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Hands on exercises: https://github.com/radix-io/hands-on

What is HPC I/O?

• HPC I/O: storing and retrieving persistent scientific 
data on a high-performance computing platform

– Data is usually stored on a parallel file system.

– Parallel file systems can rapidly store and access 
enormous volumes of data.  

– They carefully orchestrate data movement between 
applications, system software, and storage hardware.

– This is an important job!  Valuable CPU time is wasted if 
an application spends too long waiting for data.

• Today’s lectures are really
all about the proper care
and feeding of exotic
parallel file systems.

open()
write()
close()

Scientific application processes

Persistent data sets

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

A look under the hood
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Workstation (laptop) storage path

• A typical workstation only has a few 
storage devices (probably just one).

• The path between applications and 
storage is short.

• Properties:
• Low latency
• Low bandwidth

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

A look under the hood
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Workstation (laptop) storage path
HPC system storage path

• An HPC system manages many (e.g., 
thousands of) disaggregated devices.

• Paths between applications and storage 
devices are quite long, but numerous.

• Properties:
• High latency
• High bandwidth

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Striping

HPC system storage path • Large files are not generally stored on a 
single storage device.

• They are distributed across multiple 
servers (and then each server further 
distributes across storage devices).

• This is referred to as striping.
• Different file systems use different 

strategies for striping data.
• Sometimes the strategy is tunable.

Example of a single 

logical file striped across 

all available servers and 

storage devices

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Is that all?

HPC system storage path

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Is that all?

HPC system storage path
• Each HPC storage system is unique.
• Some systems have:

• In-system storage: low latency but not shared
• Burst buffers: high performance with limited 

capacity
• Multiple file systems: storage systems 

optimized for different kinds of data

• We’ll lear   ore about so e of these 
options in the next presentation.

•  o ’t worry.  As the day  oes o , we w ll 
teach tools and techniques to tame this 
complexity.  The key takeaway for now is 
to understand why HPC systems use 
specialized storage software.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Presenting storage to HPC applications

• A parallel file system can be accessed just like 
any other file system:
• open() / close() / read() / write()

• fopen() / fclose() / fprintf() for text data

• (variations depending on your programming 
language)

• Data is organized in a hierarchy of directories 
and files.

• We call th s API the “PO IX   terface”,  t  s 
standardized across all UNIX-like systems.

• This API works, and is great for compatibility, 
but it was created 50 years ago before the rise 
of parallel computing.

• The API has no concept of 
parallel access; semantics for 
that are largely undefined.

• File descriptors are stateful at 
each process.

• File position is implied.

• Files are unstructured.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 1: writing different parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously, but to different parts of the file.

• In this example we have a big gap (32 MiB) between 
them. Assume we are writing reasonably large 
chunks to optimize bandwidth vs. latency.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 1: writing different parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously, but to different parts of the file.

• In this example we have a big gap (32 MiB) between 
them. Assume we are writing reasonably large 
chunks to optimize bandwidth vs. latency.

• The writes probably map to different servers and 
devices.

• No device contention. There is no control over path 
to those devices, though, and at some point in 
 ract ce you’ll also wa t de ser access...

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(256 KiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different parts of the file.

• I  th s exa  le they st ll do ’t o erla , but they wr te 
adjacent bytes.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously, but to different parts of the file.

• I  th s exa  le they st ll do ’t o erla , but they wr te 
adjacent bytes

• The writes might access the same server and 
storage device.

• But is there a conflict? Counterintuitively, probably 
so: the caching and locking granularity is 
independent of access size Uncoordinated adjacent 
access ca  cause “false shar   ” a d ser al zat o .

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Ra k 0: o e (“a”); lseek(0); write(256 KiB);

Ra k 1: o e (“b”); lseek(0); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different files.

• There is no possibility of I/O conflict. That should be 
good, right?

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Ra k 0: o e (“a”); lseek(0); write(256 KiB);

Ra k 1: o e (“b”); lseek(0); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different files.

• There is no possibility of I/O conflict. That should be 
good, right?

• The writes are indeed issued to independent servers / 
storage devices.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Ra k 0: o e (“a”); lseek(0); write(256 KiB);

Ra k 1: o e (“b”); lseek(0); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different files.

• There is no possibility of I/O conflict. That should be 
good, right?

• The writes are indeed issued to independent servers / 
storage devices.

• Directories are hierarchical, though, so processes will 
encounter contention at open() time to coordinate file 
names.

• Poor ratio of work (metadata) per transfer.

• (Eventually) more burden on user to manage files.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
The common theme

There is a common underlying problem in each of the preceding examples:

The sequential POSIX API does not provide 
enough “big picture” information to the storage 
system.  This makes it difficult to apply aggregate 
optimizations that would organize storage traffic.

