
Graphcore IPUs:
Accelerating Argonne’s AI/ML

Applications

GRAPHCORE

GRAPHCORE 2

TOPICS

• Graphcore Introduction
• Company
• Processor Architecture (IPU)
• System Architecture
• Software & Enablement

• General Benchmarks

• Customer Case Studies

• Argonne Applications
• UNO
• BraggNN

• “Good” Computer

Note: Upgrade from MK1 to Bow POD64 in
ALCF AI Testbed in October/November ‘22

3

GRAPHCORE
3

GRAPHCORE

GRAPHCORE

• Founded in 2016

• Technology: Intelligence Processor Unit (IPU)

• Team: 650+ globally

• Offices: UK, US, China, Norway, Poland

• Raised >$730M

GRAPHCORE ENABLING MACHINE INTELLIGENCE

5

ABOUT US…

SoftwareHardware

IPU processors
designed for AI

Poplar® software stack &
development tools

BOW-2000 and Server
IPU-POD64 scale-out

Systems

GRAPHCORE

6

GRAPHCORE
6

PROCESSOR
ARCHITECTURE

INTRODUCING THE BOW IPU
WORLD’S FIRST 3D WAFER-ON-WAFER PROCESSOR

3D silicon wafer stacked processor

350 TeraFLOPS AI compute

Optimized silicon power delivery

0.9 GigaByte In-Processor-Memory @ 65TB/s

1,472 independent processor cores

8,832 independent parallel programs

10x IPU-Links™ delivering 320GB/s

GRAPHCORE

8

GRAPHCORE

BOW IPU PROCESSOR

GRAPHCORE

BULK SYNCHRONOUS PARALLEL (BSP)

9

Repeat Supercycles composed of 3 phases
• Compute – execution from local memory
• Sync – global barrier synchronization
• Exchange – global communication

Graphcore: Sync, Exchange, Compute
• Globally - Exchange immediately follows Sync
• Each Tile - Compute immediately follows Exchange

“Bridging Model” for parallel computation

GRAPHCORE 10

SYSTEM
ARCHITECTURE

BOW-2000 IPU MACHINE
4 x Bow 3D Wafer-on-Wafer IPUs

1.4 PetaFLOPS AI Compute

3.6 GB In-Processor-Memory @ 260TB/s

Up to 256 GB IPU Streaming Memory

2.8 Tbps IPU-Fabric™

1U blade form factor

GRAPHCORE

12

GRAPHCORE

BOW-2000 IPU MACHINE

x16 IPU-Link 64GB/s

100Gbps IPU-GW Link
100GE Host-Link Network I/F

x8 PCIe G4 32GB/s

IPUIPU

IPUIPU

GC200 GC200

GC200 GC200

Gateway

NIC/SmartNIC

DRAM DRAM

BOW IPUBOW IPU

IPU-GW

BOW IPUBOW IPU
3.6GB ultra-fast

memory for
models/weights/

activations

…supplemented
by Streaming

Memory for more
flexibility in model

sizes, optimiser
configurations, &

parallelisation
schemes

65 TB/s 65 TB/s 65 TB/s 65 TB/s

13

GRAPHCORE

IPU-FABRIC FOR SCALE-OUT

x16 IPU-Link 64GB/s

100Gbps IPU-GW Link
100GE Host-Link Network I/F

x8 PCIe G4 32GB/s

IPU
61

IPU
62

IPU
63

IPU
1

IPU
2

IPU
3

IPU
4

IPU
5

IPU
6

IPU
7

IPU
8

IPU
64

IPU
61

IPU
62

IPU
63

GW

GW

GW

IPU-POD64

IPU
61

IPU
62

IPU
63

IPU
1

IPU
2

IPU
3

IPU
4

IPU
5

IPU
6

IPU
7

IPU
8

IPU
64

IPU
61

IPU
62

IPU
63

GW

GW

GW

IPU-POD64

IPU
61

IPU
62

IPU
63

IPU
1

IPU
2

IPU
3

IPU
4

IPU
5

IPU
6

IPU
7

IPU
8

IPU
64

IPU
61

IPU
62

IPU
63

GW

GW

GW

IPU-POD64

IPU
61

IPU
62

IPU
63

IPU
1

IPU
2

IPU
3

IPU
4

IPU
5

IPU
6

IPU
7

IPU
8

IPU
64

IPU
61

IPU
62

IPU
63

GW

GW

GW

IPU-POD64

GRAPHCORE

BOW-POD16 DA
x4 BOW-2000
(direct attach)

BOW-POD64
1 host server

BOW-POD4 DA
x1 BOW-2000

BOW-2000/IPU-POD RECONFIGURABILITY
Reusable, simple migration between platforms

Switched version adds
TOR switch & Mgmt switch

Host Server

BOW-2000

BOW-POD64
4 host server

1x BOW-2000 4x BOW-2000 16x BOW-2000

+ servers

+ servers
+ switches

+ BOW-2000
re-cable

+ BOW-2000
scaleout

Up to 16Kx BOW-2000

switches

reconfigurable as 4xPOD16

switches

Disaggregated Server enables configurable Host Server
/IPU ratio depending on workload for optimized TCO

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW-2000

BOW: 3RD GENERATION IPU SYSTEMS

4x Bow-2000
5.6 PetaFLOPS

1 CPU server

BOW POD16

8x Bow-2000
11.2 PetaFLOPS

1 CPU server

BOW POD32

64x Bow-2000
89.6 PetaFLOPS

4-16 CPU server(s)

BOW POD256

256x Bow-2000
358.4 PetaFLOPS

16 - 64 CPU server(s)
Early access

BOW POD1024BOW POD64

16x Bow-2000
22.4 PetaFLOPS
1-4 CPU server(s)

SHIPPING TO CUSTOMERS TODAY

GRAPHCOREGRAPHCORE

16

GRAPHCORE
16

SOFTWARE &
ENABLEMENT

17

GRAPHCORE
POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE MATURITY

HALOONNX

USEFUL SW CAPABILITIES

18

IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

...

IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

...

IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

...

Tensor model parallel axis (t)

Pipeline
model
parallel
axis (p)

.....

data parallel axis (r) IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

IPUIPU IPUIPU IPUIPU IPUIPU...

...

Debug ToolsMulti-IPU Capabilities

GRAPHCORE

19

GRAPHCORE

GPU IPUKeras

MODEL GARDEN ML DOMAIN COVERAGE
COMPUTER VISION

IMAGE
CLASSIFICATION

OBJECT
DETECTION

NLP

SPEECH

STT (ASR) TTS

OTHER

BERT-Large

BERT-Base

GroupBERT

ViT

EfficientNet-B0

EfficientNet-B4

ResNet50 v1.5

ResNeXt-101

YOLO v4

YOLO v3

DIN
DIEN

DeepVoice3

Sales Forecast

RNN-T

Faster RCNN

OBJECT
SEGMENTATION

Unet (Industrial)

Unet (Medical)

FastSpeech2
Conformer

Mini DALL-E

TGN

MPNN

MobileNet v2

MobileNet v3

GPT2 POPART

REINFORCEMENT

RL
Reinforcement Learning

RECOMMENDER

Autoencoder

PROBABILISTIC

MCMC

DINO

FastPitch

EfficientDet

Cluster-GCN

Neural Image Fields

PackedBERT

SWIN

RoBERTa
Deberta

BART
T5

Hubert

LXMERT

GNN

AI FOR SIMULATION

DeeMPD

DeepDriveMD

CosmoFlow

ABC Covid-19

ET0

CLIP

VAE

MULTIMODAL

21

GRAPHCORE
21

GENERAL
BENCHMARKS

PERFORMANCE RESULTS
MLPERF & BENCHMARKS

https://www.graphcore.ai/performance-results

We publish our MLPerf & benchmark performance on multiple
models, platforms, & frameworks
Ø Published performance results with config/parameters
Ø Allows customers to do their own analysis/comparison

GRAPHCORE

2.1x

7.4x

22.4x

5.1x

18.0x

2.1x

7.8x

18.1x

0x

5x

10x

15x

20x

25x

DGX
A100

Bow
Pod16

Bow
Pod64

Bow
Pod256

DGX
A100

Bow
Pod16

Bow
Pod64

Bow
Pod256

DGX
A100

Bow
Pod16

Bow
Pod64

Bow
Pod256

ResNet50
Training

EfficientNet-B4
Training

BERT-L Ph1
Training

Sp
ee

du
p

vs
 D

G
X

 A
10

0
 (i

te
m

s/
se

c)
BOW POD ADVANTAGE

SPEED-UP OVER DGX-A100 ACROSS RANGE OF MODELS | SCALING TO LARGER POD SYSTEMS

Bow Pod Platforms | SDK2.6 | ResNet-50 v1.5 Training Throughput TensorFlow | G16-EfficientNet-B4 TTT Tensorflow | BERT Large Ph1 Pre-Training (SL128) PopART Packed
DGX A100 (A100-SXM4-80GB) | TensorFlow | Mixed Precision | https://developer.nvidia.com/deep-learning-performance-training-inference

53x

https://developer.nvidia.com/deep-learning-performance-training-inference

24

GRAPHCORE

0x

5x

10x

Bow
Pod16 DGX A100

Bow
Pod64

Bow
Pod128

Bow
Pod256

8x
DGX A100

Intel
HLS-Gaudi2

Re
sN

et
Pe

rf
or

m
an

ce
 v

s
D

G
X

 A
10

0
 s

er
ve

r

Increasing System $ Price
Pricing

not published

1x

DGX A100
Server

8x DGX A100
Server

MLPerf v2.0 Training Results | MLPerf ID: 2.0-2047, 2.0-2050, 2.0-2052, 2.0-2054, 2.0-2090, 2.0-2094, 2.0-2073
The MLPerf name and logo are trademarks. See www.mlperf.org for more information,

MLPERF RESNET: BOW POD PERFORMANCE
BOW POD256 DELIVERS SIGNIFICANTLY BETTER PERFORMANCE THAN 8X DGX A100

http://www.mlperf.org/

25

GRAPHCORE

TRAINING BENCHMARKS

BERT-Large Phase 1 Pre-Training Throughput (SL128)
Bow Pod16 | Bow Pod64 | Bow Pod256 | PopART with Packing | SDK 2.6 | https://www.graphcore.ai/performance-results

DGX A100 320GB (A100-SXM4-40GB) | Mixed Precision | published BERT results
DGX A100 TensorFlow - https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_tensorflow/performance

2,871
6,105

22,532

49,052

0

10,000

20 ,0 00

30,000

40,000

50,000

Th
ro

ug
hp

ut
 (s

eq
ue

nc
es

/s
ec

)

BERT-Large Pre-Training (SL128) Throughput

Bow Pod16DGX A100 Bow Pod64 Bow Pod256

2.1X THROUGHPUT, 2.8X PERF/$

MPNN-GIN Graph Isomorphism Network Training | mol-hiv dataset (host-generated) | TensorFlow 2
41K graphs, 25.5 nodes per graph, 9-dimensional input node features | 1.7M model parameters

Bow-2000 | FP 16.16 | SDK 2.6 | https://www.graphcore.ai/performance-results | 1x A100 (A100-SXM4-40GB)
| FP16 | Measured results

75,182

469,710

0

50,000

100,000

150,00 0

20 0,000

250,00 0

300,000

350 ,0 00

400,000

450 ,0 00

500,000

Th
ro

ug
hp

ut
 (i

te
m

s/
se

c)

MPNN-GIN Training Throughput

A100 GPU Bow-2000

6.2x

>6X THROUGHPUT

0 20 40 60 80
Time To Train (hours)

