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About the Speakers

§ William Gropp: Director, NCSA; Professor, Univ. of Illinois, Urbana-Champaign 

§ Ken Raffenetti: Principal Software Development Specialist, Argonne National 
Laboratory

§ Yanfei Guo: Assistant Computer Scientist, Argonne National Laboratory

§ Rajeev Thakur: Senior Computer Scientist and Deputy Division Director, Argonne 
National Laboratory

§ All of us are deeply involved in MPI standardization (in the MPI Forum) and in MPI 
implementation
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The MPI Part of ATPESC

§ We assume everyone already has some MPI experience

§ We will focus more on understanding MPI concepts than on coding details

§ Emphasis will be on issues affecting scalability and performance

§ There will be code walkthroughs and hands-on exercises
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Outline

§ Morning
– Introduction to MPI and this tutorial

– Avoiding unnecessary synchronization

– Topics in collective communication

– Stencil example and hands-on exercises

– Minimizing data motion using MPI 
derived datatypes

– Begin one-sided communication (or 
remote memory access)

§ Afternoon
– One-sided communication contd.

– Hands-on exercises

– Hybrid programming

– MPI + threads

– MPI + shared-memory

– MPI + GPUs

– What’s new in MPI-4

– Hands-on exercises
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What is MPI?

§ MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the application can and cannot 
expect

– Each system can implement it differently as long as the semantics match

§ MPI is not…
– a language or compiler specification
– a specific implementation or product
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MPI-1

§ MPI-1 supports the classical message-passing programming model: basic point-to-
point communication, collectives, datatypes, etc

§ MPI-1 was defined (1994) by a broadly based group of parallel computer vendors, 
computer scientists, and applications developers.
– 2-year intensive process

§ Implementations appeared quickly and now MPI is taken for granted as vendor-
supported software on any parallel machine.

§ Free, portable implementations exist for clusters and other environments (MPICH, 
Open MPI)
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Following MPI Standards

§ MPI-2 was released in 1997
– Several additional features including MPI + threads, MPI-I/O, remote memory access functionality and 

many others

§ MPI-2.1 (2008) and MPI-2.2 (2009) were released with some corrections to the standard and small 
features

§ MPI-3 (2012) added several new features to MPI

§ MPI-3.1 (2015) introduced minor corrections and features

§ MPI-4 (June 2021) is the latest version of the standard

§ The Standard itself:
– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

§ Other information on Web:
– at http://www.mcs.anl.gov/mpi

– pointers to lots of material including tutorials, a FAQ, other MPI pages
7
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Overview of New Features in MPI-3
§ Major new features

– Nonblocking collectives
– Neighborhood collectives
– Improved one-sided communication interface
– Tools interface
– Fortran 2008 bindings

§ Other new features
– Matching Probe and Recv for thread-safe probe and receive 
– Noncollective communicator creation function
– “const” correct C bindings
– Comm_split_type function
– Nonblocking Comm_dup
– Type_create_hindexed_block function

§ C++ bindings removed
§ Previously deprecated functions removed
§ MPI 3.1 added nonblocking collective I/O functions
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What’s new in MPI-4

§ MPI-4 is official (June 2021)
– https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

§ Major new features and changes
– Persistent Collectives

– Partitioned Communication

– Sessions

– Big Count

– Error Handling Improvement

– Topology Improvement
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Important considerations while using MPI

§ All parallelism is explicit: the programmer is responsible for correctly identifying 
parallelism and implementing parallel algorithms using MPI constructs
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Web Pointers

§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations: 
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

§ Several MPI tutorials can be found on the web
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Tutorial Books on MPI

Basic MPI Advanced MPI, including MPI-3
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Book on Parallel Programming Models
Edited by Pavan Balaji
• MPI: W. Gropp and R. Thakur
• GASNet: P. Hargrove
• OpenSHMEM: J. Kuehn and S. Poole
• UPC: K. Yelick and Y. Zheng
• Global Arrays: S. Krishnamoorthy, J. Daily, A. Vishnu, and B. 

Palmer
• Chapel: B. Chamberlain
• Charm++: L. Kale, N. Jain, and J. Lifflander
• ADLB: E. Lusk, R. Butler, and S. Pieper
• Scioto: J. Dinan
• SWIFT: T. Armstrong, J. M. Wozniak, M. Wilde, and I. Foster
• CnC: K. Knobe, M. Burke, and F. Schlimbach
• OpenMP: B. Chapman, D. Eachempati, and S. Chandrasekaran
• Cilk Plus: A. Robison and C. Leiserson
• Intel TBB: A. Kukanov
• CUDA: W. Hwu and D. Kirk
• OpenCL: T. Mattson

13



Approach in this Tutorial

§ Example driven
– A few running examples used throughout the tutorial

– Other smaller examples used to illustrate specific features
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Costs of Unintended Synchronization
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Unexpected Hot Spots

§ Even simple operations can give surprising performance behavior

§ Examples arise even in common grid exchange patterns

§ Message passing illustrates problems present even in shared memory
– Blocking operations may cause unavoidable stalls
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Mesh Exchange

§ Exchange data on a mesh
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Sample Code

§ Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag, comm, ierr)

Enddo
Do i=1,n_neighbors

Call MPI_Recv(edge(1,i), len, MPI_REAL, nbr(i), tag, comm, status, ierr)
Enddo
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Deadlocks!

§ All of the sends may block, waiting for a matching receive (will for large enough 
messages)

§ The variation of
if (has down nbr) then

Call MPI_Send( … down … )
endif
if (has up nbr) then

Call MPI_Recv( … up … )
endif
…
sequentializes (all except the bottom process blocks)
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Sequentialization

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv
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Fix 1: Use Irecv

§ Do i=1, n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag, &comm, requests(i), ierr)

Enddo
Do i=1, n_neighbors

Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag, &comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

§ Does not perform well in practice.  Why?
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Understanding the Behavior: Timing Model

§ Sends interleave

§ Sends block (data larger than buffering will allow)

§ Sends control timing

§ Receives do not interfere with Sends

§ Exchange can be done in 4 steps (down, right, up, left)
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Mesh Exchange - Step 1

§ Exchange data on a mesh
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Mesh Exchange - Step 2

§ Exchange data on a mesh
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Mesh Exchange - Step 3

§ Exchange data on a mesh
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Mesh Exchange - Step 4

§ Exchange data on a mesh
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Mesh Exchange - Step 5

§ Exchange data on a mesh
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Mesh Exchange - Step 6

§ Exchange data on a mesh
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Timeline

• Note that process 1 finishes last, as predicted
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Distribution of Sends
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Why Six Steps?

§ Ordering of Sends introduces delays when there is contention at the receiver

§ Takes roughly twice as long as it should

§ Bandwidth is being wasted

§ Same thing would happen if using memcpy and shared memory
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Fix 2: Use Isend and Irecv

§ Do i=1, n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag, comm, requests(i), ierr)

Enddo
Do i=1,n_neighbors

Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag, comm, 
requests(n_neighbors+i), ierr)

Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)
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Mesh Exchange - Steps 1-4

§ Four interleaved steps
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Timeline with Isend-Irecv

Note processes 5 and 6 are the only interior processes; these 
perform more communication than the other processes
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Lesson: Defer Synchronization

§ Send-receive accomplishes two things:
– Data transfer

– Synchronization

§ In many cases, there is more synchronization than required

§ Consider the use of nonblocking operations and MPI_Waitall to defer 
synchronization
– Effectiveness depends on how data is moved by the MPI implementation

– E.g., If large messages are moved by blocking RMA operations “under the covers,” the 
implementation can’t adapt to contention at the target processes, and you may see no 
benefit.

– This is more likely with larger messages 
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Collectives: Blocking and Nonblocking



Introduction to Collective Operations in MPI

§ Collective operations are called by all processes in a communicator.

§ MPI_BCAST distributes data from one process (the root) to all others in a 
communicator.

§ MPI_REDUCE combines data from all processes in the communicator and returns it 
to one process.

