Accelerating AI and HPC for science at wafer-scale with Cerebras Systems

Argonne Training Program on Extreme-Scale Computing (ATPESC)

Dr Andy Hock*; Vice President, Product Cerebras Systems

01 August 2022

* andy@cerebras.net

Introduction

The challenge and opportunity: growth in AI compute

1800x more compute In just **2 years**

Tomorrow, **multi-trillion** parameter models

Traditional cluster not the optimal path to scale

Time to solution scaling and efficiency falls as cluster size increases:

- Cost of communication grows
- Individual device utilization falls
- Total # epochs to train goes up

Here e.g. we see ~500 chips needed to achieve ~100-160x acceleration.

We need a new compute solution for extreme-scale deep learning

Figure. TPU and GPU performance on MLPerf-Transformer 0.6, from Rogers and Khary (2021). An Academic's Attempt to Clear the Fog of the Machine Learning Accelerator War, in *ACM Sigarch Computer Architecture Today.*

Limits of existing scale-out approaches

State-of-the art and emerging workloads need massive **memory**, massive **compute**, and massive **communication**.

On giant clusters of small devices, **all three become intertwined, distributed problems**.

Need to do inefficient, fine-grained partitioning and coordination of memory, compute, and communication across thousands of devices.

Distribution complexity scales dramatically with cluster size

Cerebras Systems

Design, build, and deploy a new class of computer system that delivers orders of magnitude more performance for AI and HPC

Founded in 2016

400+ engineers across HW, SW, ML

Offices Silicon Valley | San Diego | Toronto | Bangalore

Customers North America | Asia | Europe

Our solution

Cerebras Wafer-Scale Engine (WSE-2)

The Largest Chip in the World

850,000 cores optimized for sparse linear algebra
46,225 mm² silicon
2.6 trillion transistors
40 Gigabytes of on-chip memory
20 PByte/s memory bandwidth
220 Pbit/s fabric bandwidth
7nm process technology

Cluster-scale acceleration on a single chip

Cerebras WSE-27nm 2.6 Trillion Transistors 46,225 mm² Silicon

Largest GPU 54.2 Billion Transistors 826 mm² Silicon

Cerebras CS-2 System

The world's most powerful Al computer

- ✓ Standard rack mount and integration
- ✓ Easy install, setup
- ✓ Available on-prem or remote / cloud

The Cerebras Software Platform

Program a cluster-scale resource with the ease of a single node

Easy to program with TensorFlow and PyTorch (TF example)

```
from cerebras.tf.cs_estimator import CerebrasEstimator
from cerebras.tf.run config import CSRunConfig
def model fn(features, labels, mode, params);
 return spec
def input fn(params):
  . . .
 return dataset
est = Estimator(
   model fn,
   config=CSRunConfig(cs_ip, params)
   params=params,
   model dir='./out',
est.train(input fn, steps=100000)
```

Import CerebrasEstimator
Import CSRunConfig

Define model_fn and input_fn as usual

Instantiate Estimator

Call estimator.train() instead of model.fit()

\$ cs_run python run.py --mode train --cs_ip \$CS_IP

Launch run with orchestrator (like Slurm)

Value and use cases

What our customers are saying

"We have a cancer-drug response prediction model that's running many hundreds of times faster on that chip (Cerebras) than it runs on a conventional GPU"

"Training which historically took over 2 weeks to run on a large cluster of GPUs was accomplished in just over 2 days"

"On a Cerebras CS-1 system we pre-trained our EBERT model...in ~2.5 days...which we estimate would have taken ~24 days of training on a GPU cluster with 16 nodes."

"We count on the CS-2 system to boost our multi-energy research and give our research 'athletes' that extra competitive advantage."