DGX A100

Bow Pod16

Bow Pod64

Bow Pod256

5X FASTER TO TRAIN

5X SHORTER TTT, ~10X PERF/$

EfficienNet-B4 Time-To-Train

EfficientNet-B4 Training Time To Train Performance
Bow Pod Platforms | SDK2.6 Results | G16-EfficientNet-B4 Training

DGX A100 (A100-SXM4-80GB) | TensorFlow | Mixed Precision |
https://developer.nvidia.com/deep-learning-performance-training-inference

0x

2x

4x

6x

8x

10x

PPI arXiv Reddit Products ogbn-mag

Sp
ee

d
u

p
 v

s
A

10
0

 G
P

U

Cluster-Graph Convolutional Networks Training | Multiple Datasets | TensorFlow 2 | FP16
Bow-2000 | SDK 2.6 | https://www.graphcore.ai/performance-results | (A100-SXM4-40GB) measured results |

Throughput values are measured using the best combination of data structure and matmul implementation for
each device and each dataset

1x

Bow-2000
A100 GPU

Dataset =>

Cluster-GCN Training
UP TO 9X THROUGHPUT

GRAPHCORE BOW POD16

$149,995 MSRP
NVIDIA DGX-A100 640GB SERVER

$299,000 MSRP

https://www.graphcore.ai/performance-results
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_tensorflow/performance
https://www.graphcore.ai/performance-results
https://developer.nvidia.com/deep-learning-performance-training-inference
https://www.graphcore.ai/performance-results

26

GRAPHCORE

INFERENCE BENCHMARKS

Markov Chain Monte Carlo – Probabilistic model with TensorFlow Probability, representative of workload used by Carmot Capital
Neural network with 3 fully-connected layers (num units in 1st layer=40, #dimensions in training set =22, #leapfrog steps=1000

Results multiplied by number of calcs in sliding window=200
1x Bow-2000 using TensorFlow | FP 32.32 | SDK 2.6 | 1600 samples | https://www.graphcore.ai/performance-results

1x A100 (A100-SXM4-40GB) | FP 32.32 | 1600 samples

0 10 20 30 40 50 60

Time To Result (hours)

Bow-2000

A100

MCMC Alpha Estimation
>20X SPEEDUP

ResNet-50 v1.5 Inference | Highest throughput comparison
1x Bow-M2000 | FP 16.16 | SDK2.6 | Synthetic Data (host-generated) | https://www.graphcore.ai/performance-results

1x A100 (A100-SXM4-80GB) results using TensorRT 8.0 | INT8 | Synthetic Data (host-generated)
1x A100 (A100-SXM4-40GB) results using TensorFlow | Mixed Precision + XLA | Synthetic Data (host-generated)

Results published by NVIDIA | A100 TensorRT: (https://developer.nvidia.com/deep-learning-performance-training-inference) on 22 Mar 2022
A100 TensorFlow: https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/ConvNets/resnet50v1.5#inference-

performance-nvidia-dgx-a100-1x-a100-40gb

3,941

31,042

64,628

0 10,000 20 ,0 00 30,000 40,000 50,000 60,000 70,00 0

Throughput (images/sec)

Bow-2000

TensorRT
INT8

A100

A100

TensorFlow
Mixed Precision + XLA

PyTorch
FP16

ResNet50 Inference
3.8X THROUGHPUT ON TF2/FP16

YOLO v4 Inference| Highest throughput comparison | Image Size 896
1x Bow-2000 | FP 16.16 | SDK 2.6 | PyTorch | Synthetic Data (host-generated) | https://www.graphcore.ai/performance-results,

1x A100 (A100-SXM4-40GB) results using PyTorch | FP16 | Synthetic Data(host-generated)

122

903

0 20 0 400 600 800 1,0 00

Throughput (images/sec)

Bow-2000

PyTorch
FP16A100

PyTorch
FP16

YOLO V4 Inference
>7X THROUGHPUT

Unet (medical) Inference| Highest throughput comparison | 572x572x1
1x Bow-M2000 | FP 16.16 | SDK 2.6 | Synthetic Data (host-generated) | https://www.graphcore.ai/performance-results,

1x A100 (A100-SXM4-80GB) results using TensorFlow2 | FP16 | Synthetic Data (host-generated)

463

1,833

0 500 1,0 00 1,500 2,00 0

Throughput (images/sec)

Bow-2000

TensorFlow 2
FP16A100

TensorFlow 2
FP168

UNET (Medical) Inference
3.8X THROUGHPUT

https://www.graphcore.ai/performance-results
https://www.graphcore.ai/performance-results
https://developer.nvidia.com/deep-learning-performance-training-inference
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/ConvNets/resnet50v1.5
https://www.graphcore.ai/performance-results
https://www.graphcore.ai/performance-results

GRAPHCORE 27

CUSTOMER
CASE STUDIES

HIGH ENERGY PHYSICS –
PARTICLE DETECTOR

Model: CookieNetAE is a deep neural network designed to estimates the energy-angle dependent
probability density function of electrons’ energy.

Dataset: The training dataset 900,000 pairs of 128x128 images, a grainy input image and a smooth
target image. The inference dataset consisted of 50,000 unique 128x128 images.

Task: Inference - Fast de-noising of detector images. Training – Quick “at-detector” re-training of model.

Goals:
• Improve inference throughput at detector
• Compress time-to-train

Results:
• Inference – 7.7x throughput vs GPU
• Training – 2.4x TTT improvement vs GPU

Machine Learning via direct attached accelerator for streaming data processing at high shot
rate x-ray free electron lasers paper in review with Frontiers in Physics

0
20
40
60
80

100
120
140
160

Tra in InfTh
ro

ug
hp

ut
 [1

00
0/

se
c]

CookieNetAE Training & Inference

MK2 IPU A100 GPU

https://github.com/AISDC/CookieNetAE
https://www.frontiersin.org/journals/physics

GNN: CUSTOMER SUCCESS

Using dynamic graph ML model, TGN, on IPU
to achieve 10x faster time to result. Many
real-world graphs are dynamic and evolve

over time, including social networks, financial
transactions, and recommender systems. In
many cases, it is the dynamic behaviour of

such systems that conveys important insights.