§ In many numerical algorithms, SEND/RECV can be replaced by BCAST/REDUCE, 
improving both simplicity and efficiency.
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MPI Collective Communication

§ Communication and computation is coordinated among a group of processes in a 
communicator

§ Tags are not used; different communicators deliver similar functionality

§ Nonblocking collective operations in MPI-3

§ Three classes of operations: synchronization, data movement, collective 
computation
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Synchronization

§ MPI_BARRIER(comm)

– Blocks until all processes in the group of the communicator comm call it
– A process cannot get out of the barrier until all other processes have reached barrier
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Collective Data Movement
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More Collective Data Movement

A B C D
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Allgather
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Collective Computation

f(ABCD)

f(A)

f(AB)

f(ABC)

f(ABCD)
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MPI Collective Routines

§ Many Routines:  MPI_ALLGATHER, MPI_ALLGATHERV, MPI_ALLREDUCE, 
MPI_ALLTOALL, MPI_ALLTOALLV, MPI_BCAST, MPI_GATHER, MPI_GATHERV, 
MPI_REDUCE, MPI_REDUCESCATTER, MPI_SCAN, MPI_SCATTER, MPI_SCATTERV

§ “All” versions deliver results to all participating processes

§ “V” versions (stands for vector) allow the chunks to have different sizes

§ MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and MPI_SCAN take both built-in 
and user-defined combiner functions
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MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location
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Defining your own Collective Operations

§ Create your own collective computations with:
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MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The user function should perform:

for i from 0 to len-1

inoutvec[i]  =  invec[i]  op  inoutvec[i];

§ The user function can be non-commutative, but must be 
associative



Example: Calculating Pi (1/3)

§ Calculating the value of “pi” via 
numerical integration
– Divide interval up into subintervals
– Assign subintervals to processes
– Each process calculates partial sum
– Add all the partial sums together to get pi

1

1

“n” segments

1. Width of each segment (w) will be 1/n
2. Distance (d(i)) of segment “i” from the origin will be “i * w”
3. Height of segment “i” will be sqrt(1 – [d(i)]^2)
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#include <mpi.h>
#include <math.h>
int main(int argc, char *argv[])
{

[...snip...]
/* Tell all processes, the number of segments you want */
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
w   = 1.0 / (double) n;
mypi = 0.0;
for (i = rank + 1; i <= n; i += size)

mypi += w * sqrt(1 – (((double) i / n) * ((double) i / n));
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
if (rank == 0)

printf("pi is approximately %.16f, Error is %.16f\n", 4 * pi,
fabs((4 * pi) - PI25DT));

[...snip...]
}

Example: Calculating Pi (2/3)

47



Example: Calculating Pi (3/3)

§ blocking_coll/cpi.c

§ Calculating the approximate value of PI in parallel
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Nonblocking Collective Communication

§ Nonblocking (send/recv) communication
– Deadlock avoidance

– Overlapping communication/computation

§ Collective communication
– Collection of pre-defined optimized communication patterns

§ à Nonblocking collective communication
– Combines both techniques

– System noise/imbalance resiliency

– Semantic advantages
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Nonblocking Collective Communication

§ Nonblocking variants of all collectives
– MPI_Ibcast(<bcast args>, MPI_Request *req);

§ Semantics
– Function returns no matter what
– No guaranteed progress (quality of implementation)
– Usual completion calls (wait, test) + mixing
– Out-of order completion

§ Restrictions
– Send and vector buffers may not be updated during operation (like other nonblocking

operations)
– No tags, in-order matching (like other collective operations)
– MPI_Cancel not supported
– No matching with blocking collectives
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Nonblocking Collective Communication

§ Semantic advantages
– Enable asynchronous progression (and manual)

• Software pipelining

– Decouple data transfer and synchronization
• Noise resiliency!

– Allow overlapping communicators
• See also neighborhood collectives

– Multiple outstanding operations at any time
• Enables pipelining window
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A Nonblocking Barrier?

§ Semantics:
– MPI_Ibarrier() – calling process entered the barrier, no synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

§ Uses: 
– Overlap barrier latency (small benefit)

– Use the split semantics!  Processes notify noncollectively but synchronize collectively!
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Section Summary

§ Collectives are a very powerful feature in MPI

§ Optimized heavily in most MPI implementations
– Algorithmic optimizations (e.g., tree-based communication)

– Hardware optimizations (e.g., network or switch-based collectives)

§ Matches the communication pattern of many applications

§ Nonblocking collectives combine the semantics of nonblocking point-to-point and 
blocking collectives
– Natural extension to blocking collectives for event-driven programming

– Hardware implementations already exist for most (but not all) nonblocking collectives
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Running Example: Stencil



Running Example: Regular Mesh Algorithms

§ Many scientific applications involve the solution of partial differential equations 
(PDEs)

§ Many algorithms for approximating the solution of PDEs rely on forming a set of 
difference equations
– Finite difference, finite elements, finite volume

§ The exact form of the differential equations depends on the particular method
– From the point of view of parallel programming for these algorithms, the operations are the 

same

§ Five-point stencil is a popular approximation solution
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The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at each point 
involves the four neighbors

§ The red “plus” is called the method’s stencil

§ Good numerical algorithms form a matrix 
equation Au=f; solving this requires computing 
Bv, where B is a matrix derived from A. These 
evaluations involve computations with the 
neighbors on the mesh.
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MPI Examples on Cooley

§ /grand/ATPESC2022/EXAMPLES/track-2b-mpi

§ Copy to your own project directory

§ Submit job using “ATPESC2022” project, and “training” queue to use the reservation
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Alternative Environment Setup

§ Try MPI on your own machine

§ Use Docker Image
1. mkdir $HOME/mpi-tutorial

2. docker pull pmrs/mpi-tutorial

3. docker run --rm -it -v $HOME/mpi-tutorial:/project pmrs/mpi-tutorial

4. (in container) cp -r $HOME/examples /project/examples

58

This creates a container and opens a shell.
It mounts local directory $HOME/mpi-tutorial as /project in the container.



Example: Stencil

§ serial/stencil.c

§ Simple stencil code in single process

# ./stencil <domain size> <heat source value> <iterations>

# make
# qsub -A ATPESC2022 -q ATPESC2022 -n 1 -t 10 ./job.sh # Theta
# qsub -A ATPESC2022 -q training -n 1 -t 10 ./job.sh # Cooley

59

% ./stencil 1000 1000 10

last heat: 19666.992188 time: 0.045576

iter=10

iter=100

iter=1000



The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at each point 
involves the four neighbors

§ The red “plus” is called the method’s stencil

§ Good numerical algorithms form a matrix 
equation Au=f; solving this requires computing 
Bv, where B is a matrix derived from A. These 
evaluations involve computations with the 
neighbors on the mesh.

§ Decompose mesh into equal sized (work) pieces
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Domain Decompositioin

61

Parameters for domain decomposition:
N = Size of the edge of the global problem domain (assuming square)
PX, PY = Number of processes in X and Y dimension
N % PX == 0, N % PY == 0

Where am I? (Global offset)
Who (which ranks) are my neigbhors?
Use MPI_PROC_NULL for boundary



Necessary Data Transfers
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The Local Data Structure

§ Each process has its local “patch” of the global array
– “bx” and “by” are the sizes of the local array

– Always allocate a halo around the patch

– Array allocated of size (bx+2)x(by+2)

bx

by

Check the alloc_bufs function to see how buffers are allocated
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Necessary Data Transfers

§ Provide access to remote data through a halo exchange     (5 point stencil)

Check the update_grid function to see how it is done
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Example: Stencil with Nonblocking Send/recv

§ nonblocking_p2p/stencil.c

§ Simple stencil code using nonblocking point-to-point operations

For Cray systems
# aprun -n <nproc> ./stencil <domain size> <heat source value> <iteration> <px> <py>
For most other systems (or local machine)
# mpirun -n <nproc> ./stencil <domain size> <heat source value> <iterations> <px> <py>

<nproc> == <px> * <py>

# make
# qsub -A ATPESC2022 -q ATPESC2022 -n 1 -t 10 ./job.sh # Theta
# qsub -A ATPESC2022 -q training -n 1 -t 10 ./job.sh # Cooley
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% mpirun –n 16./stencil 1000 1000 10 4 4

[0] last heat: 19666.992188 time: 0.045576

iter=1000



Derived Datatypes



Introduction to Datatypes in MPI

§ Datatypes allow to (de)serialize arbitrary data layouts into a message stream
– Networks provide serial channels

– Same for block devices and I/O

§ Several constructors allow arbitrary layouts
– Recursive specification possible

– Declarative specification of data-layout
• “what” and not “how”, leaves optimization to implementation (many unexplored possibilities!)

– Choosing the right constructors is not always simple
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Simple/Predefined Datatypes

§ Equivalents exist for all C, C++ and Fortran native datatypes
– C int à MPI_INT
– C float  à MPI_FLOAT

– C double  à MPI_DOUBLE
– C uint32_t  à MPI_UINT32_T
– Fortran integer  à MPI_INTEGER

§ For more complex or user-created datatypes, MPI provides routines to represent 
them as well
– Contiguous

– Vector/Hvector
– Indexed/Indexed_block/Hindexed/Hindexed_block
– Struct
– Some convenience types (e.g., subarray)
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Derived Datatype Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

contig contig contig

vector

indexed

struct
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MPI_Type_contiguous

§ Contiguous array of oldtype

§ Should not be used as last type (can be replaced by count)

0 1 2 3 4 5 6 7 8 9 1
0

1
1

contig

1817150 1 2 3 4 5 6 7 8 9 10 11 12 14 16

struct struct struct

contig

13

MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_vector

§ Specify strided blocks of data of oldtype

§ Very useful for Cartesian arrays

vector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

vector

19 20

struct struct

0 1 2 3 4 5 6 7 8 9 1
0

1
1

MPI_Type_vector(int count, int blocklen, int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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Commit, Free, and Dup

§ Types must be committed before use
– Only the ones that are used!

– MPI_Type_commit may perform heavy optimizations (and will hopefully)

§ MPI_Type_free
– Free MPI resources of datatypes

– Does not affect types built from it

§ MPI_Type_dup
– Duplicates a type

– Library abstraction (composability)
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MPI_Type_create_hvector

§ Create byte strided vectors

§ Useful for composition, e.g., vector of structs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

hvector

19

struct struct

vector

stride = 3 oldtypes

stride = 11 bytes

MPI_Type_create_hvector(int count, int blocklen, MPI_Aint stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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MPI_Type_create_indexed_block

§ Pulling irregular subsets of data from a single array
– dynamic codes with index lists, expensive though!

