Accelerating AI and HPC for science at wafer-scale with Cerebras Systems
Argonne Training Program on Extreme-Scale Computing (ATPESC)

Dr Andy Hock*; Vice President, Product
Cerebras Systems
01 August 2022

* andy@cerebras.net
Introduction
The challenge and opportunity: growth in AI compute

1800x more compute
In just 2 years

Tomorrow, multi-trillion parameter models
Traditional cluster not the optimal path to scale

Time to solution scaling and efficiency falls as cluster size increases:

- Cost of communication grows
- Individual device utilization falls
- Total # epochs to train goes up

Here e.g. we see ~500 chips needed to achieve ~100-160x acceleration.

We need a new compute solution for extreme-scale deep learning

Figure. TPU and GPU performance on MLPerf-Transformer 0.6, from Rogers and Khary (2021). An Academic’s Attempt to Clear the Fog of the Machine Learning Accelerator War, in ACM Sigarch Computer Architecture Today.
Limits of existing scale-out approaches

State-of-the art and emerging workloads need massive memory, massive compute, and massive communication.

On giant clusters of small devices, all three become intertwined, distributed problems.

Need to do inefficient, fine-grained partitioning and coordination of memory, compute, and communication across thousands of devices.
Cerebras Systems

Design, build, and deploy a new class of computer system that delivers orders of magnitude more performance for AI and HPC

Founded in 2016

400+ engineers across HW, SW, ML

Offices
Silicon Valley | San Diego | Toronto | Bangalore

Customers
North America | Asia | Europe
Our solution
Cerebras Wafer-Scale Engine (WSE-2)

The Largest Chip in the World

850,000 cores optimized for sparse linear algebra
46,225 mm² silicon
2.6 trillion transistors
40 Gigabytes of on-chip memory
20 PByte/s memory bandwidth
220 Pbit/s fabric bandwidth
7nm process technology

Cluster-scale acceleration on a single chip
Cerebras WSE-2 7nm
2.6 Trillion Transistors
46,225 mm² Silicon

Largest GPU
54.2 Billion Transistors
826 mm² Silicon
Cerebras CS-2 System

The world’s most powerful AI computer

- Standard rack mount and integration
- Easy install, setup
- Available on-prem or remote / cloud
Program a cluster-scale resource with the ease of a single node
Easy to program with TensorFlow and PyTorch (TF example)

```python
from cerebras.tf.cs_estimator import CerebrasEstimator
from cerebras.tf.run_config import CSRunConfig

def model_fn(features, labels, mode, params):
    ...
    return spec

def input_fn(params):
    ...
    return dataset

est = Estimator(
    model_fn,
    config=CSRunConfig(cs_ip, params)
    params=params,
    model_dir='./out',
)
est.train(input_fn, steps=100000)
```

- Import `CerebrasEstimator`
- Import `CSRunConfig`
- Define `model_fn` and `input_fn` as usual
- Instantiate `Estimator`
- Call `estimator.train()` instead of `model.fit()`
- Launch run with orchestrator (like Slurm)

$ cs_run python run.py --mode train --cs_ip $CS_IP
Value and use cases
What our customers are saying

“We have a cancer-drug response prediction model that’s running many hundreds of times faster on that chip (Cerebras) than it runs on a conventional GPU”

Rick Stevens
Associate Director

“We training which historically took over 2 weeks to run on a large cluster of GPUs was accomplished in just over 2 days”

Nick Brown
Head of AI

“On a Cerebras CS-1 system we pre-trained our EBERT model...in ~2.5 days...which we estimate would have taken ~24 days of training on a GPU cluster with 16 nodes.”

Kim Branson
Senior VP AI

“We count on the CS-2 system to boost our multi-energy research and give our research ‘athletes’ that extra competitive advantage.”

Vincent Saubestre,
CEO and President,
TotalEnergies, USA
Large language models for science

Objective: Accelerate genetic validation of drug targets using novel technique that includes epigenomic data in NLP models, rather than genome-only models.

Challenge: Training this complex model with massive datasets would take several weeks on a 16-GPU cluster, making rapid experimentation impractical.

Outcome: ~10X training speedup over 16 GPUs empowered researchers to experiment with epigenomic data and demonstrate superior results to DNA-only datasets.

“"The training speedup afforded by the Cerebras system enabled us to explore architecture variations in a way that would have been prohibitively time and resource intensive on a typical GPU cluster.”

Large-scale HPC, AI-powered modeling & simulation

Objective: Enable order-of-magnitude speedups on a wide range of simulations: batteries, biofuels, wind flows, drillings, and CO2 storage

Challenge: Participate in Total study to evaluate hardware architectures, using finite difference seismic modelling code as a benchmark

Outcome: Cerebras CS-2 system outperformed a A100 AI GPU by >200X using code written in the Cerebras Software Language (CSL). System now installed and running at customer facility in Houston, TX

“We count on the CS-2 system to boost our multi-energy research and give our research ‘athletes’ that extra competitive advantage.”

Dr. Vincent Saubestre, CEO and President, TotalEnergies Research & Technology USA

Cerebras system solves sparse linear equations 200x faster than Joule 2.0 supercomputer*
Sparse GEMM performance enabled by massive memory bandwidth.

arxiv.org/abs/2010.03660
AI surrogate models accelerating cognitive simulation
AI + HPC for physics at LLNL

Heterogeneous system-level optimization for converged AI + HPC workloads

Lassen

792 CPUs
3,168 GPUs
44 racks

InfiniBand
1.2 Tb/s

Interpolated scalars

CS-1

Autoencoder+ DNN
2 million parameters

18 million samples/s
AI-augmented MD for CoVID-19 research at ANL

Task:
Direct molecular dynamics simulations by learning behavior of previous runs

Challenge:
CVAE is quadratic in time and space complexity and can be prohibitive to train.

Outcome:
Impressive performance out of the box
Throughput comparable with 100 GPUs

"Out of the box, we get about 100× improvement on the Wafer-Scale Engine over a single V100 GPU"

Venkatram Vishwanath—data science team lead at Argonne Leadership Computing Facility, ANL
Wrapping up
Conclusions / wrapping up

• Cerebras. First wafer-scale systems for AI + HPC.
• Orders of magnitude more performance, simple single-node programming.
• Recent work training 1-20B parameter models single systems and clusters. Going bigger.
Conclusions / wrapping up

• Cerebras. First wafer-scale systems for AI + HPC.
• Orders of magnitude more performance, simple single-node programming.
• Recent work training 1-20B parameter models single systems and clusters. Going bigger.

• Thank you. Extreme-scale computing is foundational for iterative science at scale.
• Happy to be here with you as part of the ATPESC community – exciting program ahead!
• We encourage you to think big. Come find us, work with us to go even bigger 😊
Conclusions / wrapping up

• Cerebras. First wafer-scale systems for AI + HPC.
• Orders of magnitude more performance, simple single-node programming.
• Recent work training 1-20B parameter models single systems and clusters. Going bigger.

• Thank you. Extreme-scale computing is foundational for iterative science at scale.
• Happy to be here with you as part of the ATPESC community – exciting program ahead!
• We encourage you to think big. Come find us, work with us to go even bigger 😊

• Curious to learn more? www.cerebras.net for specs, docs, code examples.
• Want to get access? Reach out to us or our cloud partner Cirrascale.
• Systems for scientific research ANL, PSC, NCSA, EPCC, LRZ, more.