
Principles of HPC I/O
ATPESC 2022 August 5, 2022

Phil Carns
Mathematics and Computer Science Division
Argonne National Laboratory

2

Hands on exercises: https://github.com/radix-io/hands-on

What is HPC I/O?

• HPC I/O: storing and retrieving persistent scientific
data on a high-performance computing platform

– Data is usually stored on a parallel file system.

– Parallel file systems can rapidly store and access
enormous volumes of data.

– They carefully orchestrate data movement between
applications, system software, and storage hardware.

– This is an important job! Valuable CPU time is wasted if
an application spends too long waiting for data.

• Today’s lectures are really
all about the proper care
and feeding of exotic
parallel file systems.

open()
write()
close()

Scientific application processes

Persistent data sets

https://github.com/radix-io/hands-on

3

Hands on exercises: https://github.com/radix-io/hands-on

A look under the hood

 o ute

 ores

 tora e

 o troller

 tora e

 e ces

Workstation (laptop) storage path

• A typical workstation only has a few
storage devices (probably just one).

• The path between applications and
storage is short.

• Properties:
• Low latency
• Low bandwidth

https://github.com/radix-io/hands-on

4

Hands on exercises: https://github.com/radix-io/hands-on

A look under the hood

 o ute

 ores

 tora e

 o troller

 tora e

 e ces

Workstation (laptop) storage path
HPC system storage path

• An HPC system manages many (e.g.,
thousands of) disaggregated devices.

• Paths between applications and storage
devices are quite long, but numerous.

• Properties:
• High latency
• High bandwidth

https://github.com/radix-io/hands-on

5

Hands on exercises: https://github.com/radix-io/hands-on

Striping

HPC system storage path • Large files are not generally stored on a
single storage device.

• They are distributed across multiple
servers (and then each server further
distributes across storage devices).

• This is referred to as striping.
• Different file systems use different

strategies for striping data.
• Sometimes the strategy is tunable.

Example of a single

logical file striped across

all available servers and

storage devices

https://github.com/radix-io/hands-on

6

Hands on exercises: https://github.com/radix-io/hands-on

Is that all?

HPC system storage path

https://github.com/radix-io/hands-on

7

Hands on exercises: https://github.com/radix-io/hands-on

Is that all?

HPC system storage path
• Each HPC storage system is unique.
• Some systems have:

• In-system storage: low latency but not shared
• Burst buffers: high performance with limited

capacity
• Multiple file systems: storage systems

optimized for different kinds of data

• We’ll lear ore about so e of these
options in the next presentation.

• o ’t worry. As the day oes o , we w ll
teach tools and techniques to tame this
complexity. The key takeaway for now is
to understand why HPC systems use
specialized storage software.

https://github.com/radix-io/hands-on

8

Hands on exercises: https://github.com/radix-io/hands-on

Presenting storage to HPC applications

• A parallel file system can be accessed just like
any other file system:
• open() / close() / read() / write()

• fopen() / fclose() / fprintf() for text data

• (variations depending on your programming
language)

• Data is organized in a hierarchy of directories
and files.

• We call th s API the “PO IX terface”, t s
standardized across all UNIX-like systems.

• This API works, and is great for compatibility,
but it was created 50 years ago before the rise
of parallel computing.

• The API has no concept of
parallel access; semantics for
that are largely undefined.

• File descriptors are stateful at
each process.

• File position is implied.

• Files are unstructured.

https://github.com/radix-io/hands-on

9

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 1: writing different parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously, but to different parts of the file.

• In this example we have a big gap (32 MiB) between
them. Assume we are writing reasonably large
chunks to optimize bandwidth vs. latency.

https://github.com/radix-io/hands-on

10

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 1: writing different parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously, but to different parts of the file.

• In this example we have a big gap (32 MiB) between
them. Assume we are writing reasonably large
chunks to optimize bandwidth vs. latency.

• The writes probably map to different servers and
devices.

• No device contention. There is no control over path
to those devices, though, and at some point in
 ract ce you’ll also wa t de ser access...

https://github.com/radix-io/hands-on

11

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(256 KiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different parts of the file.

• I th s exa le they st ll do ’t o erla , but they wr te
adjacent bytes.

https://github.com/radix-io/hands-on

12

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously, but to different parts of the file.