– blen=2

– displs={0,5,8,13,18}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Indexed_block

MPI_Type_create_indexed_block(int count, int blocklen, int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_indexed

§ Like indexed_block, but can have different block lengths
– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

indexed

MPI_Type_indexed(int count, int* array_of_blocklens, int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_create_struct

§ Most general constructor, allows different types and arbitrary arrays 
(also most costly)

0 1 2 3 4

struct

MPI_Type_create_struct(int count, int *array_of_blocklens, int *array_of_displacements,
MPI_Datatype *array_of_types, MPI_Datatype *newtype)

76



MPI_Type_create_subarray

§ Convenience function for creating datatypes for array 
segments

§ Specify subarray of n-dimensional array (sizes) by start 
(starts) and size (subsize)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_Type_create_subarray(int ndims, int* array_of_sizes, int *array_of_subsizes,
int *array_of_starts, int order, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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Section Summary

§ Derived datatypes are a sophisticated mechanism to describe ANY layout in 
memory
– Hierarchical construction of derived datatypes allows them to be just as complex as the data 

layout is

– More complex layouts require more complex datatype constructions

§ Current state of MPI implementations might be a bit lagging in performance, but 
it is improving
– Increasing amount of hardware support to process derived datatypes on the network 

hardware

– If the performance is lagging when you try it out, complain to the MPI implementer, don’t 
just stop using it!
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Exercise: Stencil with Derived Datatypes (1/2)

§ In the basic version of the stencil code
– Used nonblocking communication 👍

– Used manual packing/unpacking of data 👎

§ Let’s try to use derived datatypes
– Specify the locations of the data instead of manually packing/unpacking

bx

by

What datatype do we 
need here?

What datatype do we 
need here?
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Exercise: Stencil with Derived Datatypes (2/2)

§ Nonblocking sends and receives

§ Data location specified by MPI datatypes

§ Manual packing of data no longer required

§ Start from nonblocking_p2p/stencil.c

§ Solution in derived_datatype/stencil.c
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MPI One-sided Communication



One-sided Communication

§ The basic idea of one-sided communication models is to decouple data movement 
with process synchronization
– Should be able to move data without requiring that the remote process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory
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Memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment
Memory
Segment
Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment
Memory
Segment
Memory
Segment

Memory
Segment
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Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the 
sending 

process is 
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in 
process 1 
does not 

affect 
process 0

GET(data)
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What we need to know in MPI RMA

§ How to create remote accessible memory?

§ Reading, Writing and Updating remote memory

§ Data Synchronization

§ Memory Model

§ MPI RMA has a large number of functions, supporting many options
– We will concentrate on a core that provides most of the power of RMA

– You can refer to Using Advanced MPI or the MPI 4.0 standard for more on RMA
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Creating Public Memory

§ Any memory used by a process is, by default, only locally accessible
– X = malloc(100);

§ Once the memory is allocated, the user has to make an explicit MPI call to declare a 
memory region as remotely accessible
– MPI terminology for remotely accessible memory is a “window”

– A group of processes collectively create a “window”

§ Once a memory region is declared as remotely accessible, all processes in the 
window can read/write data to this memory via MPI RMA functions

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Process 0

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window
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Window creation models

§ Four models exist
– MPI_WIN_ALLOCATE

• You want to create a buffer and directly make it remotely accessible

– MPI_WIN_CREATE

• You already have an allocated buffer that you would like to make remotely accessible

– MPI_WIN_CREATE_DYNAMIC

• You don’t have a buffer yet, but will have one in the future

• You may want to dynamically add/remove buffers to/from the window

– MPI_WIN_ALLOCATE_SHARED

• You want multiple processes on the same node share a buffer (not covered in this tutorial)
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MPI_WIN_ALLOCATE

§ Create a remotely accessible memory region in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win            - window (handle)

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
void *baseptr, MPI_Win *win)
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Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a;
MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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MPI_WIN_CREATE

§ Expose a region of memory in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– base - pointer to local data to expose
– size - size of local data in bytes (nonnegative integer)
– disp_unit - local unit size for displacements, in bytes (positive integer)
– info - info argument (handle)
– comm - communicator (handle)
– win             - window (handle)

MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
MPI_Win *win)
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Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
a = (int *) malloc(1000*sizeof(int));
/* use private memory like you normally would */
for (int i = 0; i < 1000; i++) a[i] = i + 1;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
free(a);
MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE_DYNAMIC

§ Create an RMA window, to which data can later be attached
– Only data exposed in a window can be accessed with RMA ops

§ Initially “empty”
– Application can dynamically attach/detach memory to this window by calling 
MPI_Win_attach/detach

– Application can access data on this window only after a memory region has been attached

§ Window origin is MPI_BOTTOM
– Displacements are segment addresses relative to MPI_BOTTOM

– Must tell others the displacement after calling attach

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win *win)
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Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
for (int i = 0; i < 1000; i++) a[i] = i + 1;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a);  free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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Data movement

§ MPI provides ability to read, write and atomically modify data in remotely accessible 
memory regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)

§ There are variations of these as well, include versions with requests.
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Data movement: Put

§ Move data from origin, to target

§ Separate data description triples for origin and target

Origin

MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype origin_dtype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 
Accessible 
Memory

Private 
Memory
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Data movement: Get

§ Move data to origin, from target

§ Separate data description triples for origin and target

Origin

MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_dtype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 
Accessible 
Memory

Private 
Memory
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Atomic Data Aggregation: Accumulate

§ Atomic update operation, similar to a put
– Reduces origin and target data into target buffer using op argument as combiner
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only, no user-defined operations

§ Different data layouts between
target/origin OK
– Basic type elements must match

§ Op = MPI_REPLACE
– Implements f(a,b)=b
– Atomic PUT

MPI_Accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_dtype, 
int target_rank, MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Origin Target

Remotely 
Accessible 
Memory

Private 
Memory

+=
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Atomic Data Aggregation: Get Accumulate

§ Atomic read-modify-write
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only

§ Result stored in target buffer
§ Original data stored in result buf
§ Different data layouts between

target/origin OK
– Basic type elements must match

§ Atomic get with MPI_NO_OP
§ Atomic swap with MPI_REPLACE

MPI_Get_accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_dtype, 
void *result_addr,int result_count, MPI_Datatype result_dtype,
int target_rank, MPI_Aint target_disp,int target_count,
MPI_Datatype target_dype, MPI_Op op, MPI_Win win)

+=

Origin Target

Remotely 
Accessible 
Memory

Private 
Memory
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Atomic Data Aggregation: FOP and CAS

§ FOP: Simpler version of MPI_Get_accumulate
– All buffers share a single predefined datatype

– No count argument (it’s always 1)

– Simpler interface allows hardware optimization

§ CAS: Atomic swap if target value is equal to compare value

MPI_Compare_and_swap(const void *origin_addr, const void *compare_addr,
void *result_addr, MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(const void *origin_addr, void *result_addr, MPI_Datatype dtype,
int target_rank, MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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Ordering of Operations in MPI RMA

§ No guaranteed ordering for Put/Get operations

§ Result of concurrent Puts to the same location undefined

§ Result of Get concurrent Put/Accumulate undefined

– Can be garbage in both cases

§ Result of concurrent accumulate operations to the same location are defined according to the order 
in which the occurred

– Atomic put: Accumulate with op = MPI_REPLACE

– Atomic get: Get_accumulate with op = MPI_NO_OP

§ Accumulate operations from a given process are ordered by default

– User can tell the MPI implementation that (s)he does not require ordering as optimization hint

– You can ask for only the needed orderings: RAW (read-after-write), WAR, RAR, or WAW
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Examples with operation ordering

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2 

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and 
Put/Accumulates: undefined

3. Concurrent Accumulate operations 
to the same location: ordering is 
guaranteed
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RMA Synchronization Models
§ RMA data access model

– When is a process allowed to read/write remotely accessible memory?
– When is data written by process X is available for process Y to read?
– RMA synchronization models define these semantics

§ Three synchronization models provided by MPI:
– Fence (active target)
– Post-start-complete-wait (generalized active target)
– Lock/Unlock (passive target) <- preferred for all RMA since MPI 3.0

§ Data accesses occur within “epochs”

– Access epochs: contain a set of operations issued by an origin process
– Exposure epochs: enable remote processes to update a target’s window
– Epochs define ordering and completion semantics
– Synchronization models provide mechanisms for establishing epochs

• E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

§ Collective synchronization model

§ Starts and ends access and exposure epochs on 
all processes in the window

§ All processes in group of “win” do an 
MPI_WIN_FENCE to open an epoch

§ Everyone can issue PUT/GET operations to 
read/write data

§ Everyone does an MPI_WIN_FENCE to close 
the epoch

§ All operations complete at the second fence 
synchronization

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2
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Exercise 1: Stencil with RMA Fence (1/2)

Origin buffers

Target buffers

RMA window

PUT

PU
T

PUT

PU
T
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Exercise 1: Stencil with RMA Fence (2/2)

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with PUT instead of send/recv

§ Start from derived_datatype/stencil.c

§ Solution available in rma/stencil_fence_put.c

106



Exercise 2: Stencil with RMA Fence (GET model)

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with GET instead of send/recv

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_fence_get.c
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Lock/Unlock: Passive Target Synchronization