Rick Stevens Associate Director

Nick Brown Head of Al

Kim Branson Senior VP AI

Vincent Saubestre, CEO and President. TotalEnergies, USA

Large language models for science

Objective: Accelerate genetic validation of drug targets using novel technique that includes epigenomic data in NLP models, rather than genome-only models

Challenge: Training this complex model with massive datasets would take several weeks on a 16-GPU cluster, making rapid experimentation impractical

Outcome: ~10X training speedup over 16 GPUs empowered researchers to experiment with epigenomic data and demonstrate superior results to DNA-only datasets

"The training speedup afforded by the Cerebras system enabled us to explore architecture variations in a way that would have been prohibitively time and resource intensive on a typical GPU cluster"

"Epigenomic Language Models Powered by Cerebras", Dec 2021. arxiv.org/abs/2112.07571

Large-scale HPC, AI-powered modeling & simulation

Objective: Enable order-of-magnitude speedups on a wide range of simulations: batteries, biofuels, wind flows, drillings, and CO2 storage

Challenge: Participate in Total study to evaluate hardware architectures, using finite difference seismic modelling code as a benchmark

Outcome: Cerebras CS-2 system outperformed a A100 AI GPU by >200X using code written in the Cerebras Software Language (CSL). System now installed and running at customer facility in Houston, TX

"We count on the CS-2 system to boost our multi-energy research and give our research 'athletes' that extra competitive advantage."

Dr. Vincent Saubestre, CEO and President, TotalEnergies Research & Technology USA

See Jaquelin et al 2022. Massively scalable stencil algorithm. https://arxiv.org/pdf/2204.03775.pdf

National Energy Technology Laboratory Towards Real-Time CFD

Cerebras system solves sparse linear equations 200x faster than Joule 2.0 supercomputer*

Sparse GEMM performance enabled by massive memory bandwidth.

* See Rocki et al., "Fast Stencil-Code Computation on a Wafer-Scale Processor" SC20. <u>arxiv.org/abs/2010.03660</u>

Al surrogate models accelerating cognitive simulation Al+ HPC for physics at LLNL

Heterogeneous system-level optimization for converged AI + HPC workloads

Al-augmented MD for CoVID-19 research at ANL

Task:

Direct molecular dynamics simulations by learning behavior of previous runs

Challenge:

CVAE is quadratic in time and space complexity and can be prohibitive to train.

Outcome:

Impressive performance out of the box Throughput comparable with 100 GPUs

Figure taken from original paper

"Out of the box, we get about 100× improvement on the Wafer-Scale Engine over a single V100 GPU"

Venkatram Vishwanath—data science team lead at Argonne Leadership Computing Facility, ANL

Wrapping up

© 2022 Cerebras Systems Inc. All Rights Reserved

Conclusions / wrapping up

- Cerebras. First wafer-scale systems for AI + HPC.
- Orders of magnitude more performance, simple single-node programming.
- Recent work training 1-20B parameter models single systems and clusters. Going bigger.

Conclusions / wrapping up

- Cerebras. First wafer-scale systems for AI + HPC.
- Orders of magnitude more performance, simple single-node programming.
- Recent work training 1-20B parameter models single systems and clusters. Going bigger.
- Thank you. Extreme-scale computing is **foundational for iterative science at scale**.
- Happy to be here with you as part of the **ATPESC community** exciting program ahead!
- We encourage you to think big. Come find us, work with us to go even bigger 🤓

Conclusions / wrapping up

- Cerebras. First wafer-scale systems for AI + HPC.
- Orders of magnitude more performance, simple single-node programming.
- Recent work training 1-20B parameter models single systems and clusters. Going bigger.
- Thank you. Extreme-scale computing is **foundational for iterative science at scale**.
- Happy to be here with you as part of the **ATPESC community** exciting program ahead!
- We encourage you to think big. Come find us, work with us to go even bigger 🤓
- Curious to learn more? www.cerebras.net for specs, docs, code examples.
- Want to get access? Reach out to us or our cloud partner Cirrascale.
- Systems for scientific research ANL, PSC, NCSA, EPCC, LRZ, more.

