
Argonne Leadership Computing Facility1

Abhishek Bagusetty
Performance Engineering Group
Argonne Leadership Computing Facility

abagusetty@anl.gov

SYCL
Programming Model

Argonne Leadership Computing Facility2

SYCL – Specification

 SYCL is “not” a programming model but a “language specification”

– Heuristics looks similar to OpenCL-C bindings
– C++ single source (coexists host and device source code)
– Two distinct memory models (USM and/or Buffer)
– Asynchronous programming (overlaps device-compute,
copy, host operations)
– Portability (functional and performance)
– Productivity

Argonne Leadership Computing Facility3

SYCL – Motivation

oneAPI Implementation of SYCL = C++ and SYCL* standard
and extensions

Based on modern C++
C++ productivity features and familiar constructs

Standards-based, cross-architecture
Incorporates the SYCL standard for data parallelism and

heterogeneous programming

Argonne Leadership Computing Facility4

SYCL* extensions

Productivity
Simple things should be simple to express
Reduce verbosity and programmer burden enhance performance

•Give programmers control over program execution
•Enable hardware-specific features

Fast-moving open collaboration feeding into the SYCL*
standard
Open source implementation with goal of upstream LLVM
Extensions aim to become core SYCL*, or Khronos*

extensions

Argonne Leadership Computing Facility5

SYCL – A Portable Programming Model

A C++-based programming model for intra-node parallelism
 SYCL is a specification and “not” an implementation, currently compliant to C++17 ISO standards
 Cross-platform abstraction layer, heavily backed by industry
 Open-source, vendor agonistic
 Single-source model

Argonne Leadership Computing Facility6

SYCL – Compiler Players

Argonne Leadership Computing Facility7

SYCL @ NERSC

DPC++
Uses LLVM/Clang

Part of OneAPI

Any CPU

ROCm CUDA + PTX

OpenCL +
SPIR-v

NVIDIA GPUsAMD GPUs

Intel CPUs, GPUs, FPGAs

Compiler Vendor

https://docs.nersc.gov/development/programming-models/sycl/

 Collaboration between ALCF, NERSC and Codeplay to enable
support for NVIDIA A100 GPUs in LLVM DPC++/SYCL2020

• Initial scope of work complete
 - support for tensor cores, USM, atomics, and more available

• Current focus on performance, upstreaming features to LLVM,
tracking library support (e.g. FFT, oneMKL)

PrgEnv-llvm for CPE
NERSC has developed an additional PrgEnv which adds
to the Cray Programming Environment (CPE) that HPE
provides.
• LLVM compiler with support for OpenMP offload, SYCL

Credits: Brandon Cook
(NERSC)

Argonne Leadership Computing Facility8

Devices

 sycl::queue Que;

 // EXPLICIT SCALING (better performance)

 sycl::platform platform(sycl::gpu_selector{});
 auto const& gpu_devices = platform.get_devices(sycl::info::device_type::gpu);
 for (auto const& gpuDev : gpu_devices) {
 if(gpu_dev.get_info<sycl::info::device::partition_max_sub_devices>() > 0) {
 auto SubDev = gpuDev.create_sub_devices<sycl::info::partition_property::partition_by_affinity_domain>(sycl::info::partition_affinity_domain::numa);

 for (auto const& tile : SubDev) {
 Que = sycl::queue(tile);
 }
 }
 }

 // IMPLICIT SCALING

 sycl::platform platform(sycl::gpu_selector{});
 auto const& gpu_devices = platform.get_devices(sycl::info::device_type::gpu);
 for (auto const& gpuDev : gpu_devices) {
 Que = sycl::queue(gpuDev);
 }

 Devices are the target for acceleration offload
SYCL sub-devices ↔ CUDA Multi-Instance GPU (MIG) mode ↔ OpenCL sub-devices

 Explicit Scaling: Partitioning of a SYCL root device into multiple sub-devices based on NUMA boundary
 SYCL queues are further created based on “sub-devices” (better performance)

 Implicit Scaling: SYCL unpartitioned/root device is directly used to create a SYCL queue

Argonne Leadership Computing Facility9

Queues & Contexts
 “SYCL Queues” provide mechanism to submit work to a device or sub-device
 “SYCL Contexts” is well known to be over-looked

sycl::queue Que; // implicitly creates a SYCL context

 Context
 Contexts are used for resources isolation and sharing
 A SYCL context may consist of one or multiple devices
 Both root-devices and sub-devices can be within single context (all from same SYCL platform)
 Memory created can be shared only if their associated queue(s) are created using the same context

 Queue (aka CUDA Stream)
 SYCL queue is always attached to a single device in a possibly multi-device context

 Executes “asynchronously” from host code
 SYCL queue can execute tasks enqueued in either “in-order” or “out-of-order (default)”
 SYCL queue (in-order) is similar to CUDA stream (FIFO)

Argonne Leadership Computing Facility10

NERSC Perlmutter: System Overview

Perlmutter is a "Shasta" system: the non-compute
services are deployed as containers using Kubernetes
for orchestration.