§ Passive mode: One-sided, asynchronous communication
– Target does not participate in communication operation

§ Shared memory-like model

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait

108



Passive Target Synchronization

§ Lock/Unlock: Begin/end passive mode epoch
– Target process does not make a corresponding MPI call
– Can initiate multiple passive target epochs to different processes
– Concurrent epochs to same process not allowed (affects threads)

§ Lock type
– SHARED: Other processes using shared can access concurrently
– EXCLUSIVE: No other processes can access concurrently

§ Flush: Remotely complete RMA operations to the target process
– After completion, data can be read by target process or a different process

§ Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)
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Passive Target Synchronization

§ Lock_all: Shared lock, passive target epoch to all other processes
– Expected usage is long-lived: lock_all, put/get, flush, …, 
unlock_all

§ Flush_all – remotely complete RMA operations to all processes

§ Flush_local_all – locally complete RMA operations to all 
processes

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)
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MPI RMA Memory Model

§ MPI-3 provides two memory models: separate and 
unified

§ Separate Model
– Logical public and private copies

– MPI provides software coherence between window copies
– Extremely portable, to systems that don’t provide hardware 

coherence

§ New Unified Model
– Single copy of the window
– System must provide coherence
– Superset of separate semantics

• E.g. allows concurrent local/remote access

– Provides access to full performance potential of hardware

Public
Copy

Private
Copy

Separate Unified

Public
CopyPrivate

Copy
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MPI RMA Memory Model (separate windows)

§ Very portable, compatible with non-coherent memory systems

§ Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source
Same epoch Diff. Sources

load store store

X

atomics needed
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MPI RMA Memory Model (unified windows)

§ Allows concurrent local/remote accesses
§ Concurrent, conflicting operations are allowed (not invalid)

– Outcome is not defined by MPI (defined by the hardware)

§ Can enable better performance by reducing synchronization

Unified
Copy

Same source
Same epoch Diff. Sources

load store store

atomics needed
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Synchronizing Local and RMA Access (1/2)

§ RMA operations access the public copy of window

§ Local load/store update the private copy
– Including using as MPI send/receive buffers

§ Ensure memory synchronization for portability

§ Implicit memory synchronization (i.e., memory barrier) in RMA synchronization calls
– Fence: Synchronize private and public copies of local window

P0 P1

PUT(x=1, P1)

load x

Fence
Public
Copy

Private
Copy Fence
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Synchronizing Local and RMA Access (2/2)

§ PSCW active target epoch
– Post: Updates in private copy becomes 

visible in public copy

– Wait: Updates in public copy becomes 
visible in private copy

§ Passive target epoch
– Lock/Lock_all: Updates in public copy 

becomes visible in private

– Unlock/Unlock_all: Updates in private 
copy becomes visible in public

Lock(P1)

P0 P1
store x = 1

Public
Copy

Private
Copy

Lock(P1)

Unlock(P1)Lock (P1)
GET(x, P1)
PUT(y=1, P1)

Unlock (P1) Public
Copy

Private
Copy

load  y

Post

Wait

Start

Complete

P0 P1

GET(x, P1)
PUT(y=1, P1)

load y

Public
Copy

Private
Copy

Public
Copy

Private
Copy

store x=1
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Window synchronization: MPI_WIN_SYNC

§ Synchronizes the public and private copies of local window in passive target epoch

MPI_Win_sync(MPI_Win win)

P0 P1

Win_sync

Barrier Barrier

load y

Lock(shared, P1)
...

Lock(shared, P1)

...
Unlock(P1) Unlock(P1)

Public
Copy

Private
Copy

store x = 1

Win_sync
Public
Copy

Private
Copy

GET(x, P1)
PUT(y=1, P1)
Flush(P1)

Barrier Barrier
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Exercise 3: Stencil with RMA Lock_all/Unlock_all (PUT model)

§ In the fence versions of the stencil code, RMA synchronization involves the target 
processes

§ Let’s try to use RMA Lock_all/Flush_all/Unlock_all
– Only the origin processes call RMA synchronization

– Still need Barrier for process synchronization (e.g., ensure neighbors have completed data 
update to my local window)

– Need Win_sync for memory synchronization 

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_lock_put.c
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Hardware-Offloaded Communication

§ Offloading data transfer to hardware is ideal for 
performance

– Two-sided (e.g., SEND/RECEIVE): 

• Require complex message matching (rank + tag + 
comm), especially for wildcard receives 
(MPI_ANY_TAG|ANY_SOURCE)

• Supported HW: Mellanox ConnectX-5 (support HW 
tag matching)

– One-sided (e.g., PUT/GET/ACCUMULATE): 

• No matching requirement, easier for hardware 
offloading

• Natively supported on various RDMA networks such 
as Mellanox InfiniBand, Cray Aries, and Fujitsu Tofu

Process 0 Process 1

ComputationPut(data)

Hardware-offloaded data transfer can 
be fully overlapped with computation
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Asynchronous Execution of MPI RMA

§ Asynchronous execution of RMA depends on the MPI implementation, which in turn depends on 
what the network hardware provides

§ Most common situation on current network hardware:

– Some operations are natively supported in hardware (e.g., contiguous PUT/GET)

– Other operations need to be emulated in software

Software implementation of one-
sided operations means that the 
target process has to run code to 
complete the MPI operation
The common case for many MPI 
implementations is that this is 
done within some MPI routine

Process 0 Process 1

+=
Computation

Acc(data)

MPI call
Delay

Software-handled MPI Accumulate
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Possible Solution 1: Thread-based Progress (1/2)

§ Every MPI process creates a dedicated helper thread at MPI_Init_thread

– Supported by most MPI implementations, but unlikely to be default

– Might need to turn on some environment variable (check the documentation)

§ The thread polls MPI progress for the process while the process is computing

§ May dedicate some number of computing cores per process for this helper thread

§ Multithreading safety overhead (i.e., MPI internal lock contention between threads, memory barriers)

Process 0 Process 1

+= Computation

Helper 
thread

Acc(data)
T T T T

With dedicated cores

With oversubscribed cores

User thread Helper thread
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Possible Solution 1: Thread-based Progress (2/2)

§ Available in many mainstream MPI implementations

§ Core binding is important!  See vendor documentation

MPICH:

Cray MPI:

Intel MPI:

% export MPIR_CVAR_ASYNC_PROGRESS=1

% export I_MPI_ASYNC_PROGRESS=1

% export MPICH_NEMESIS_ASYNC_PROGRESS=1
% export MPICH_MAX_THREAD_SAFETY=multiple
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Possible Solution 2: Interrupt-based Progress

§ Utilize hardware interrupts to awaken a kernel thread when new message arrives

§ Examples: Cray MPI DMAPP mode (deprecated from v7.6.0), IBM MPI on Blue Gene/P

§ Overhead of frequent interrupts, need special hardware support

– Not a common model for most current networks

Process 0 Process 1

+= Computation

Kernel 
thread

Acc(data)
Interrupt
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Section Summary

§ MPI one-sided communication is associated with windows

§ Operations include basic PUT, GET, and Atomic operations

§ Synchronization modes
– Active-target (similar to two-sided) : FENCE, PSCW

– Passive-target: LOCK-UNLOCK, FLUSH, FLUSH_LOCAL…

§ Enable asynchronous progress for performance
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MPI Hybrid Programming: Threads



Hybrid MPI + X : Most Popular Forms

GPU

Memory

CPU

Memory

Network 
Card

MPI + X

CPU

Memory

Network 
Card

CPU

Memory

Network 
Card

CPU

Memory

Network 
Card

CoreCore

Flat MPI MPI + Threads MPI + 
Shared Memory

MPI +  ACC

CoreCore CoreCore

P0 P1P0 P1

MPI Process

T0 T1
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Why Hybrid MPI+X? Towards Strong Scaling (1/3)

§ Strong scaling applications is increasing in 
importance
– Hardware limitations: not all resources scale at the 

same rate as cores (e.g., memory capacity, network 
resources)

– Desire to solve the same problem faster on a bigger 
machine

• Nek5000, HACC, LAMMPS
Evolution of the memory capacity per core in the 
Top500 list (Peter Kogge. PIM & memory: The need for a 
revolution in architecture.)

Sunway
TaihuLight

§ Strong scaling pure MPI applications is getting harder
– On-node communication is costly compared to load/stores

– O(Px) communication patterns (e.g., All-to-all)  costly
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Why Hybrid MPI+X? Towards Strong Scaling (2/3)

§ MPI+X benefits (X= {threads,MPI shared-memory, etc.})
– Less memory hungry (MPI runtime consumption, O(P) data structures, etc.)

– Load/stores to access memory instead of message passing

– P is reduced by constant C (#cores/process) for O(Px) communication patterns

§ Example 1: the Nek5000 team is working at the strong 
scaling limit

Nek5000
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Why Hybrid MPI+X? Towards Strong Scaling (3/3)

§ Example 2: Quantum Monte Carlo Simulation 
(QMCPACK)
– Size of the physical system to simulate is bound by 

memory capacity [1]

– Memory space dominated by large interpolation 
tables (typically several Giga Bytes of storage)

– Threads are used to share those tables

– Memory for communication buffers must be kept 
low to be allow simulation of larger and highly 
detailed simulations.