10x FASTER FOR TGN GRAPH ML MODEL

Michael Bronstein
Head of Graph ML Research

@Twitter, DeepMind Professor of AI,
University of Oxford

0 10 20 30 40 50

BS10

BS10

BS200

BS200

Time to epoch (s)

Lower is better

Bow IPU

A100 GPU

Bow IPU

A100 GPU
BS10

BS200

IPU Advantage for Dynamic Temporal Graph Networks

36X FASTER FOR SCHNET GRAPH ML MODEL
(8 IPU VS 4 GPU)

US Department of Energy National Lab,
PNNL, training SchNet Graph Neural
Network1 with a 500k water clusters

dataset2 to predict the potential
energy per cluster & seeing 36x faster

time to result with IPU

IPU Advantage for molecular dynamics SchNet GNN

3600

98

0 2000 4000

4x
V100

2x
IPU-M2000

Time to train (minutes)

Lower is better

4x
V100

2x
IPU-M2000

(8 tot IPU)

GNN: CUSTOMER SUCCESS

2 Jenna A. Bilbrey, Joseph P. Heindel, Malachi Schram, Pradipta Bandyopadhyay, Sotiris S. Xantheas, and Sutanay Choudhury. "A look
inside the black box: Using graph-theoretical descriptors to interpret a Continuous-Filter Convolutional Neural Network (CF-CNN)
trained on the global and local minimum energy structures of neutral water clusters" J. Chem. Phys. 153, 024302 (2020).

1 JK. T. Schütt1, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. "SchNet – A
deep learning architecture for molecules and materials" J. Chem. Phys. 148, 241722 (2018).

1.32x
1.36x 1.39x 1.36x 1.35x 1.32x 1.35x 1.33x

1.29x

1.38x 1.38x 1.38x 1.38x 1.38x 1.39x 1.37x 1.39x 1.39x 1.38x

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

1.4x

Res
Net5

0…

Res
Net5

0…

Effic
ien

tN
et-

B4…

Effic
ien

tN
et-

B4…

Res
NeX

t-1
01

…

Res
NeX

t-1
01

…
ViT…

YOLO
 V

4…

Effic
ien

tD
et-

D3…

Mini
 D

ALL
-E

…

Gra
ph

Sag
e…

BER
T-L…

BER
T-L…

BER
T-B

…

BER
T-B

…

GPT2
-L

…

GPT2
-M

…

Con
for

mer-
L…

Fa
stS

pe
ec

h2
…

BOW REAL WORLD PERFORMANCE GAINS
BOW POD VS IPU-POD CLASSIC: UP TO 40% IMPROVEMENT

Bow Pod64 vs IPU-POD64 | G16-EfficientNet-B4 Training/TensorFlow/ | Vision Transfomer (ViT) Training/PyTorch | GPT2-Large Training/PyTorch | Conformer SpeechToText Automatic Speech Recognition/PyTorch |
Bow Pod16 vs IPU-POD16 | ResNet-50 v1.5 Training/TensorFlow | ResNeXt-101 Training/ TensorFlow | Mini DALL-E Training/PyTorch | GraphSage Training/TensorFlow2 | BERT-Large Ph1 Pre-Training (SL128)/PopART | BERT-Base Ph1 Pre-Training (SL128)/PopART | GPT2-Medium Training/PyTorch | FastSpeech2 Training/TensorFlow2

Bow-2000 vs IPU-M2000 | ResNet50 v1.5 Inference/PyTorch | EfficientNet-B4 Inference/PyTorch| ResNeXt-101 Inference/TensorFlow | | YOLOv4 Inference/PyTorch | EfficientDet-D3 Inference/TF2 with Keras | BERT-Large Inference (SL128)/PopART | BERT-Base Inference (SL128)/PopART
Comparing Preliminary Results (Pre-SDK2.5)

IPU-POD
CLASSIC

Image Classification NLPGNN SpeechObj Det Text =>
Image

SHARE:

SUBSCRIBE

Mar 09, 2022 \ AI, HPC

AI FOR SIMULATION: HOW
GRAPHCORE IS HELPING
TRANSFORM TRADITIONAL
HPC

Written By:

Alex Titterton

F or many years High Performance Computing (HPC) techniques have been used to solve the world’s
most complex scientific problems across a wide range of applications, from modelling Higgs boson

decay at the Large Hadron Collider to using Monte-Carlo simulation to predicting whether the weather
will improve.

However, due to the immense complexity of the calculations involved in many of these applications,
researchers are often waiting a long time for simulation results to arrive. Speeding up these workflows by
simply running the same programs on more powerful hardware can be very expensive, with a large cost
often giving only a modest improvement in performance.

Clearly, a new approach is required to efficiently speed up these workloads, and many researchers are
turning to surrogate machine learning models.

A surrogate model is a machine learning model intended to imitate part of a traditional HPC workflow,
providing results in an accelerated time frame. Shown in Figure 1, this scheme is intended to replace the
computationally intensive bottlenecks with machine learning-driven techniques, without needing to port
the entire end-to-end workflow.

Figure 1: High-level schema for HPC speed-up with AI

For example, given a physical system, whose behaviour is to be simulated, a surrogate model can be used
to approximate the results achieved by more computationally expensive Monte-Carlo simulation
techniques, in a small fraction of the time. An AI-based solver can be used to give approximate solutions
to sets of differential equations more quickly than can be obtained using numerical methods.

