SYCL
Programming Model

Abhishek Bagusetty

Performance Engineering Group
Argonne Leadership Computing Facility

abagusetty@anl.gov

SYCL - Specification

* SYCL is “not” a programming model but a "language specification”

— Heuristics looks similar to OpenCL-C bindings

— C++ single source (coexists host and device source code)
— Two distinct memory models (USM and/or Buffer)

— Asynchronous programming (overlaps device-compute,
copy, host operations)

— Portability (functional and performance)

— Productivity

2 Argonne Leadership Computing Facility Argonne &

SYCL — Motivation

oneAPI Implementation of SYCL = C++ and SYCL* standard
and extensions

Based on modern C++
v C++ productivity fFeatures and familiar constructs

Standards-based, cross-architecture
v’ Incorporates the SYCL standard for data parallelism and
heterogeneous programming

3 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

SYCL* extensions
Productivity

»Simple things should be simple to express
»Reduce verbosity and programmer burden enhance performance

*Give programmers control over program execution
*Enable hardware-specific Features

Fast-moving open collaboration feeding into the SYCL*

standard

v’ Open source implementation with goal of upstream LLVM

v Extensions aim to become core SYCL*, or Khronos*
extensions

4 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

SYCL — A Portable Programming Model

A C++-based programming model for intra-node parallelism

* SYCL is a specification and “not” an implementation, currently compliant to C++17 ISO standards
Cross-platform abstraction layer, heavily backed by industry
Open-source, vendor agonistic

* Single-source model

One-MKL Complex ML frameworks
OS:EDDP;E Standard C++ can be directly compiled
’ﬂ and accelerated
SYCL-B'LAS Li b Application F k
SYCL-Eigen ibraries C d rameworks | TensorFlow
SYCL-DNN aoe

SYCL Parallel STL

Libraries Libraries Libraries et aTac it dedice cone

C++ Kernel Fusion can SYCL CPU
give better performance @CL L Compiler] Compiler] MNI “GC(:

on complex apps and libs
than hand-coding T/ 2 g \']

C++ templates and lambda
T lat: T lat T lat
[C++ emplate] [C++ em_p ate] [C++ Template J % functions separate host &

V‘sual C++

CPU
7“Ta
- Other
OpenCL Backends
Accelerated code 4 SYCL is ideal for accelerating larger
%assegljntodei';dce [H CPU][GPU]] H[CPU][GPU D C++-based engines and applications
DRNC. COMPIRIE (Fpca | ose | [Feca |[bsp | with performance portability

[Al/Tensor HW] [Al/Tensor HW]
[

[Custom Hardware] Custom Hardware }

5 Argonne Leadership Computing Facility Arggmgome

SYCL — Compiler Players

SYCL, OpenCL and SPIR-V, as open industry (SYC: L SYCL enables Khronos to influence
standards, enable flexible integration and) ISO C++ to (eventually) support
deployment of multiple acceleration technologies Source Code heterogeneous compute

UNIVERSITAT
HEIDELBERG

(codeplay’ C ComputeCpp

ComputeCpp
Multiple
Backends

Uses LLVM/Clang
Part of oneAPI

hipSYCL
Multiple Backends

e &
. OpenCL nviDia. W X
NVIDIA GPUs Lpenivir” _ n:ljlnaln
OpenCL _ Any CPU |
(SPIFI. 1
j— AMD GPUs Intel CPUs \
' Intel FPGAs
@Hh Intel GPUs AMD GPUs . L 12
Intel CPUs (depends on driver stack) Rg evel Lero
Intel GPUs Arm Mali Cm
Intel FPGAs IMG PowerVR Intel GPUs

Renesas R-Car AMD GPUs

6 Argonne Leadership Computing Facility Argonne &

SYCL @ NERSC

* Collaboration between ALCF, NERSC and Codeplay to enable
support for NVIDIAA100 GPUs in LLVM DPC++/SYCL2020

Compiler Vendor

=

intel &

oneAPI

seeds

* Initial scope of work complete

- support for tensor cores, USM, atomics, and more available -

% NVIDIA.