Shared large B-spline table

W W W W W W

Thread 0 Thread 1 Thread 2

MPI Process

Core Core Core

Communicate 
Walker 

information

W
Walker data

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.
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Core

Core Core

Core Core

Core Core

Core

Core

Core Core

Core Core

Core Core

Core

MPI Process MPI Process

MPI + ThreadsMPI only

Threads

Multi- or Many-
core Nodes

MPI + Threads: How To? (1/3)
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§ MPI describes parallelism between processes (with 
separate address spaces)

§ Thread parallelism provides a shared-memory model 
within a process

§ OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-level 

parallelism. Threads are created and managed by the 
compiler, based on user directives.

– Pthreads provide more complex and dynamic approaches. 
Threads are created and managed explicitly by the user.

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI + Threads: How To? (2/3)
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§ MPI_THREAD_SINGLE
– No additional threads

§ MPI_THREAD_FUNNELED
– Master thread communication only

§ MPI_THREAD_SERIALIZED
– Threaded communication serialized

§ MPI_THREAD_MULTIPLE
– No restrictions

•Restriction

•Low 
Thread-

Safety Costs

•Flexibility

•High 
Thread-

Safety Costs

MPI   + Threads

Interoperability

Interoperation or thread levels:

MPI + Threads: How To? (3/3)

131



MPI’s Four Levels of Thread Safety

§ MPI defines four levels of thread safety -- these are commitments the 
application makes to the MPI

§ Thread levels are in increasing order
– If an application works in FUNNELED mode, it can work in SERIALIZED

§ MPI defines an alternative to MPI_Init
– MPI_Init_thread(requested, provided): Application specifies level it needs; MPI 

implementation returns level it supports
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MPI_THREAD_SINGLE

§ There are no additional user threads in the system
– E.g., there are no OpenMP parallel regions

int buf[100];
int main(int argc, char ** argv)
{

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}

MPI Process

COMP.

COMP.

MPI COMM.
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MPI_THREAD_FUNNELED
§ All MPI calls are made by the master thread

– Outside the OpenMP parallel regions
– In OpenMP master regions
int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv, 
MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED)

MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join();

/* Do MPI stuff */

MPI_Finalize();
return 0;

}

MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);

}
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int buf[100];
int main(int argc, char ** argv)
{

int provided;

pthread_mutex_t mutex;

MPI_Init_thread(&argc, &argv, 
MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED) 
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join();

MPI_Finalize();

return 0;
}

MPI_THREAD_SERIALIZED
§ Only one thread can make MPI calls at a time

– Protected by OpenMP critical regions

MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);
pthread_mutex_lock(&mutex);

/* Do MPI stuff */
pthread_mutex_unlock(&mutex);

}
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int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv, 
MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE)

MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)

pthread_create(…,func,(void*)i);
for (i = 0; i < 100; i++)

pthread_join();

MPI_Finalize();
return 0;

}

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);

/* Do MPI stuff */
}

MPI_THREAD_MULTIPLE

§ Any thread can make MPI calls any time (restrictions apply)

MPI Process

COMP.

COMP.

MPI COMM.
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Threads and MPI

§ An implementation is not required to support levels higher than 
MPI_THREAD_SINGLE; that is, an implementation is not required to be thread safe

§ A fully thread-safe implementation will support MPI_THREAD_MULTIPLE

§ A program that calls MPI_Init (instead of MPI_Init_thread) should assume that only 
MPI_THREAD_SINGLE is supported

– MPI Standard mandates MPI_THREAD_SINGLE for MPI_Init

§ A threaded MPI program that does not call MPI_Init_thread is an incorrect program 
(common user error we see)
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MPI Semantics and MPI_THREAD_MULTIPLE

§ Ordering: When multiple threads make MPI calls concurrently, the outcome will be as 
if the calls executed sequentially in some (any) order

– Ordering is maintained within each thread
– User must ensure that collective operations on the same communicator, window, or file handle are 

correctly ordered among threads
• E.g., cannot call a broadcast on one thread and a reduce on another thread on the same communicator

– It is the user's responsibility to prevent races when threads in the same application post conflicting 
MPI calls 

• E.g., accessing an info object from one thread and freeing it from another thread

§ Progress: Blocking MPI calls will block only the calling thread and will not prevent 
other threads from running or executing MPI functions
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Ordering in MPI_THREAD_MULTIPLE: Incorrect Example with 
Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 0

Thread 1
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Ordering in MPI_THREAD_MULTIPLE: Incorrect Example with 
Collectives

§ P0 and P1 can have different orderings of Bcast and Barrier
§ Here the user must use some kind of synchronization to ensure that either thread 1 

or thread 2 gets scheduled first on both processes 
§ Otherwise a broadcast may get matched with a barrier on the same communicator, 

which is not allowed in MPI

Process 0
Thread 1                        Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1
Thread 1 Thread 2

MPI_Barrier(comm)

MPI_Bcast(comm)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect Example with Object 
Management

§ The user has to make sure that one thread is not using an object while another 
thread is freeing it
– This is essentially an ordering issue; the object might get freed before it is used

Process 0
Thread 1 Thread 2     

MPI_Comm_free(comm)

MPI_Bcast(comm)
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Blocking Calls in MPI_THREAD_MULTIPLE: Correct Example

§ An implementation must ensure that the above example never deadlocks for any 
ordering of thread execution

§ That means the implementation cannot simply acquire a thread lock and block 
within an MPI function. It must release the lock to allow other threads to make 
progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2
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The Current Situation

§ All MPI implementations support MPI_THREAD_SINGLE

§ They probably support MPI_THREAD_FUNNELED even if they don’t admit it.
– Does require thread-safety for some system routines (e.g. malloc)

– On most systems -pthread will guarantee it (OpenMP implies

-pthread )

§ Many (but not all) implementations support THREAD_MULTIPLE
– Hard to implement efficiently though (thread synchronization issues)

§ Bulk-synchronous OpenMP programs (loops parallelized with OpenMP, 
communication between loops) only need FUNNELED
– So don’t need “thread-safe” MPI for many hybrid programs

– But watch out for Amdahl’s Law!
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Hybrid Programming: Correctness Requirements

§ Hybrid programming with MPI+threads does not do much to reduce the complexity 
of thread programming
– Your application still has to be a correct multi-threaded application

– On top of that, you also need to make sure you are correctly following MPI semantics

§ Many commercial debuggers offer support for debugging hybrid MPI+threads
applications (mostly for MPI+Pthreads and MPI+OpenMP)
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An Example we encountered

§ We received a bug report about a very simple multithreaded MPI program that 
hangs

§ Run with 2 processes

§ Each process has 2 threads

§ Both threads communicate with threads on the other process as shown in the next 
slide

§ We spent several hours trying to debug MPICH before discovering that the bug is 
actually in the user’s program L
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2 Processes, 2 Threads (each thread executes this code)
if (rank == 1) {

MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

} else {  /* rank == 0 */

MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);

MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

}
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Intended Ordering of Operations

§ Every send matches a receive on the other rank

2 recvs (T2)
2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
2 recvs (T1)
2 sends (T1)

Rank 0

2 sends (T2)
2 recvs (T2)
2 sends (T2)
2 recvs (T2)

2 sends (T1)
2 recvs (T1)
2 sends (T1)
2 recvs (T1)

Rank 1
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Possible Ordering of Operations in Practice

§ Because the MPI operations can be issued in an arbitrary 
order across threads, all threads could block in a RECV call

1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)

Rank 0

2 sends (T2)
1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)

2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)
2 recvs (T1)

Rank 1
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MPI+OpenMP correctness semantics

§ MPI only specifies interoperability with threads, not 
with OpenMP (or any other high-level programming 
model using threads)

– OpenMP iterations need to be carefully mapped 
to which thread executes them (some schedules 
in OpenMP make this harder)

§ For OpenMP tasks, the general model to use is that 
an OpenMP thread can execute one or more 
OpenMP tasks

– An MPI blocking call should be assumed to block 
the entire OpenMP thread, so other tasks might 
not get executed

Applications

OpenMP, Cilk, 
TBB 

MPI
Pthreads or 

other threads
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OpenMP threads: MPI blocking Calls (1/2)

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}

MPI_Finalize();

return 0;
}

Iteration to OpenMP thread mapping needs to explicitly be handled by the user; 
otherwise, OpenMP threads might all issue the same operation and deadlock
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OpenMP threads: MPI blocking Calls (2/2)
int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

assert(omp_get_num_threads() > 1)
#pragma omp for schedule(static, 1)
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

MPI_Finalize();

return 0;
}

Either explicit/careful mapping of iterations to threads, or using nonblocking
versions of send/recv would solve this problem
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OpenMP tasks: MPI blocking Calls (1/5)
int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < 100; i++) {

#pragma omp task
{
if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

}
MPI_Finalize();
return 0;

}

This can lead to deadlocks. No ordering or progress guarantees in OpenMP task 
scheduling should be assumed; a blocked task blocks it’s thread and tasks can be 
executed in any order.
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OpenMP tasks: MPI blocking Calls (2/5)
int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else

MPI_Recv(.., from_myself, ..)
}

}
MPI_Finalize();
return 0;

}

Same problem as before. 
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OpenMP tasks: MPI blocking Calls (3/5)
int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);

else
MPI_Irecv(.., from_myself, .., &req);