In cases where the data generated using traditional HPC methods is highly accurate, and the goal is to
attain similar results more quickly, the machine learning models can be trained directly on simulated data.
In many cases, machine learning-based approaches can even outperform traditional HPC emulation
techniques in terms of accuracy, giving researchers the best of both worlds: more accurate results in a
shorter time.

Graphcore’s Bow Pod systems, powered by the Intelligence Processing Unit (IPU), have been designed
from the ground up to accelerate machine learning workloads, with plug-and-play connectivity for
efficient datacentre scalability. Furthermore, Bow Pod's disaggregated architecture means the CPUs
reside separately from the IPUs, meaning the CPU:IPU ratio can be varied depending on the workload
requirements.

This flexible CPU:IPU ratio contributes to make the Bow Pods the ideal platform for accelerating HPC
workloads using AI surrogate models; allowing researchers to accelerate the machine learning-based
aspects of their workloads without hindering parts which may rely on more traditional CPU-workload HPC
techniques.

In the next sections, we will explore a variety of applications that use AI to speed up parts of their HPC
workload. All examples, unless otherwise stated, were run on second generation Graphcore IPU systems,
prior to the launch of IPU Bow and the current Bow Pod range.

ECMWF: Accelerating Weather Forecasting Applications with AI

In a recent paper by M. Chantry et al, the European Centre for Medium-range Weather Forecasting
(ECMWF) explored the use of deep learning models to emulate the effects of gravity wave drag in
numerical weather forecasting. As part of this work, a range of deep learning models were designed to
emulate the results of more traditional non-ML-based parametrisation schemes.

Chantry et al focused specifically on parameterising the effects of Non-Orographic Gravity Wave Drag
(NOGWD), which is a zonal acceleration caused by the breaking of upward-propagating gravity waves,
typically leading to turbulence and dissipation within the atmosphere. These types of gravity waves occur
on widely varying scales, meaning that current forecast resolutions can resolve some but not all gravity
waves. The effects of NOGWD on weather systems can occur over seasonal timescales, making effective
parameterisation of this scheme important for medium to long-range weather forecasting.

Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) models were found to be more
accurate for medium-range weather forecasting compared with the parametrisation schemes they were
designed to emulate. However, training these models on a CPU gave no real speedup compared with
traditional parametrisation methods, motivating the use of dedicated AI hardware.

Engineers at ATOS provided Graphcore with implementations of the MLP and CNN models in TensorFlow
2. These were ported to the IPU, requiring just a handful of code changes to train efficiently and
successfully. Without any changes to the model definition or its hyperparameters, a single IPU processor
was able to train this MLP model 5x faster than an A100 GPU and some 50x faster than either the MLP
model or the traditional parametrisation scheme performed on a CPU. More information can be found in
our weather forecasting blog post.

RAISE: U-Net-inspired CNN for Turbulent Combustion Modelling

Deep learning approaches are being applied more and more within the field of Computational Fluid
Dynamics (CFD). In many cases, problems are characterised by physical models defined by deterministic
equations, meaning a data-driven approach can at best lead to approximate solutions. These problems
can, however, often be broken down into sub-problems, each of which relies on a simpler set of
assumptions rather than complex, well-defined equations. Data-driven machine learning approaches can
be trained on data generated using more costly numerical simulations, and be used to provide an
accurate model of the underlying system.

One such approach is the use of deep learning models in estimating the Sub-Grid Scale (SGS)
contribution to flame surface density estimation in combustion modelling. In Large-Eddy Simulation (LES)
a cut-off scale is defined such that reactions taking place on a smaller scale than is directly resolved are
grouped into an estimated SGS contribution term, resulting in a trade-off between simulation accuracy
and computational complexity.

Since the reliability of the LES model depends on accurate modelling of the SGS contribution but
lowering the cut-off threshold would incur a large computational cost, the ability to model the SGS
contribution, quickly and accurately, in flame surface density estimation would be highly valuable.

The European Center of Excellence in Exascale Computing "Research on AI- and Simulation-Based
Engineering at Exascale" (CoE RAISE) investigated the use of a U-Net-inspired model for estimating the
SGS contribution to the reaction rate for pre-mixed turbulent flames.

The model takes as input a 16 x 16 x 16 crop of a larger 64 x 32 x 32 3D volume representing the progress
variable cc, defined for a temperature TT as:

for each point, where the subscripts bb and uu refer to the temperatures of burnt and unburnt gases,
respectively. The model output tensor approximates the flame surface density ∑ at each spatial point.
Once trained, this model was found to outperform classical algebraic models to accurately estimate ∑.

Engineers at ATOS kindly provided Graphcore with an implementation of this U-Net inspired model, and
with just a few code changes the model was ported to train on a single IPU processor. Furthermore, the
model was found to train in around 20 minutes on a V100, and in around 5 minutes using a single IPU. In
both cases the models converged in around 150 epochs, with the model trained on the IPU converging to
a lower MSE loss.

University of Bristol: GANs for Simulating Jet Production at the Large

Hadron Collider

Similarly to CFD modelling, efficient generation of simulated data in High-Energy Particle Physics (HEP)
requires overcoming significant technical difficulties. One such challenge is accurate and fast simulation
of particle “jets” in proton-proton collisions.

In a high-energy proton-proton collision, many subatomic particles are produced. According to the laws
of Quantum Chromodynamics (QCD), certain types of produced particles such as quarks cannot exist
freely and so hadronise, producing and bonding with other particles, resulting in narrow cone-shaped
“jets”. The energies and momenta of these jets can then be measured in particle detectors to study the
properties of the original quarks.

The simulation of jet production at the Large Hadron Collider (LHC) at CERN represents a large technical
hurdle, due to the need to accurately simulate enormous amounts of particle collisions. To overcome this
challenge, researchers have begun investigating the use of Generative Adversarial Networks (GANs) to
generate realistic simulated data more quickly than can be achieved using traditional Monte-Carlo
methods.