» Current focus on performance, upstreaming features to LLVM, ~ RrROCm _
AMD GPUs NVIDIA GPUs

tracking library support (e.g. FFT, oneMKL)

PrgEnv-livm for CPE
NERSC has developed an additional PrgeEnv which adds

to the Cray Programming Environment (CPE) that HPE Intel CPUs, GPUs, FPGAS
provides. e
e LLVM compiler with support for OpenMP offload, SYCL (SPIRM OpenCL

A I g() nne ° m SR c CO d e p lay ’

NATIONAL LABORATORY

https://docs.nersc.gov/development/programming-models/sycl/

7 Argonne Leadership Computing Facility Credits: Brandon Cook Arggmgom%

L e e e a—

Devices

* Devices are the target for acceleration offload
SYCL sub-devices « CUDA Multi-Instance GPU (MIG) mode - OpenCL sub-devices

* Explicit Scaling: Partitioning of a SYCL root device into multiple sub-devices based on NUMA boundary
” SYCL queues are further created based on “sub-devices” (better performance)
* Implicit Scaling: SYCL unpartitioned/root device is directly used to create a SYCL queue

8 Argonne Leadership Computing Facility Argonne &

Queues & Contexts

* “SYCL Queues” provide mechanism to submit work to a device or sub-device
* “SYCL Contexts” is well known to be over-looked

sycl::queue Que; // implicitly creates a SYCL context

* Context
* Contexts are used for resources isolation and sharing
* A SYCL context may consist of one or multiple devices
* Both root-devices and sub-devices can be within single context (all from same SYCL platform)
* Memory created can be shared only if their associated queue(s) are created using the same context

* Queue (aka CUDA Stream)
* SYCL queue is always attached to a single device in a possibly multi-device context
” Executes “asynchronously” from host code
“ SYCL queue can execute tasks enqueued in either “in-order” or “out-of-order (default)”
” SYCL queue (in-order) is similar to CUDA stream (FIFO)

9 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

NERSC Perlmutter: System Overview

https://docs.nersc.gov/systems/perlmutter/

Perlmutter is a "Shasta" system: the non-compute
services are deployed as containers using Kubernetes
for orchestration.

Phase 1 (In Operation now)

* Non-compute nodes (Login, Service nodes, Workflow
and Large Memory)

e Storage (35 PB Lustre, all flash)

* GPU compute: 1536 nodes with 4x NVidia A100 GPUs

* Slingshot-10 Network

Phase 2 (Being installed)

* CPU compute: 3072 nodes with 2x AMD 64-core CPU
Slingshot-11 Network

"Slingshot" network - improvements over Aries: faster,
better traffic control, Ethernet-compatible

10 Argonne Leadership Computing Facility

Phase 1

@20 User access nodes\

@ Containerized
@ . Services

1x NVidia
A100 GPU

nviola
2x AMD Milan
64-core CPU
R G 5120
w@ unified memory

Slingshot
network

\@ Air-cooled

R

Phase 2

(@ s

@ se

AMD

)
[

=

£

1

1

\ 1

Service Nodes: :

Containerized
rvices

1x AMD Rome
32 or 64-core
CPU

Mostly 256GB
memory

Slingshot
network

External
networks

Air-cooled

)

/ 4 large-memory nodes Q

user access nodes

-X- Y
E @ @ environments

2x AMD Milan

Slingshot switches

/ = 270+ Storage nodes \

have dual-ported SSDs

with 2 (active/active)
controllers

24x NVMe SSD
1x Rome CPU

256GB memory

Slingshot
network

Air-coo led

4

T

L}

1

/ >1500 Perimutter GPU\]
nvioia n 1

L}

o 16 3
ﬁﬁ . 1% 2
g .
81 §

> »

odes have:

4x NVidia
A100 GPU
4x40 GB High-
BW Memory

1x AMD Milan
64-core CPU

256 GB
unified memory

Slingshot
network

Water-cooled

p:

2x AMD Milan

64-core CPU

512 GB
memory

Slingshot
network

Water-coo led

/- >3000 Perimutter CPU\

nodes have:

4

@40 User access nodes\

2
LT

nvioia
. . 64-core CPU

o] e 512 G
@ @ un memory

Slingshot
network

®

Containerized
Services &
Environments

1x NVidia
A100 GPU

A

Argonne &

NERSC Perlmutter: System Overview

The only Top 500 Top 10 system in the Top 10 of the Green 500

Nov 2021:

HPL Performance: 70.87 PF
Energy Efficiency: 27.37 GF/W (core phase)

11 Argonne Leadership Computing Facility

https://docs.nersc.gov/systems/perlmutter/

Top500 Top Ten Energy-Efficiency (GF/W)

Fugaku [Level 1

|
sunrt 0 Lo
|

B Level 3

Sierra

Sunway

Perlmutter

Selene

Tianhe-2A -
owets
wecs

Voyager-EUS2

Argonne &

NERSC Perlmutter: LOgging in https://docs.nersc.gov/systems/perlmutter/

To get a training account:

Please register at https://iris.nersc.gov/train
Training code: b82m

If your organization is not listed in the dropdown menu, select "NERSC".

