
Argonne Leadership Computing Facility1

Abhishek Bagusetty
Performance Engineering Group
Argonne Leadership Computing Facility

abagusetty@anl.gov

SYCL
Programming Model

Argonne Leadership Computing Facility2

SYCL – Specification

 SYCL is “not” a programming model but a “language specification”

– Heuristics looks similar to OpenCL-C bindings
– C++ single source (coexists host and device source code)
– Two distinct memory models (USM and/or Buffer)
– Asynchronous programming (overlaps device-compute,
copy, host operations)
– Portability (functional and performance)
– Productivity

Argonne Leadership Computing Facility3

SYCL – Motivation

oneAPI Implementation of SYCL = C++ and SYCL* standard
and extensions

Based on modern C++
C++ productivity features and familiar constructs

Standards-based, cross-architecture
Incorporates the SYCL standard for data parallelism and

heterogeneous programming

Argonne Leadership Computing Facility4

SYCL* extensions

Productivity
Simple things should be simple to express
Reduce verbosity and programmer burden enhance performance

•Give programmers control over program execution
•Enable hardware-specific features

Fast-moving open collaboration feeding into the SYCL*
standard
Open source implementation with goal of upstream LLVM
Extensions aim to become core SYCL*, or Khronos*

extensions

Argonne Leadership Computing Facility5

SYCL – A Portable Programming Model

A C++-based programming model for intra-node parallelism
 SYCL is a specification and “not” an implementation, currently compliant to C++17 ISO standards
 Cross-platform abstraction layer, heavily backed by industry
 Open-source, vendor agonistic
 Single-source model

Argonne Leadership Computing Facility6

SYCL – Compiler Players

Argonne Leadership Computing Facility7

SYCL @ NERSC

DPC++
Uses LLVM/Clang

Part of OneAPI

Any CPU

ROCm CUDA + PTX

OpenCL +
SPIR-v

NVIDIA GPUsAMD GPUs

Intel CPUs, GPUs, FPGAs

Compiler Vendor

https://docs.nersc.gov/development/programming-models/sycl/

 Collaboration between ALCF, NERSC and Codeplay to enable
support for NVIDIA A100 GPUs in LLVM DPC++/SYCL2020

• Initial scope of work complete
 - support for tensor cores, USM, atomics, and more available

• Current focus on performance, upstreaming features to LLVM,
tracking library support (e.g. FFT, oneMKL)

PrgEnv-llvm for CPE
NERSC has developed an additional PrgEnv which adds
to the Cray Programming Environment (CPE) that HPE
provides.
• LLVM compiler with support for OpenMP offload, SYCL

Credits: Brandon Cook
(NERSC)

Argonne Leadership Computing Facility8

Devices

 sycl::queue Que;

 // EXPLICIT SCALING (better performance)

 sycl::platform platform(sycl::gpu_selector{});
 auto const& gpu_devices = platform.get_devices(sycl::info::device_type::gpu);
 for (auto const& gpuDev : gpu_devices) {
 if(gpu_dev.get_info<sycl::info::device::partition_max_sub_devices>() > 0) {
 auto SubDev = gpuDev.create_sub_devices<sycl::info::partition_property::partition_by_affinity_domain>(sycl::info::partition_affinity_domain::numa);

 for (auto const& tile : SubDev) {
 Que = sycl::queue(tile);
 }
 }
 }

 // IMPLICIT SCALING

 sycl::platform platform(sycl::gpu_selector{});
 auto const& gpu_devices = platform.get_devices(sycl::info::device_type::gpu);
 for (auto const& gpuDev : gpu_devices) {
 Que = sycl::queue(gpuDev);
 }

 Devices are the target for acceleration offload
SYCL sub-devices ↔ CUDA Multi-Instance GPU (MIG) mode ↔ OpenCL sub-devices

 Explicit Scaling: Partitioning of a SYCL root device into multiple sub-devices based on NUMA boundary
 SYCL queues are further created based on “sub-devices” (better performance)

 Implicit Scaling: SYCL unpartitioned/root device is directly used to create a SYCL queue

Argonne Leadership Computing Facility9

Queues & Contexts
 “SYCL Queues” provide mechanism to submit work to a device or sub-device
 “SYCL Contexts” is well known to be over-looked

sycl::queue Que; // implicitly creates a SYCL context

 Context
 Contexts are used for resources isolation and sharing
 A SYCL context may consist of one or multiple devices
 Both root-devices and sub-devices can be within single context (all from same SYCL platform)
 Memory created can be shared only if their associated queue(s) are created using the same context

 Queue (aka CUDA Stream)
 SYCL queue is always attached to a single device in a possibly multi-device context

 Executes “asynchronously” from host code
 SYCL queue can execute tasks enqueued in either “in-order” or “out-of-order (default)”
 SYCL queue (in-order) is similar to CUDA stream (FIFO)

Argonne Leadership Computing Facility10

NERSC Perlmutter: System Overview

Perlmutter is a "Shasta" system: the non-compute
services are deployed as containers using Kubernetes
for orchestration.