Typically, a GAN consists of two networks, a generator and a discriminator. The generator turns random
noise into a data sample, and the discriminator attempts to distinguish between real and generated data
samples, with each network being trained based on the outputs of the other. GANs have long been able to
generate photo-realistic images and are being used increasingly in particle physics applications, both for
generating simulated collision data and to accurately model the physical characteristics of a particle
detector.

Researchers at the University of Bristol, working on the LHCb experiment at the LHC, compared GAN
training and inference performance on Graphcore IPUs and existing GPU-based solutions. In this case a
CNN-based DiJetGAN model was trained to simulate the production of particle jets at the LHC.

It was found that a single GC2 (1 generation) IPU processor was able to deliver a performance gain of up
to 5.4x over a P100 GPU, consuming only half the power. With the latest, flexible Bow Pod architecture
allowing for efficient training of large numbers of such models, the possibilities for accelerating
simulation workflows in HEP on the IPU are enormous.

In addition to the DiJetGAN model, the University of Bristol team implemented a recurrent neural network
(RNN) for particle identification as well as a Kalman Filter algorithm on the IPU. More details can be found
in their original paper, as well as in our blog.

AI for Quantum Chemistry, Drug Discovery and Protein Folding

These and other deep learning experiments in HEP have demonstrated the potential for AI to accurately
model quantum interactions on a subatomic scale, but what about on an atomic or even molecular scale?
Graphcore engineers have been working with researchers around the world looking to use AI to
revolutionise fields such as quantum chemistry and simulating biological macromolecules.

DeePMD-Kit: Molecular dynamics simulation

We have seen how deep learning has the potential to revolutionise many aspects of simulation and
modelling in sub-atomic physics, but there is also huge demand for fast and accurate simulation of
microscopic objects on an atomic and molecular scale.

Molecular dynamics simulation is the simulation of movement in molecular and atomic systems, and
typically involves calculating the energies of atoms in a molecule, the forces acting upon each atom, or
both. Naturally, such computation quickly becomes extremely complex as the number of atoms
considered increases.

Whilst the physical laws governing chemistry and a large portion of quantum physics are well-established,
the respective equations are often too complicated to be solved exactly. Approximate numerical
simulations often take a large amount of time, and so new approaches are required to accelerate these
simulation tasks. Most recently, machine learning-based approaches have seen wider use in the
development of tools for simulating complex atomic systems.

DP Technology, a leading Chinese organisation in molecular dynamics simulation for drug discovery,
recently announced IPU support for their award-winning simulation platform DeePMD-Kit. This work,
enabling more accurate simulation of molecular dynamics, orders of magnitude faster than with
traditional numerical approaches, opens new possibilities in this field, which is currently undergoing an
AI-driven transformation.

More information on this project can be found in our technical deep dive blog, as well as the DeePMD-Kit
open source repository.

SchNet: Simulating Atoms in Water Molecules

Several deep neural network-based approaches have recently been developed for molecular dynamics
simulation in quantum chemistry.

SchNet is a CNN-based model developed for modelling quantum interactions between atoms in a
molecule. Unlike pixels in images, the atoms in a molecule are not confined to a regular grid-like
structure. Furthermore, their precise location forms crucial information necessary for calculating inter-
molecular energies and forces. This model therefore makes use of continuous-filter convolutional layers
so as not to require atoms’ locations to be discretised.

Using continuous-filter convolutions allows for the model to consider an arbitrary number of
neighbouring atoms at arbitrary positions. The model consists of an embedding layer followed by three
interaction blocks containing these continuous-filter convolutional layers, with interactions between
atoms being computed by atom-wise dense layers, as shown in the image below.

Figure 2: SchNet architecture, taken from ArXiv:1706.08566

Graphcore engineers successfully trained the SchNet model on IPUs on the QM9 molecules dataset, a
dataset widely used to benchmark a model’s ability to predict various properties of atoms in equilibrium.

DeepDriveMD: Accelerating Protein Folding using AI

In addition to applications in quantum chemistry, deep learning has shown huge potential when it comes
to protein-folding; the procedure by which a protein’s amino acid sequence is “folded” into its 3D atomic
structure. Gaining better understanding of how a protein folds into its native 3D structure has been of
much interest in computational biology for many decades, and the ability to accurately and efficiently
model this behaviour would enable faster and more advanced medical drug discovery.

DeepDriveMD is a deep learning-driven molecular dynamics workflow for protein folding which combines
machine learning techniques with atomistic molecular dynamics simulations. This hybrid HPC/AI
approach consists of HPC-based numerical simulation and an AI surrogate model, presented in Figure 3.

Figure 3: Computational motif detailing the 4 key steps of the DeepDriveMD toolchain, taken from
ArXiv:1909.07817.

First, an initial pool of data is generated from a large number of MD simulations (1). Next, this data is fed as
input into a machine learning model (2), followed by running inference on the model to identify new
starting points for MD simulation (3). Finally, in (4) new MD simulations are generated. These can either
simply be added to the pool of simulation data, or they can replace existing simulations; for example,
simulations which have become stuck at some metastable state.

The machine learning model originally implemented as part of DeepDriveMD is a Convolutional
Variational Autoencoder (CVAE), noting that the motif above is not restricted to a specific deep learning
architecture. With this model trained, the authors were able to fold Fs-peptide folded states in 6µs
compared to around 14µs without using an ML-driven approach, resulting in more than 2x speedup.

Cray Labs’ CVAE implementation of DeepDriveMD, part of Cray’s SmartSim repository, was trained on IPU-
M2000 and throughput was around 3x faster than on an A100 GPU. Combined with the speedup achieved
by using DeepDriveMD over a non-ML-based implementation, the combination of this hybrid AI/HPC
approach and Graphcore IPU-PODs offers huge potential in accelerating protein folding workloads.

