multiply Engines

VXM MXMMXM MEM MEMSXM

320B x 320B dot product
Loads 320B x16 in 20 cycles

20 cycle execution
Fully pipelined, N

Int8 & float16
Full precision expansion

32-bit accumulate

Used Independently or 
together

Numeric 
Mode

Max Size Supported 
Density

Result Tensor

int8 [1, 320] x [320, 320] Two per MXM int32

float16 [1, 320] x [160, 320] One per MXM float32

2
3

0
1
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SXM

VXM and Complex, Customized Functions

VXM MXMMXM MEM MEMSXM

Dataflow begins with 
memory Read onto 

Stream Tensor

Many concurrent 
streams are supported 
in programming model

VXM provides a flexible 
and programmable 
fabric for Compute 

Compute occurs on data 
locality of passing Stream 

Tensor

MEM bandwidth 
supports high 
concurrency

MatMul Dist Accum Add ReLu Cast
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SXM - Switch eXecution Module

Swiss army knife for 
data manipulation &

Intra-vector byte 
operations

Distributor: 4 per 
hemisphere perform unto 
mapping of input + mask to 
output stream within a 16 
byte superlane

Transposer: 2 per 
hemisphere perform 
intra-superlane transpose 
over 16 lanes for 20 
superlanes

Permuter/Shifter: arbitrary 
mapping of input + mask, 
shuffling between 320B vector 
elements - used for data 
transforms like pads/reshapes

Shift, Rotate, Distribute, 

Permute, Transpose, 

Transport to SuperLanes

SXM VXMMXM MEM MEM SXM MXM

C2C IO
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Streaming Registers

Contrasts to CPU / Register file
  - Memory semantics have an address and 
    a direction of data flow

Streaming registers are like a tensor assembly line 
flowing eastward and westward.

Each stream holds a vector of 320 bytes (i.e. each 
element in the vector is 1-byte of data)
   - Multiple streams are used to represent larger 
     multi-byte data types (eg. FP32).

0
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7
8
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R

EA
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Dataflow
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Rank-2 tensors, with inner dimension of 320 
elements, 

Rank-2 Tensor Dataflow

20

MXM
Matrix
Unit

VXM
Vector 

Unit

Mem 
SlicesStream

320-byte 
vector

Western 
Hemisphere

Eastern 
Hemisphere

Small-ALU

Big-ALU

4 banks of memory

SXM
Switch
Unit
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Rank-2 Tensor Dataflow

21

Western 
Hemisphere

Eastern 
Hemisphere

4 banks of memory

Rank-2 tensors, with inner dimension of 320 
elements, 

VXM
Vector 

Unit

Mem 
Slices

Small-ALU

Big-ALU

MXM
Matrix
Unit

Stream
SXM
Switch
Unit
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Streaming Registers
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DataflowLarger data types are formed by 
“interleaving” 320-element vectors on 
multiple streams

6
5
4

7

fp32 datatype
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Function Instruction
ICU   
          

NOP N
Ifetch 
Sync
Notify
Config
Repeat n,d

MEM Read a,s
Write a,s
Gather s, map
Scatter s, map
Countdown d
Step a
Iterations n

VXM unary operation
binary operation
type conversions
ReLU
TanH
Exp
RSqrt

MXM LW
IW
ABC
ACC

SXM Shift up/down N
Permute map
Distribute  map
Rotate stream
Transpose sg16

C2C Deskew
Send
Receive

Explicit time and space of 
instruction execution exposed by 
ISA to the compiler

Each Functional Unit (FU) type 
provides its own low-level 
instruction set

Number of FUs of each type and 
relative positions on chip are 
exposed to software

Compiler can choose to leverage 
multiple FUs for more concurrency 
or more pipelining

Instruction Set

Low level 

320-vector ops 

Explicit resource 
selection

Explicit 
scheduling

An ISA That 
Empowers 
Software
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Power of Data Orchestration 
Given to Groq Compiler
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Compilation
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NVIDIA CUDNN DOCUMENTATION 
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

Traditional HPC 
Compiler Flow

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
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“The most dangerous 
phrase in the language 
is “We’ve always done 
it this way.”
REAR ADMIRAL GRACE HOPPER
Pioneering Computer Scientist
1906–1992



© 2022 Groq, Inc. | PublicSoftware-defined Tensor 
Streaming Multiprocessor

Rewrites

Detailed Vector 
Scheduling

ONNX Optimization

Groq Vector IR

28

Kernel-less approach to HPC Compilation

GROQ™ COMPILER 

Flow
■ Software-defined hardware relies on 

several interfaces:
□ Static-Dynamic interface - 

compile-time versus runtime 
□ Hardware-software interface - 

exposing the architectural 
visible-state 
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GEMM - General Matrix Multiplication

■ Vector-Matrix multiplication and 
Matrix-Matrix multiplication are the 
workhorse for many ML and HPC 
workloads

■ On-chip memory bandwidth determines 
how quickly we can ramp up ALUs for 
vector and matrix operations

■ Consistent performance across a range of 
tensor sizes - less “hardware fitting”

■ State-of-the-art (SOTA) results across a 
range of models and applications

□ CNNs
□ RNNs, LSTMs
□ NLP, BERT
□ Dense linear algebra V*M and M*M
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GroqChip™ GroqCard™ GroqNode™ GroqRack™