MPI_Wait(&req, ..);
}

}
MPI_Finalize();

return 0;
}

Using nonblocking operations but with MPI_Wait inside the task region does not 
solve the problem
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OpenMP tasks: MPI blocking Calls (4/5)
int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req; int done = 0;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);
else

MPI_Irecv(.., from_myself, .., &req);
While (!done) {

#pragma omp taskyield
MPI_Test(&req, &done, ..);

}
}

}
}

MPI_Finalize();
return 0;

}

Still incorrect; taskyield does not guarantee a task switch
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OpenMP tasks: MPI blocking Calls (5/5)
int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);
MPI_Request req[100];

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Isend(.., to_myself, .., &req[i]);

else
MPI_Irecv(.., from_myself, .., &req[i]);

}
}

MPI_Waitall(100, req, ..);
MPI_Finalize();

return 0;
}

Correct example. Each task is nonblocking.
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Ordering in MPI_THREAD_MULTIPLE: Incorrect Example with RMA

int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different threads can lock the same process causing multiple locks to the 
same target before the first lock is unlocked
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Exercise 1: Stencil in Funneled mode (1/2)
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Exercise 1: Stencil in Funneled mode (2/2)

§ Parallelize computation (OpenMP parallel for)

§ Main thread does all communication

§ Start from derived_datatype/stencil.c

§ Solution available in threads/stencil_funneled.c
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Exercise 2: Stencil in Multiple mode (1/2)
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Exercise 2: Stencil in Multiple mode (2/2)

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Start from threads/stencil_funneled.c

§ Solution available in threads/stencil_multiple.c
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MPI+threads performance recommendations



Recommendation: Maximize independence between threads with 
communicators
§ Each thread accesses to a different communicator

– Each communicator may be associated with isolated resource in an MPI implementation

MPI_Comm *comms;
int nthreads = omp_get_num_threads();
comms = malloc(sizeof(MPI_Comm) * nthreads);

for (i = 0; i < nthreads; i++)
MPI_Comm_dup(MPI_COMM_WORLD, &comms[i]);

#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., comm[tid], &req[i]);}
}
MPI_Waitall(100, req, ..);

MPI

Comm[0]

T0

Comm[1]

T1

Comm[2]

T2

Comm[3]

T3

Hardware
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Recommendation: Maximize independence between threads with 
ranks or tags (1/2)

§ Each thread communicates with different peer_rank or tag
– MPI may assign isolated resource for different set of [peer_rank + tag]

#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., peer_ranks[tid], tid,
comm, &req[i]);}

}
MPI_Waitall(100, req, ..);

MPI

Peer=P1

T0

Peer=P2

T1

Peer=P3

T2

Peer=P4

T3

Hardware

P0
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Recommendation: Maximize independence between threads with 
ranks or tags (2/2)

§ Threads have to match all receive messages in sequential 
(e.g., a single receive-queue) if a wildcard receive may be 
posted
– Ensure ordering of message matching

§ Let MPI know if you do not use wildcard receive

MPI
P0, 0

ANY_SRC
ANY_TAG

P2, 1
P0, 2
P2, 3

COMM

MPI_Info info;
info = MPI_Info_create();
MPI_Info_set(info,

“mpi_assert_no_any_source”, “true”);

MPI_Comm_set_info(comm, info);
MPI_Info_free(&info);
/* Communicate without ANY_SOURCE */

– Info hints mpi_assert_no_any_source, 
mpi_assert_no_any_tag (already proposed to 
MPI standard)

– MPI can get rid of the single receive-queue for 
the communicator
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Communication Isolation Limitations

§ Progress: A blocked thread will not prevent progress of other runnable threads on the same process

– ssend(comm1) returns only after irecv(comm1) is posted

• MPI may internally send handshake messages to synchronize

– Thread 0 has to make progress for comm1 in wait(req0) (e.g., access comm1’s receive-queue), to 
ensure ssend(comm1) can complete

ssend(comm1)

ssend(comm0)

Rank 0

irecv(comm0, &req0)
pthread_barrier ------
wait(req0)
pthread_barrier ------

Rank 1

irecv(comm1, &req1)

wait(req1)

Thread 0 Thread 1 

(A correct program)

166



Possible Optimizations MPI libraries can do
§ Virtual Communication Interface (VCI)

– Each VCI abstracts a set of network/shared-memory resources

– Some networks support multiple VCIs: InfiniBand contexts, scalable endpoints over Intel 
Omni-Path

– Traditional MPI implementation uses single VCI

• Serializes all traffic

• Does not fully exploit network hardware resources

§ Utilizing multiple VCIs to maximize independence in communication

MPI

Comm[0]

T0

Comm[1]

T1

Comm[2]

T2

Comm[3]

T3

Hardware

VCI VCI VCI 

– Separate VCIs per communicator or per RMA window

– Distribute traffic between VCIs with respect to ranks, 
tags, and generally out-of-order communication

– M-N mapping between Work-Queues and VCIs
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Exercise 5: Stencil with Independent Communicators

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Each thread uses a different communicator

§ Start from threads/stencil_multiple.c

§ Solution available in threads/stencil_multiple_ncomms.c

168



MPI+threads optimizations in Intel MPI 2019

§ Supported starting Intel MPI Library 2019 (for Linux).

§ MPI_Init_thread(MPI_THREAD_MULTIPLE)

§ Environment variables
– I_MPI_THREAD_SPLIT=1

– I_MPI_THREAD_RUNTIME=openmp

§ MPI_THREAD_SPLIT
– Only threads with the same thread id can communicate using distinct communicators, limiting 

space of possible communication patterns.

§ Known issues
– Using MPI_PROC_NULL with I_MPI_THREAD_SPLIT=1 causes errors.

– MPI_Finalize can take long with I_MPI_THREAD_SPLIT=1.

For more information: https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
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Exposing parallelism in micro-benchmarks
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§ All results, except “MPI_THREAD_MULTIPLE (multiple comms)” use Intel MPI 2019.  The 
multiple comms version will be included into Intel MPI soon.
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Exposing parallelism in stencil example

§ Using 16 cores per node; 3 x 3 node grid.

§ Halo exchange time of a rank on the central node.

§ All results, except “MPI_THREAD_MULTIPLE (multiple comms)” use Intel MPI 2019.  The multiple 
comms version will be included into Intel MPI soon.
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Section Summary

§ Hybrid MPI + “X” is a promising approach for large scale programming (e.g., MPI+Threads)

– Less memory consumption

– More efficient on-node data movement  (load/store)

§ MPI thread safety: SINGLE, FUNNELED, SERIALIZED, MULTIPLE 

§ Use MPI_Init_thread for threaded programs (i.e., not SINGLE)

§ THREAD_MULTIPLE ordering & progress semantics 

§ Always maximize independence between threads in your program

– Independent communicators, no wildcard, independent peer_ranks and tags
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MPI Hybrid Programming: 
Accelerators

(Thanks to Jiri Kraus @ NVIDIA for several corrections and comments)



Introduction

§ CPUs

– Task-sequential execution model (focus 
on latency)

– Small # of complex compute cores (out-of-
order execution)

– Deep pipelines

– Large caches

– Branch prediction hardware

§ GPUs

– Data-parallel execution model (focus on 
throughput)

– Large # of simple compute elements (in-
order execution)

– Small caches

– Shallow pipelines

– Large off-chip global High-Bandwidth 
Memory (HBM)

– High FLOPs/W and FLOPs/$

Accelerators are becoming increasingly popular in parallel computing
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Top500 Accelerators Based Systems (June 2022)
§ #1 - Frontier (ORNL USA)

– AMD MI250X

§ #3 - LUMI (CSC Finland)
– AMD MI250X

§ #4 - Summit (ORNL USA)
– NVIDIA V100

§ #5 - Sierra (LLNL USA)
– NVIDIA V100

§ #7 - Perlmutter (LBNL/NERSC USA)
– NVIDIA A100

§ #8 - Selene (NVIDIA Corporation USA)
– NVIDIA A100

§ #10 - Adastra (GENCI-CINES France)
– AMD MI250X
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Upcoming Exascale Accelerators Based Systems

§ Frontier (ORNL USA)
– AMD based GPU technology

• https://www.ornl.gov/news/us-department-energy-and-cray-deliver-record-setting-frontier-
supercomputer-ornl

§ Aurora (ANL USA)
– Intel based technology

• https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-
supercomputer

§ El Capitan (LLNL USA)
– AMD based GPU technology

• https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-
supercomputer
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Programming Model for Accelerators

§ GPUs are well suited for fine grain data level 
parallelism

§ Shared Memory, Single Instruction Multiple 
Data (SIMD) model

§ Many available compute platforms and 
programming frameworks (focus on their 
memory model and interaction with MPI)
– NVIDIA CUDA (NVIDIA platform only)
– AMD ROCm & HIP
– OpenMP
– OpenACC (mentioned but not covered)

– OpenCL & SYCL

GPU

Memory

CPU

Memory

Network 
Card

MPI*

SIMD

Multi-dimensional Dataset

(*)Single Program Multiple Data

z
y

x
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Interoperability with MPI

GPU

Memory

CPU

Memory

Network 
Card

GPU

Memory

CPU

Memory

Network 
Card

GPUs have separate physical memory subsystem 
How to move data between GPUs with MPI?