Viscous Burgers Equation: Physics-Informed Neural Networks for solving PDEs

As we have seen with the recent use of neural networks in Computational Fluid Dynamics, AI-based
solvers are becoming increasingly popular for computing good approximations to complex equations in
an accelerated time frame. Another recent machine learning focus, which has been gaining popularity
more recently, is Physics-Informed Neural Networks (PINNs).

In a typical supervised learning scenario, a neural network contains a loss function, which represents
some measurement of how far away the network’s predictions are from the ground truth. Simple loss
functions such as Root-Mean-Square Error (RMSE) simply use the difference between the predicted
values and ground truth, without taking into account any prior knowledge of the physical system. In cases
such as image classification such knowledge may not exist for arbitrary images, however in many areas of
scientific research the underlying physics is often well-defined, for example by a set of differential
equations. PINNs include these known equations as part of the loss function, making them better able to
learn the behaviour of a particular system.

Researchers at Texas A&M University High Performance Research Computing (HPRC) have been
investigating the use of PINNs to solve the infamous viscous Burgers’ Partial Differential Equation (PDE).
This PDE occurs in various mathematical fields such as fluid mechanics and traffic flow and can be used
to model wave evolution in incompressible fluids. The Burgers’ PDE has been studied by many
researchers for over a century and is often used to test the accuracy of numerical PDE-solving programs.

An accurate, numerical approximation was used as a reference against which the PINN solution was
measured. The PDE was constructed with sinusoidal initial condition and homogeneous Dirichlet
boundary conditions as follows:

In the case where the fluid’s viscosity, vv, is smaller than ~0.1~0.1π a discontinuous shock-wave forms at x=0x=0.

The PINN solution of the viscous Burgers’ PDE was calculated using TensorDiffEq, an open-source
TensorFlow 2.X-based package developed by researchers at Texas A&M University. This solution was
found to be in excellent agreement with classic numerical solutions, with both solutions becoming
unstable for very low viscosity, whilst taking less time to complete.

The viscous Burgers’ PDE implementation and the TensorDiffEq framework was run on IPUs, allowing for
efficient acceleration of a multitude of PINNs.

Agilor: Using AI for Accurate Climate Modelling

We have seen several use cases where AI models are accelerating HPC workflows. And while the IPU has
been designed to accelerate machine intelligence workloads, many aspects of the IPU architecture make
it highly capable of performing very well for classical HPC workloads.

We have already seen the excellent results achieved by researchers at ECMWF using MLP and CNN
models for weather forecasting applications, but there are also opportunities for the IPU to accelerate
more traditional algorithmic approaches when it comes to climate modelling.

Graphcore engineers have been working with Chinese digital transformation specialists Agilor, modelling
evapotranspiration; the rate at which water moves from surfaces such as plants and soil into the
atmosphere. The aim in this case was not to run the entire end-to-end toolchain on the IPU, but to identify
key elements which could be efficiently accelerated.

Measuring evapotranspiration can be incredibly useful for enabling precise irrigation in agriculture and is
also being actively investigated for use in forest fire prevention and natural disaster management. There
is, however, a limit to how spatially fine-grained such measurements can be in the real world, often
resulting in measurements being quite coarse when plotted on a map. In order to give a finer-grained
approximation of a location’s reference evapotranspiration value (ET0), an interpolation technique called
Kriging is used. This method is closely related to regression analysis and is highly computationally
intensive.

As shown in the figure above, the main calculation pipeline including the Kriging algorithm was run on
IPU, keeping the data pre-processing and post-interpolation application steps on the CPU.

PyKrige, a Python implementation of the Kriging algorithm, was implemented in TensorFlow in order to
perform the underlying matrix inversion and multiplication on the IPU. This enabled the interpolation of
the entire dataset to be performed in just 21 seconds, compared with 2000 seconds using PyKrige on
CPU.

More information on Agilor’s work on the IPU can be found in our technical blog, and the project source
code can be found in our Portfolio Examples repository.

Accelerating HPC Workloads using AI and Graphcore’s IPU

While we have covered a wide range of exciting applications in the sphere of AI for Simulation, whereby
traditional HPC workloads can be enhanced by AI techniques running on the IPU, this is just the tip of the
iceberg. With large-scale scientific experiments such as CERN’s LHC looking to collect and analyse orders
of magnitude more data in the coming years, the need to accelerate classical processes is greater than
ever.

More and more researchers working in fields such as drug discovery, weather forecasting, climate
modelling and computational fluid dynamics are looking towards ML-based approaches to enhance their
toolchains, both in terms of accuracy and time-to-result. Furthermore, new approaches such as PINNs are
revolutionising how neural networks can learn to emulate physical systems governed by well-defined yet
complex equations.

With the ongoing development of these and other novel AI-based approaches, the need for specialised
hardware capable of accelerating these workloads efficiently is growing. Graphcore’s IPU, designed from
the ground up for machine intelligence, is the ideal platform on which to build, explore and grow the next
generation of machine learning-driven solvers, emulators and simulations.

st

More Posts

Mar 09, 2022 \ AI, HPC

AI FOR SIMULATION: HOW
GRAPHCORE IS HELPING
TRANSFORM
TRADITIONAL HPC

Read Article 

Mar 03, 2022 \ Product, IPU-POD, IPU,…
IPU-Machine

THE WOW FACTOR:
GRAPHCORE SYSTEMS
GET HUGE POWER AND
EFFICIENCY BOOST

Read Article 

Mar 03, 2022 \ Machine Intelligence

GRAPHCORE ANNOUNCES
ROADMAP TO ULTRA
INTELLIGENCE AI
SUPERCOMPUTER

Read Article 

GET THE LATEST GRAPHCORE NEWS
Sign up below to get the latest news and updates:

Email Address

Submit 

Why Graphcore

About

News

Careers

Blog

Contact Us

Products

IPU Products

IPUs In The Cloud

Bow IPU Processors

Poplar® Software

Partners

Developer

Developer

Academic

Performance Results

GitHub

Support

Support Desk

Documentation

Downloads

Stack Overflow

Resources

Partner Login

Legal

Terms of Use

Terms of Sale

Modern Slavery Act

End User Licence
Agreement

Contact Us Privacy Policy Cookie Policy

© Copyright 2022 Graphcore

TwitterFacebookLinkedInYouTubeMediumGitHub
Graphcore

Get Updates

 Choose another language to see content specific to your region: Select: ▾

Graphcore
Home About ▾ Products ▾ Industries ▾ Developer ▾ Blog Careers ▾ Get Started 

“Without any changes to the model definition or its
hyperparameters, a single IPU processor was able to train this MLP
model 5x faster than an A100 GPU and some 50x faster than either
the MLP model or the traditional parametrisation scheme performed
on a CPU.”