Phase 1 (In Operation now)
● Non-compute nodes (Login, Service nodes, Workflow

and Large Memory)
● Storage (35 PB Lustre, all flash)
● GPU compute: 1536 nodes with 4x NVidia A100 GPUs
● Slingshot-10 Network

Phase 2 (Being installed)
● CPU compute: 3072 nodes with 2x AMD 64-core CPU
Slingshot-11 Network

"Slingshot" network - improvements over Aries: faster,
better traffic control, Ethernet-compatible

https://docs.nersc.gov/systems/perlmutter/

Argonne Leadership Computing Facility11

NERSC Perlmutter: System Overview
https://docs.nersc.gov/systems/perlmutter/The only Top 500 Top 10 system in the Top 10 of the Green 500

Nov 2021:

HPL Performance: 70.87 PF
Energy Efficiency: 27.37 GF/W (core phase)

Argonne Leadership Computing Facility12

NERSC Perlmutter: Logging in https://docs.nersc.gov/systems/perlmutter/

To login:
ssh username@perlmutter-p1.nersc.gov
Enter the password:

To get a training account:
Please register at https://iris.nersc.gov/train
Training code: b82m
If your organization is not listed in the dropdown menu, select "NERSC".

Note: (Important)
Please make sure to save username and password, it might be hard to retrieve otherwise

To request an interactive node (https://docs.nersc.gov/jobs/interactive/):
salloc -N 1 -C gpu -t 60 -c 10 -G 4 -A ntrain3 --reservation=atpsec_aug4

mailto:username@perlmutter-p1.nersc.gov

Argonne Leadership Computing Facility13

Build Your Own Compiler

 Build llvm-based SYCL compiler
 SYCL compiler for Nvidia hardware
 Nvidia A100 – NERSC Perlmutter

Argonne Leadership Computing Facility14

Build Your Own Compiler (~30 mins, plan accordingly)

Get the source code: (a big tar-ball, untar takes a while)
wget https://github.com/intel/llvm/archive/refs/tags/sycl-nightly/20220802.tar.gz
pigz -dc 20220802.tar.gz | tar xf -

Build & Install: (takes a while too)
module load cudatoolkit/11.5
module list

export DPCPP_HOME=$HOME

cd llvm-sycl-nightly-20220802

export CUDA_LIB_PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.11/cuda/lib64/stubs
CC=`which gcc` CXX=`which g++` python $DPCPP_HOME/llvm-sycl-nightly-20220802/buildbot/configure.py --cuda --cmake-gen="Unix Makefiles" --
cmake-opt="-DCUDA_TOOLKIT_ROOT_DIR=/opt/nvidia/hpc_sdk/Linux_x86_64/21.11/cuda/11.5"

python $DPCPP_HOME/llvm-sycl-nightly-20220802/buildbot/compile.py

Where are my SYCL compilers installed ?
train515@nid001608:~/llvm-sycl-nightly-20220802/build/bin>

https://github.com/intel/llvm/archive/refs/tags/sycl-nightly/20220802.tar.gz

Argonne Leadership Computing Facility15

Experimental Support for CUDA and ROCm devices

Compiling With DPC++ for CUDA GPUs

The following command can be used to compile your code using DPC++ for CUDA backend:

clang++ -std=c++17 -fsycl -fsycl-targets=nvptx64-nvidia-cuda-sycldevice -Xsycl-
target-backend '--cuda-gpu-arch=sm_80' simple-sycl-app.cpp -o simple-sycl-app-
cuda

Compiling With DPC++ for ROCm GPUs*

The following command can be used to compile your code using DPC++ for HIP backend:

clang++ -fsycl -fsycl-targets=amdgcn-amd-amdhsa -Xsycl-target-backend --
offload-arch=gfx9xx simple-sycl-app.cpp -o simple-sycl-app-rocm

*Currently tested for ROCm 4.2.0, gfx906 and gfx908 for MI50 and MI100 GPU targets respectively

Argonne Leadership Computing Facility16

Test your BYOC SYCL Compiler

#include <sycl/sycl.hpp>

int main() {
 auto const& gpu_devices = sycl::device::get_devices(sycl::info::device_type::gpu);
 std::cout << "Number of GPUs: " << gpu_devices.size() << std::endl;

 for(const auto& d : gpu_devices)
 std::cout << "Found device " << d.get_info<sycl::info::device::name>() << std::endl;

 sycl::queue Queue(sycl::gpu_selector{});
 return 0;
}

train515@nid001608:~> ./a.out
Number of GPUs: 4
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB

SYCL Source code to test:

export PATH=$HOME/llvm-sycl-nightly-20220802/build/bin:$PATH
export LD_LIBRARY_PATH=$HOME/llvm-sycl-nightly-20220802/build/lib:$LD_LIBRARY_PATH

Expected output:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