Real answer: It depends on what GPU library, what hardware and what MPI 
implementation you are using

Simple answer: For modern GPUs, “just like you would with a non-GPU machine”
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Unified Virtual Addressing (UVA)
§ UVA is a memory address management system 

supported in modern 64-bit architectures
– Requires device driver support

§ The same virtual address space is used for all 
processors, host or devices

§ No distinction between host and device pointers

§ The user can query the location of the data 
allocation given a pointer in the unified virtual 
address space and the appropriate GPU runtime 
library query APIs (“GPU-aware” MPI library)

UVA: Single virtual address space 
for the host and all devices

GPU

0x000 ..

CPU GPU

.. 0xFFF
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Remote Direct Memory Access with UVA

§ Only GPU-enabled MPI 
implementations can take 
advantage of UVA

§ User can pass device pointer to 
MPI

§ MPI implementation can query for 
the owner (host or device) of the 
data 

§ If the data is on the device, the 
MPI implementation can optimize
data transfers

Network pinned 
memory

GPU

GPU MemoryCPU

Host 
Memory

CPU copy to 
pinned memory 

Direct Memory 
Access (DMA)

void* d_data
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Card
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Intranode Communication with UVA

§ Intranode Optimization
– GPU peer-to-peer data transfers are 

possible
– MPI can directly move data between GPU 

devices 

MPI Process 1 MPI Process 2

GPU

Memory

CPU

Memory

GPU

MemoryPeer-to-Peer DMA transfer between GPUs
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Heterogeneous Memory Management (HMM)

§ Next step towards the unification of heterogeneous 
memory spaces in the Linux Kernel (not yet 
available)

§ Support started with version 4.14 through helper 
functions to be used by device drivers

– Support paging in device for migrating memory 
between host and GPU

§ Automatic data movement between host and GPU 
memories (called Unified Memory in CUDA)

– Data is automatically migrated between host and GPU 
on page faults

– Moving pages to GPU and back to host is similar to 
swap-out and swap-in of pages to and from disk

GPU CPU GPU

Page i

Page k

Page fault

Page 
migration

Page 
migration

Single memory space accessible to 
all devices and host. Transparently 
managed heterogeneous memory.

Page fault
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MPI + HMM in a Nutshell

§ In theory, any MPI implementation can transparently work with HMM
– The MPI implementation can always assume that the data is on the host (or device)
– GPUs take care of moving data between device and host memories
– Trying to register memory on the wrong device from the network should simply fail for HMM, but there have 

been reports of silent failures in this regard for CUDA, so you might need to be careful

– Data in HMM can be corrupted if GPU updates pages during network transfer

§ In practice MPI implementations should never use HMM directly
– Managed heterogeneous memory cannot be directly accessed by the network (correctness issue)

• Virtual address cannot be pinned to a fixed physical memory region since GPU might need to migrate the data
• Intermediate buffer is needed to copy data from HMM

§ In any case MPI can never know in which device data is physically located 
– Data management is completely handled by GPU and can cause unnecessary data movement (performance 

issue)

183



§ MPI can assume data is on host memory
§ MPI copies data to network pinned memory

– Network registration will fail
§ On a correct guess

– The copy will not trigger a page fault to bring 
data from GPU

§ On incorrect guess
– An expensive page fault will occur

GPU

GPU MemoryCPU

Host 
Memory

Network 
Card

Correct guess: data is on host memory
RDMA

Pinned memory available to 
network and GPU devices

CPU copy to 
pinned memory 

Page k

MPI moving data

GPU

GPU MemoryCPU

Host 
Memory

Network 
Card

MPI moving data from host memory on a wrong 
guess

RDMA

Pinned memory available to 
network and GPU devices

CPU copy to 
pinned memory 

MPI moving data

GPU page migration
Page fault

data

Page k
data

Page k

MPI + HMM Assuming Data on Host
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§ MPI can assume data is on some GPU device 
memory

§ MPI would need to move data from the GPU 
device memory to network pinned memory

– This can be either host or GPU memory (but not 
unified memory)

§ On a correct guess
– The copy will not trigger a page fault

§ On incorrect guess
– An expensive page fault will occur when 

accessing data on the GPU device memory

§ Most MPI implementations assume memory to 
reside on the GPU

GPU

GPU MemoryCPU

Host 
Memory

Network 
Card

Correct guess: data is on the target GPU
RDMA

Pinned memory available to 
network and GPU devices

Page k

MPI moving data

GPU

GPU MemoryCPU

Host 
Memory

Network 
Card

MPI moving data from host memory on a wrong 
guess

RDMA

Pinned memory available to 
network and GPU devices

MPI moving data

GPU page migration
Page fault

data

Page k
data

Page k

Direct Memory 
Access (DMA)

DMA

MPI + HMM Assuming Data on GPU
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Compute Unified Device 
Architecture (CUDA)

(Thanks to CJ Newburn from NVIDIA for review and comments)



Overview

§ General-purpose parallel computing platform and 
programming model released by NVIDIA in 2006

§ Provides a user library (libcuda), runtime (libcudart), 
device drivers and C/C++ compiler (NVCC)

§ Programming language extensions for C/C++
– Define C functions to run on the GPU (kernels) using the 

__global__ declaration specifier

– Kernels can be launched with different number of threads using 
the <<<…>>> execution syntax

– Each thread executing the kernel is given a unique thread ID 
accessible from inside the kernel using the built-in threadIdx
variable

§ Support other languages such as FORTRAN

/* Kernel definition */
__global__ void gpu_kernel(double *in,

double *out)
{
/* get indices from thread id */
int i = threadIdx.x;
int j = threadIdx.y;

/* each thread performs work */
out[i][j] = f(in, i, j);

}

int main()
{
double *in_h, *out_h, *in_d, *out_d;
in_h = malloc(size);
out_h = malloc(size);
cudaMalloc(&in_d, size);
cudaMalloc(&out_d, size);

cudaMemcpy(in_d, in_h, size,
cudaMemcpyHostToDevice);

/* kernel invocation with N threads */
gpu_kernel<<<2,N>>>(in_d, out_d);

cudaMemcpy(out_h, out_d, size,
cudaMemcpyDeviceToHost);

[...snip...]

return 0;
}
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MPI + GPUDirect (CUDA ≥ 4)
§ GPUDirect 1.0 (Q2’ 2010) allows pinned memory to be 

shared by GPU and NIC such that GPU can directly copy 
data in/out pinned memory and NIC can DMA data from 
it

§ GPUDirect 2.0 (Peer-to-peer 2011) extends UVA support 
by allowing direct memory transfers between GPUs in 
the same node bypassing host completely

double *dev_buf;
cudaMalloc(&dev_buf, size);

if(my_rank == sender) {
gpu_kernel<<<grid,block,0,stream0>>>(dev_buf);
cudaStreamSynchronization(stream0);
MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);

} else {
MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
gpu_kernel<<<..>>>(dev_buf);

}

GPU

GPU MemCPU
Host
Mem

Direct Memory 
Access (DMA)

void* d_data

Network 
Card

RDMA

Pinned memory available 
to network and GPU 

devices

MPI moving data
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runs on, could issue the cudaMemcpy on a different
stream. Explicit synchronization needed to avoid async 
access to dev_buf



MPI + GPUDirect RDMA (CUDA ≥ 5)

§ Technology introduced in 2013 with Kepler-class GPUs and CUDA-5

§ GPU memory is directly accessible to third-party devices, including network 
interfaces (NIC driver talks to CUDA driver to register GPU memory)

§ RDMA operations to/from the device memory are possible and completely bypass 
the host memory (zero copy)

double *dev_buf;
cudaMalloc(&dev_buf, size);

if(my_rank == sender) {
gpu_kernel<<<grid,block,0,stream0>>>(dev_buf);
cudaStreamSynchronization(stream0);
MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);

} else {
MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
gpu_kernel<<<..>>>(dev_buf);

}

• MPI_Isend is not aware of which stream the kernel 
runs on. Explicit synchronization on stream that runs
the kernel is needed to avoid async access to dev_buf.
(The kernel is launched on default
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MPI + Unified Memory (CUDA ≥ 6)

§ Unified Memory (UM) between host and device
– CUDA kernel driver has a copy of the page table of the host and can handle pagefaults by 

migrating pages from host to device & vice versa

§ UM-aware MPI implementations stage data into tmp buffer

§ As mentioned before, performance can be bad
– MPI never knows if pages are on host or device (can only guess)

double *buf;
cudaMallocManaged(&buf, size);

/* initialize buf in host … */

if(my_rank == sender) {
gpu_kernel<<<grid,block,0,stream0>>>(buf);
cudaStreamSynchronize(stream0);
MPI_Isend(buf, size, MPI_DOUBLE, receiver, 0, comm, req);

} else {
MPI_Recv(buf, size, MPI_DOUBLE, sender, 0, comm, &status);
gpu_kernel<<<..>>>(buf);

}
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MPI + CUDA Optimizations Historical Summary

Period CUDA 
version Major Features MPI Optimization Space MPI Implementation 

Requirements 
After 2011 >= 4.0

< 5.0
• GPUDirect 1.0: RDMA can use GPU 

pinned memory
• GPUDirect 2.0: GPU peer-to-peer DMA 

possible 

• Use DMA and RDMA without 
extra memory copies to 
temporary buffers

GPU-aware MPI 
implementations

After 2012 >= 5.0 • GPUDirect RDMA: GPU memory is 
directly accessible to third-party 
devices