“Graphcore’s IPU, designed from the ground up for machine
intelligence, is the ideal platform on which to build, explore and grow
the next generation of machine learning-driven solvers, emulators
and simulations.”

More information can be found in the full technical blog post:
https://www.graphcore.ai/posts/ai-for-simulation-how-graphcore-is-
helping-transform-traditional-hpc

Accelerating HPC with AI using IPU
European Centre for Medium-range Weather Forecasting

Cedric Bourrasset
Head of HPC AI at Atos

“Graphcore plays a central role in Atos’
Think AI solution, helping customers take advantage of
the many benefits that AI is bringing to HPC – whether
that’s delivering faster and more accurate
simulations, improving cost efficiency, or opening up
new areas of research and commercial applications.”

Graphcore IPU trained an ECMWF weather
forecasting model 5x faster than a leading GPU
(and potentially up to 50x faster than CPUs)

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002477

SCIENTIFIC
RESEARCH

https://www.graphcore.ai/posts/ai-for-simulation-how-graphcore-is-helping-transform-traditional-hpc

33

GRAPHCORE
33

ARGONNE
APPLICATIONS

CANDLE UNO

CANcer distributed Learning Environment (CANDLE)

Model: CANDLE Uno for precision medicine related to cancer care

Dataset: dataset with 20 million training samples

Task: train model to predict tumor-drug response

Goals:
• Reduce time-to-train
• Demonstrate efficient scaling

Results: Increased training throughput by
6x @ higher precision

FP32
BS=256

TF32
BS=512

GRAPHCORE

GRAPHCORE 35

BraggNN Model Details

Framework: PyTorch
Input: An 11x11 (single channel) image generated on the fly by cropping a larger detector image
Output: Normalized location of the peak in (y, z) coordinates
Loss: Mean square error between predicted location and target location
GPU Performance Reference: ~800 seconds for 500 epochs with minibatch size: 512

Zhengchun L. et al. “BraggNN: Fast X-ray Bragg Peak Analysis Using Deep Learning”, 2021

Goal: Reduce the time to train to < 2 minutes & show excellent scaling over multiple IPUs

Peak Location with
Sub-Pixel Accuracy

GRAPHCORE

DATAFLOW MODIFICATION FOR FASTER TRAINING

36

IPU

Random
Clipping

Image Normalization

Frame in
Memory

Image

Load Data
on Disk

Initial Port
HOST
DATALOADER

Peak
Location

BraggNN

Image
De-noising

GRAPHCORE

DATAFLOW MODIFICATION FOR FASTER TRAINING

37

Load Data
on Disk

Image
De-noising

Peak
Location

Random
Clipping

Frame in
Memory

Image

BraggNN

IPU

HOST
DATALOADER

Image
Normalization

Stage 1

IPU

Random
Clipping

Image Normalization

Frame in
Memory

Image

Load Data
on Disk

Initial Port
HOST
DATALOADER

Peak
Location

BraggNN

Image
De-noising

Crop Image
Around Peak

GRAPHCORE

DATAFLOW MODIFICATION FOR FASTER TRAINING

38

Load Data
on Disk

Image
De-noising

Peak
Location

Random
Clipping

Frame in
Memory

Image

BraggNN

IPU

HOST
DATALOADER

Image
Normalization

Stage 1 Stage 2

Peak
Location

Random
Clipping

Frame in
Memory

Image

BraggNN

IPU

HOST
DATALOADER

Image
Normalization

IPU

Random
Clipping

Image Normalization

Frame in
Memory

Image

Load Data
on Disk

Initial Port
HOST
DATALOADER

Peak
Location

BraggNN

Image
De-noising

Crop Image
Around Peak

GRAPHCORE

BRAGGNN SUMMARY

39

0

100

200

300

400

500

600

Initial Porting Poptorch Async
Dataloader

On-device
image scaling

On-device
augmentation

Using device
iterations

Tr
ai

ni
ng

 T
im

e
in

 S
ec

on
ds

BraggNN Training Improvements on Graphcore
MK2

Device Compute Host Compute

Target

684

310.5

58.448.94
22.3 13.507

0

100

200

300

400

500

600

700

Nvidia V100 Nvidia A100 Graphcore MK2

D
ev

ic
e

C
om

pu
te

 T
im

e
in

 S
ec

on
ds

GPU vs IPU

Tra ining Validation

• Out of the box, training on MK2 IPU is 3-4x faster than V100

• Flexibility of Graphcore Architecture allowed migration of image scaling and data augmentation to IPU

• Final version of BraggNN is >5x faster on IPU compared to A100 and >11x faster than V100

40

GRAPHCORE
40

“GOOD”
COMPUTER

Over 10 Exa-Flops of AI floating point
compute from 8,192 roadmap IPUs

3D Wafer-on-Wafer logic stack

Up to 4 PB of memory with
bandwidth of over 10 PB/s

Enabling AI models to be developed
with 500 Tn parameters

Fully supported by Poplar® SDK

ANNOUNCING: THE 'GOOD' COMPUTER

THANK YOU

GRAPHCORE
42

Richard Bohl
richardb@graphcore.ai