30

GroqFamily
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■ Topology objectives
□ Low network diameter
□ Direct network
□ Hierarchical packaging-aware topology

■ System packaging hierarchy
■ Chip-to-chip (C2C) links and flow control

Scale-out organization
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■ The total observed latency and variance increases with the number of hops in the network

■ Dragonfly is a hierarchical topology minimizes the number of hops taken
□ Local group topology
□ All-to-all global topology

■ Exploits packaging locality

■ Local topology 2x speedup

■ Scalable from 1 TSP to thousands

Low-diameter Network
Minimize the number of hops in the network

GLOBAL 
topology

LOCAL 
topology

25Gbps x 4lanes x 2 dir x 28 links = 700 GB/s

25Gbps x 4lanes x 2 dir x 4x36 links 
=3.6 TB/s 
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■ Simplified communication model provides logically shared access to global SRAM which is physically 
distributed among the TSPs

■ C2C links directly connect TSPs
■ Comparing conventional RDMA with Groq C2C communication

Chip-to-chip (C2C) links and flow control
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Cholesky Factorization

■ Cholesky decomposition is an important 
technique for solving large-scale system of linear 
equations.

■ Compute is N3/3 for a SPD matrix of size N
■ Block-cyclic distributions of 320 rows across chips
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Inter Op Partitioning

■ Model graph split into multiple graphs
■ Intermediate activations become inputs to successive graphs 
■ Reduces weights on chip

Intra Op Partitioning

■ Tile the face of the input
■ Operate on a “fractional” portion of the input at any given time
■ Reduces peak activation / input size on the chip

Multichip Compilation
Available soon in next Quarter

Inter Op

Intra Op
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C2C
Device 0

Device 1

Multichip Inter Op Partitioning

Device 2

Device 3

partition 0

partition 1

partition 2

partition 3
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■ Invocation is composed of compute on each of the devices followed by C2C to next 
subgraph’s device

□ Pipeline parallel execution

Multichip Pipelining

Inference 0, partition 0 Inference 1, partition 0 Inference 2, partition 0 Inference 3, partition 0

Inference 0, partition 1 Inference 1, partition 1 Inference 2, partition 1

Inference 0, partition 2 Inference 1, partition 2

Inference 0, partition 3

Time

Device 0

Device 1

Device 2

Device 3

Input

Output
Throughput = Clock freq / (Compute + IO time)

Latency = 4 x (Compute + IO time)
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Inter Op Partitioning Results Today
Linear Scaling Achieved

Scaling BERT encoders

Scaling to 6, 24, 48, and 96 BERT 
encoders on 1, 4, 8, and 16 TSPs 
respectively
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Results

39
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■ Spread the layers across TSPs in each node for multi-TSP 
model parallelism 

■ Mini-batch (data parallelism) across nodes for throughput
■ Goal: Accelerate BERT minimizing latency and 

maximizing throughput
■ Minimize latency variance to provide predictable 

throughput

Natural Language Processing with BERT
Seq Len=128



© 2022 Groq, Inc. | PublicSoftware-defined Tensor 
Streaming Multiprocessor 41Nvidia results from publicly available data on nvidia.com

LSTM results from Intel sponsored paper, FPT 2020, available on intel.com

GROQ™ COMPILER

Achieving SOTA Results

F55036

000000

666666

CCCCCC
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Toy LSTMToy RNN LSTM set

YoloFFT LSTM

DistilBERT RN-50/101

RN-18/34/101

GPT-Neo

Tacotron 2

T5 VoVNet

MobileNet

Bregman

BERT-Large

Q1 
2022 

Q2 
2021

Q3 
2021

Q4 
2021

WaveGlow

Toy MLP Q8BERT

Electra

EfficientNet

SqueezeNet

Segformer

DETR

MobileBERT

LSTM-ST

EfficientDet

BERT-64

MT5  encoder

MT5

realm

splinter

T5 encoder

small-XLNet

 CV

STAC 
LSTM A/B/C

Bidir LSTM

MobNet2

SVM

CLIP

WebGPT

GNN

Groq Exponentially Supporting More Workloads
What we’ve enabled thus far…

COMPUTER VISION

TEXT-TO-SPEECH

NATURAL LANGUAGE PROCESSING

HIGH PERFORMANCE COMPUTING

LEGEND

Q2 
2022 

Random Forest



© 2022 Groq, Inc. | PublicSoftware-defined Tensor 
Streaming Multiprocessor 43

■ Low-latency and high-throughput are necessary…
■ Delivering predictable and repeatable performance is critical for many user-facing applications

□ Batch-1 inference is important for responsiveness and delivering quality-of-service (QoS) that is 
impossible to do with more traditional microarchitectures using crossbars, cache hierarchies, etc.

■ Determinism enables software-defined hardware and entails a design philosophy that spans both 
hardware and software

□ ISA is not about abstraction of hardware details, but about exerting control of underlying hardware 
■ 144 independent instruction control units (ICUs) of the TSP

□ Expose the architecturally-visible state (GPRs, SRAM, instruction buffers, etc) 
□ Software-based replay and exception handling

■ Extending the single-chip TSP determinism to the multiprocessor using software scheduled networking 
to explicitly schedule tensors on the network links

■ Synchronous communication model allows for large-scale machine learning 

Summary and Takeaways
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We’re Hiring! 

Join us…