Note: (Important)
Please make sure to save username and password, it might be hard to retrieve otherwise

i

To login:
ssh

Enter the password:

i

To request an interactive node (https://docs.nersc.gov/jobs/interactive/) :
salloc -N 1 -C gpu -t 60 -c 10 -G 4 -A ntrain3 --reservation=atpsec_aug4

12 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

mailto:username@perlmutter-p1.nersc.gov

GyeL

“ Build llvm-based SYCL compiler
“ SYCL compiler for Nvidia hardware
“Nvidia A100 — NERSC Perlmutter

Build Your Own Compiler

13 Argonne Leadership Computing Facility

Argonne

Build Your Own COmpiler (~30 mins, plan accordingly)

Get the source code: (a big tar-ball, untar takes a while)

wget

pigz -dc 20220802.tar.gz | tar xf -

Build & Install: (takes a while too)
mggﬂtg {ic;atd cudatoolkit/11.5

export DPCPP_HOME=$HOME

cd llvm-sycl-nightly-20220802

export CUDA _LIB_PATH=/opt/nvidia/hpc_sdk/Linux_x86 64/21.11/cuda/lib64/stubs

CC="which gcc® CXX="which g++" python $DPCPP_HOME/llvm-sycl-nightly-20220802/buildbot/configure.py --cuda --cmake-gen="Unix Makefiles" --
cmake-opt="-DCUDA_TOOLKIT_ROOT_DIR=/opt/nvidia/hpc_sdk/Linux_x86_64/21.11/cuda/11.5"

python $DPCPP_HOME/llvm-sycl-nightly-20220802/buildbot/compile.py

Where are my SYCL compilers installed ?
train515@nid001608:~/llvm-sycl-nightly-20220802/build/bin>

14 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

https://github.com/intel/llvm/archive/refs/tags/sycl-nightly/20220802.tar.gz

Experimental Support for CUDA and ROCm devices

Compiling With DPC++ for CUDA GPUs

The following command can be used to compile your code using DPC++ for CUDA backend:
clang++ -std=c++17 -fsycl -fsycl-targets=nvptx64-nvidia-cuda-sycldevice -Xsycl-

target-backend '--cuda-gpu-arch=sm 80' simple-sycl-app.cpp -0 simple-sycl-app-
cuda

Compiling With DPC++ for ROCm GPUs’

The following command can be used to compile your code using DPC++ for HIP backend:

clang++ -fsycl -fsycl-targets=amdgcn-amd-amdhsa -Xsycl-target-backend --
offload-arch=gfx9xx simple-sycl-app.cpp -0 simple-sycl-app-rocm

*Currently tested for ROCm 4.2.0, gfx906 and gfx908 for MI50 and MI100 GPU targets respectively

15 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

Test your BYOC SYCL Compiler

export PATH=SHOME/llvm-sycl-nightly-20220802/build/bin:SPATH
export LD_LIBRARY_PATH=$SHOME/llvm-sycl-nightly-20220802/build/lib:5LD_LIBRARY_PATH

#include <sycl/sycl.hpp>

int main() {
auto const& gpu_devices = sycl::device::get_devices(sycl::info::device_type::gpu);
std::cout << "Number of GPUs: " << gpu_devices.size() << std::endl;

SYCL Source code to test:

for(const auto& d : gpu_devices)
std::cout << "Found device " << d.get_info<sycl::info::device::name>() << std::end|;

sycl::queue Queue(sycl::gpu_selector{});
return O;

}

train515@nid001608:~> ./a.out

Number of GPUs: 4

Expected output: Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB

16 Argonne Leadership Computing Facility Argonne‘)

AAAAAAAAAAAAAAAAAA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