Phase 1 (In Operation now)
● Non-compute nodes (Login, Service nodes, Workflow

and Large Memory)
● Storage (35 PB Lustre, all flash)
● GPU compute: 1536 nodes with 4x NVidia A100 GPUs
● Slingshot-10 Network

Phase 2 (Being installed)
● CPU compute: 3072 nodes with 2x AMD 64-core CPU
Slingshot-11 Network

"Slingshot" network - improvements over Aries: faster,
better traffic control, Ethernet-compatible

https://docs.nersc.gov/systems/perlmutter/

Argonne Leadership Computing Facility11

NERSC Perlmutter: System Overview
https://docs.nersc.gov/systems/perlmutter/The only Top 500 Top 10 system in the Top 10 of the Green 500

Nov 2021:

HPL Performance: 70.87 PF
Energy Efficiency: 27.37 GF/W (core phase)

Argonne Leadership Computing Facility12

NERSC Perlmutter: Logging in https://docs.nersc.gov/systems/perlmutter/

To login:
ssh username@perlmutter-p1.nersc.gov
Enter the password:

To get a training account:
Please register at https://iris.nersc.gov/train
Training code: b82m
If your organization is not listed in the dropdown menu, select "NERSC".

Note: (Important)
Please make sure to save username and password, it might be hard to retrieve otherwise

To request an interactive node (https://docs.nersc.gov/jobs/interactive/):
salloc -N 1 -C gpu -t 60 -c 10 -G 4 -A ntrain3 --reservation=atpsec_aug4

mailto:username@perlmutter-p1.nersc.gov

Argonne Leadership Computing Facility13

Build Your Own Compiler

 Build llvm-based SYCL compiler
 SYCL compiler for Nvidia hardware
 Nvidia A100 – NERSC Perlmutter

Argonne Leadership Computing Facility14

Build Your Own Compiler (~30 mins, plan accordingly)

Get the source code: (a big tar-ball, untar takes a while)
wget https://github.com/intel/llvm/archive/refs/tags/sycl-nightly/20220802.tar.gz
pigz -dc 20220802.tar.gz | tar xf -

Build & Install: (takes a while too)
module load cudatoolkit/11.5
module list

export DPCPP_HOME=$HOME

cd llvm-sycl-nightly-20220802

export CUDA_LIB_PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.11/cuda/lib64/stubs
CC=`which gcc` CXX=`which g++` python $DPCPP_HOME/llvm-sycl-nightly-20220802/buildbot/configure.py --cuda --cmake-gen="Unix Makefiles" --
cmake-opt="-DCUDA_TOOLKIT_ROOT_DIR=/opt/nvidia/hpc_sdk/Linux_x86_64/21.11/cuda/11.5"

python $DPCPP_HOME/llvm-sycl-nightly-20220802/buildbot/compile.py

Where are my SYCL compilers installed ?
train515@nid001608:~/llvm-sycl-nightly-20220802/build/bin>

https://github.com/intel/llvm/archive/refs/tags/sycl-nightly/20220802.tar.gz

Argonne Leadership Computing Facility15

Experimental Support for CUDA and ROCm devices

Compiling With DPC++ for CUDA GPUs

The following command can be used to compile your code using DPC++ for CUDA backend:

clang++ -std=c++17 -fsycl -fsycl-targets=nvptx64-nvidia-cuda-sycldevice -Xsycl-
target-backend '--cuda-gpu-arch=sm_80' simple-sycl-app.cpp -o simple-sycl-app-
cuda

Compiling With DPC++ for ROCm GPUs*

The following command can be used to compile your code using DPC++ for HIP backend:

clang++ -fsycl -fsycl-targets=amdgcn-amd-amdhsa -Xsycl-target-backend --
offload-arch=gfx9xx simple-sycl-app.cpp -o simple-sycl-app-rocm

*Currently tested for ROCm 4.2.0, gfx906 and gfx908 for MI50 and MI100 GPU targets respectively

Argonne Leadership Computing Facility16

Test your BYOC SYCL Compiler

#include <sycl/sycl.hpp>

int main() {
 auto const& gpu_devices = sycl::device::get_devices(sycl::info::device_type::gpu);
 std::cout << "Number of GPUs: " << gpu_devices.size() << std::endl;

 for(const auto& d : gpu_devices)
 std::cout << "Found device " << d.get_info<sycl::info::device::name>() << std::endl;

 sycl::queue Queue(sycl::gpu_selector{});
 return 0;
}

train515@nid001608:~> ./a.out
Number of GPUs: 4
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB
Found device NVIDIA A100-SXM4-40GB

SYCL Source code to test:

export PATH=$HOME/llvm-sycl-nightly-20220802/build/bin:$PATH
export LD_LIBRARY_PATH=$HOME/llvm-sycl-nightly-20220802/build/lib:$LD_LIBRARY_PATH

Expected output:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