• Completely bypass host memory 
through RDMA to/from GPU 
memory

GPU-aware MPI 
implementations

After 2014 >= 6.0 • Unified Memory: shared memory 
between host and devices and 
automatic page migration

• The hardware takes care of 
moving data between host and 
device memories

• MPI optimizations are limited and 
need user hints

GPU-aware MPI 
implementations 

needed for performance
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MPI + GPUDirect RDMA (Supported HW & SW)

§ Mellanox Host Channel Adapters (HCA):
– ConnectX-3, ConnectX-3 Pro, Connect IB, ConnectX-4, ConnectX-5, or newer

– MLNX_OFED v2.1-x.x.x or later (compatible with HW, support for older HW may be
dropped in newer MLNX_OFED)

– Plugin Module to enable GPUDirect RDMA

§ NVIDIA GPUs:
– NVIDIA Tesla, Quadro K-Series or Tesla/Quadro P-Series, or newer

– NVIDIA Driver and Kernel Modules

– NVIDIA Runtime and Toolkit
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Summary

§ Accelerators are becoming increasingly important in HPC

§ MPI is playing its role in enabling the usage of accelerators across 
distributed memory nodes

§ The situation with MPI + GPU support is improving in both MPI 
implementations and in GPU hardware/software
– For CUDA and ROCm P2P/RDMA support from GPU memory is enabled for 

contiguous datatypes through the UCX driver

– For OpenCL/SYCL SVM can potentially enable similar optimizations as CUDA/ROCm
but at the current state no such support is available and explicit data movement 
between host and device memory is still required

– For OpenMP/OpenACC data movement is managed through directives but compilers 
can decide to leverage HMM
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Example: Stencil with GPU

§ Use GPU for updating the grid
– Compute the grid on GPU

– Pack/Unpack Halo regions to host memory for communication

§ Code in accelerators/stencil_cuda.cu

§ Special Environment Setup on Cooley

For stencil_cuda.c
+mvapich2-2.3.4-cuda10.0
+cuda-10.0
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What’s new in MPI-4



Introduction

§ MPI-4 is official
– https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

§ Major new features and changes
– Persistent Collectives

– Partitioned Communication

– Sessions

– Big Count

– Error Handling Improvement

– Topology Improvement
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Persistent Collectives

§ Similar to, but not exactly the same as regular nonblocking collective operations

§ For each nonblocking MPI collective, add a persistent variant

§ For every MPI_I<coll>, add MPI_<coll>_init

§ Parameters are identical to the corresponding nonblocking variant – plus additional 
MPI_INFO parameter

§ All arguments “fixed” for subsequent uses

§ Persistent collective operations cannot be matched with blocking or nonblocking
collective calls
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Persistent Collectives Example
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for (i = 0; i < MAXITER; i++) {
compute(bufA);
MPI_Ibcast(bufA, …, rowcomm, &req[0]);
compute(bufB);

MPI_Ireduce(bufB, …, colcomm, &req[1]);
MPI_Waitall(2, req, …);

}

MPI_Bcast_init(bufA, …, rowcomm, &req[0]);
MPI_Reduce_init(bufB, …, colcomm, &req[1]);
for (i = 0; i < MAXITER; i++) {

compute(bufA);

MPI_Start(req[0]);
compute(bufB);
MPI_Start(req[1]);
MPI_Waitall(2, req, …);

}

Nonblocking collectives API

Persistent collectives API

Slide courtesy of Tony Skjellum



Partitioned Communication

§ A MPI operation performed by multiple actors
– Actors could be threads, or GPUs

– Send with a big buffer that each actor “own” it a part of it

– Differentiating different actors as partitions
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MPI_PSEND_INIT(buf, partitions, count, datatype, dest, tag, comm, info, request)
MPI_PREADY(partition, request)
MPI_PARRIVED(request, partition, flag)



Partitioned Communication Example

if (myrank == 0) {
MPI_Psend_init(message, partitions, count, xfer_type, dest, tag,info, MPI_COMM_WORLD, &request);
MPI_Start(&request);

#pragma omp parallel for shared(request) num_threads(NUM_THREADS)
for (int i=0; i<partitions; i++)
{

/* compute and fill partition #i, then mark ready: */
MPI_Pready(i, request);

}
while(!flag) {

MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
}
MPI_Request_free(&request);

} else if (myrank == 1) {
MPI_Precv_init(message, partitions, count, xfer_type, source, tag,info, MPI_COMM_WORLD, &request);
MPI_Start(&request);
while(!flag) {

/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);

}
MPI_Request_free(&request);

}
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New Concept: “Session”

§ A local handle to the MPI library
– Implementation intent: lightweight / uses very few resources

– Can also cache some local state

§ Can have multiple sessions in an MPI process
– MPI_Session_init(…, &session);

– MPI_Session_finalize(…, &session);

§ Each session is a unit of isolation

ocean library

MPI_SESSION_INIT

atmosphere library

MPI_SESSION_INIT

MPI library

ocean 
session

atmosphere 
session

Unique handles to the 
underlying MPI library

Unique 
errhandlers, 

thread-levels, 
info, local 
state, etc.
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Overview

§ General scheme:
– Query the underlying run-time system

• Get a “set” of processes

– Determine the processes you want
• Create an MPI_Group

– Create a communicator with just those 
processes

• Create an MPI_Comm

Query runtime
for set of processes

MPI_Group

MPI_Comm

MPI_Session
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Big Count

§ Support count larger than INT_MAX

§ Using MPI_Count type

§ New interfaces with ”_c” suffix
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MPI_Send(void *buf, int count, …)
MPI_Send_c(void *buf, MPI_Count count, …)



Noncatastrophic Errors

§ Currently the state of MPI is undefined if any error occurs

§ Even simple errors, such as incorrect arguments, can cause the state of MPI to be 
undefined

§ Noncatastrophic errors are an opportunity for the MPI implementation to define 
some errors as “ignorable”

§ For an error, the user can query if it is catastrophic or not

§ If the error is not catastrophic, the user can simply pretend like (s)he never issued 
the operation and continue
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Topology Improvements

§ Hierarchical Mapping

§ Feature Based MPI_COMM_SPLIT_TYPE
– Guided Mode

• Info keys to specify hardware level

– Unguided Mode
• Start from an input COMM

• Split down step-wise
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Communication Relaxation Hints

§ mpi_assert_no_any_tag
– The process will not use MPI_ANY_TAG

§ mpi_assert_no_any_source
– The process will not use MPI_ANY_SOURCE

§ mpi_assert_exact_length
– Receive buffers must be correct size for messages

§ mpi_assert_overtaking_allowed
– All messages are logically concurrent
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MPI_T Events: Callback-driven event information 

§ Motivation 
– PMPI does not provide access to MPI internal state information 

– MPI_T performance variables only show aggregated information 

§ New interface to query available runtime event types 
– Follows the MPI_T variable approach 

– No specific event types mandated 

– Event structure can be inferred at runtime

§ Register callback functions to be called by the MPI runtime
– Runtime may defer callback invocation (tool can query event time) 

– Runtime may reduce restrictions on callback functions per invocation 

– Callback can query event information individually or copy data en bloc
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Concluding Remarks

§ Parallelism is critical today, given that that is the only way to achieve performance 
improvement with the modern hardware

§ MPI is an industry standard model for parallel programming
– A large number of implementations of MPI exist (both commercial and public domain)

– Virtually every system in the world supports MPI

§ Gives user explicit control on data management

§ Widely used by many scientific applications with great success

§ Your application can be next!
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Web Pointers

§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations: 
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

§ Several MPI tutorials can be found on the web
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Tutorial Books on MPI

Basic MPI Advanced MPI, including MPI-3
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Book on Parallel Programming Models
Edited by Pavan Balaji
• MPI: W. Gropp and R. Thakur
• GASNet: P. Hargrove
• OpenSHMEM: J. Kuehn and S. Poole
• UPC: K. Yelick and Y. Zheng
• Global Arrays: S. Krishnamoorthy, J. Daily, A. Vishnu, and B. 

Palmer
• Chapel: B. Chamberlain
• Charm++: L. Kale, N. Jain, and J. Lifflander
• ADLB: E. Lusk, R. Butler, and S. Pieper
• Scioto: J. Dinan
• SWIFT: T. Armstrong, J. M. Wozniak, M. Wilde, and I. Foster
• CnC: K. Knobe, M. Burke, and F. Schlimbach
• OpenMP: B. Chapman, D. Eachempati, and S. Chandrasekaran
• Cilk Plus: A. Robison and C. Leiserson
• Intel TBB: A. Kukanov
• CUDA: W. Hwu and D. Kirk
• OpenCL: T. Mattson
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MPI for Scalable Computing

Latest slides and code examples are available at

https://anl.box.com/v/atpesc2022-mpi-tutorial

Tutorial at ATPESC, August 2022

Yanfei Guo,  Ken Raffenetti,  Rajeev Thakur
Argonne National Laboratory

William Gropp
Univ. of Illinois, Urbana-Champaign

https://anl.box.com/v/atpesc2022-mpi-tutorial