Because each process acts independently using a POSIX API, the storage system has no 
choice but to service each I/O operation in isolation (even if there are thousands or even millions 
in flight).  There is minimal opportunity to aggregate or structure the flow of data.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Well, what does that leave?

• Help is on the way!

• Our speakers this afternoon will teach you about a variety of APIs 
designed specifically to facilitate parallel access to scientific data.
• “high-level I/O libraries”

• All of them implement portable optimizations that shape traffic for 
parallel file systems.

• If you  ust use PO IX APIs, do ’t worry, we w ll also share tech  ques 
to help you extract performance there.

• A b   feature of today’s  ater al  s also how to  easure, character ze, 
and understand I/O behavior so that you can continually improve.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

High-level I/O libraries:
an early sales pitch
• Applications use advanced data models according 

to their scientific objectives:

– The data itself: Multidimensional typed arrays, 
images composed of scan lines, etc.

– Descriptions of data (metadata): Headers, attributes, 
time stamps, etc.

• In contrast, parallel file systems present a very 
simple data model:

– Tree-based hierarchy of containers

– Containers with streams of bytes (files)

– Containers listing other containers (directories)

– As we saw in previous slides: quirky performance

You could map between these two models yourself:
“The freque cy attr bute  s a  8-byte float in GHz, stored 
at offset 4096.”

Right Interior

Carotid Artery

Platelet 

Aggregation

Model complexity:

Spectral element mesh (top) for thermal 

hydraulics computation coupled with 

finite element mesh (bottom) for 

neutronics calculation.

Scale complexity:

Spatial range from the 

reactor core in meters to fuel 

pellets in millimeters.

Images from T. Tautges (ANL) (upper left), M. Smith 

(ANL) (lower left), and K. Smith (MIT) (right).

18

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

High-level I/O libraries:
an early sales pitch

Platelet 

Aggregation

Model complexity:

Spectral element mesh (top) for thermal 

hydraulics computation coupled with 

finite element mesh (bottom) for 

neutronics calculation.

Scale complexity:

Spatial range from the 

reactor core in meters to fuel 

pellets in millimeters.
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Data libraries (like HDF5, PnetCDF, and ADIOS) 
help to bridge this gap between application data 
models and file system interfaces.

Why use a high-level data library?

• More expressive interfaces for scientific data
• e.g., multidimensional variables and their descriptions

• Interoperability 
• e.g., enables collaborators to share data in self-

describing, well-documented formats 

• Performance
• e.g., high level libraries hide the details of platform-

specific optimizations

• Future proofing
• e.g., interfaces and data formats that outlive specific 

storage technologies

Images from T. Tautges (ANL) (upper left), M. Smith 

(ANL) (lower left), and K. Smith (MIT) (right).

Stay tuned for more information 

in the following sessions:

2:00 Parallel-NetCDF

2:45 HDF5

https://github.com/radix-io/hands-on


20

Hands on exercises: https://github.com/radix-io/hands-on

And finally, even if you do everything right
… performance can still be surprising
• Why:

– Thousands of hard drives will never perform 
perfectly at the same time.

– You are sharing storage with many other users 
across multiple HPC systems.

– You are also sharing storage with remote 
transfers, tape archives, and other data 
management tasks.

• Compute nodes belong exclusively to you 
during a job allocation, but the storage 
system does not.

• Storage performance varies in ways
that are fundamentally different from
compute performance.

ALCF project file system

Theta (Cray XC)
Theta-
GPU

Cooley 
(Linux)

Globus 
transfer

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

How to account for variability

• Take multiple samples when measuring I/O 
performance.

• This figure shows 15 samples of I/O time 
from a 6,000 process benchmark on the 
(now retired) Edison system.

• How do you assess if a change in your 
application helped or hurt performance 
under these conditions?

• We will have a hands-on exercise later in 
the day that you can use to investigate this 
phenomenon first hand.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Parting thoughts: I/O performance optimization is an 
ongoing process

22

Figure by Patrick Edwin Moran

Performance characterization
tools (e.g., Darshan)

Background knowledge
about how storage 
systems work (e.g., this 
presentation)

Facility resources 
(e.g., ALCF, OLCF, 
and NERSC staff 
and documentation)

Optimization techniques, 
tools, and libraries (e.g., 
later presentations today)

Applications are updated, 
systems change, and new 
allocations are granted.

We wa t to “teach a  a  to 
f sh” by equ       you w th the 
tools you need to monitor and 
improve your I/O performance.

https://github.com/radix-io/hands-on
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Hands on exercises: https://github.com/radix-io/hands-on

Thank you!

https://github.com/radix-io/hands-on