• I th s exa le they st ll do ’t o erla , but they wr te
adjacent bytes

• The writes might access the same server and
storage device.

• But is there a conflict? Counterintuitively, probably
so: the caching and locking granularity is
independent of access size Uncoordinated adjacent
access ca cause “false shar ” a d ser al zat o .

https://github.com/radix-io/hands-on

13

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Ra k 0: o e (“a”); lseek(0); write(256 KiB);

Ra k 1: o e (“b”); lseek(0); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

https://github.com/radix-io/hands-on

14

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Ra k 0: o e (“a”); lseek(0); write(256 KiB);

Ra k 1: o e (“b”); lseek(0); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

• The writes are indeed issued to independent servers /
storage devices.

https://github.com/radix-io/hands-on

15

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Ra k 0: o e (“a”); lseek(0); write(256 KiB);

Ra k 1: o e (“b”); lseek(0); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

• The writes are indeed issued to independent servers /
storage devices.

• Directories are hierarchical, though, so processes will
encounter contention at open() time to coordinate file
names.

• Poor ratio of work (metadata) per transfer.

• (Eventually) more burden on user to manage files.

https://github.com/radix-io/hands-on

16

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
The common theme

There is a common underlying problem in each of the preceding examples:

The sequential POSIX API does not provide
enough “big picture” information to the storage
system. This makes it difficult to apply aggregate
optimizations that would organize storage traffic.

Because each process acts independently using a POSIX API, the storage system has no
choice but to service each I/O operation in isolation (even if there are thousands or even millions
in flight). There is minimal opportunity to aggregate or structure the flow of data.

https://github.com/radix-io/hands-on

17

Hands on exercises: https://github.com/radix-io/hands-on

Why is concurrent access hard?
Well, what does that leave?

• Help is on the way!

• Our speakers this afternoon will teach you about a variety of APIs
designed specifically to facilitate parallel access to scientific data.
• “high-level I/O libraries”

• All of them implement portable optimizations that shape traffic for
parallel file systems.

• If you ust use PO IX APIs, do ’t worry, we w ll also share tech ques
to help you extract performance there.

• A b feature of today’s ater al s also how to easure, character ze,
and understand I/O behavior so that you can continually improve.

https://github.com/radix-io/hands-on

18

Hands on exercises: https://github.com/radix-io/hands-on

High-level I/O libraries:
an early sales pitch
• Applications use advanced data models according

to their scientific objectives:

– The data itself: Multidimensional typed arrays,
images composed of scan lines, etc.

– Descriptions of data (metadata): Headers, attributes,
time stamps, etc.

• In contrast, parallel file systems present a very
simple data model:

– Tree-based hierarchy of containers

– Containers with streams of bytes (files)

– Containers listing other containers (directories)

– As we saw in previous slides: quirky performance

You could map between these two models yourself:
“The freque cy attr bute s a 8-byte float in GHz, stored
at offset 4096.”

Right Interior

Carotid Artery

Platelet

Aggregation

Model complexity:

Spectral element mesh (top) for thermal

hydraulics computation coupled with

finite element mesh (bottom) for

neutronics calculation.

Scale complexity:

Spatial range from the

reactor core in meters to fuel

pellets in millimeters.

Images from T. Tautges (ANL) (upper left), M. Smith

(ANL) (lower left), and K. Smith (MIT) (right).

18

https://github.com/radix-io/hands-on

19

Hands on exercises: https://github.com/radix-io/hands-on

High-level I/O libraries:
an early sales pitch

Platelet

Aggregation

Model complexity:

Spectral element mesh (top) for thermal

hydraulics computation coupled with

finite element mesh (bottom) for

neutronics calculation.

Scale complexity:

Spatial range from the

reactor core in meters to fuel

pellets in millimeters.

19

Data libraries (like HDF5, PnetCDF, and ADIOS)
help to bridge this gap between application data
models and file system interfaces.

Why use a high-level data library?

• More expressive interfaces for scientific data
• e.g., multidimensional variables and their descriptions

• Interoperability
• e.g., enables collaborators to share data in self-

describing, well-documented formats

• Performance
• e.g., high level libraries hide the details of platform-

specific optimizations

• Future proofing
• e.g., interfaces and data formats that outlive specific

storage technologies

Images from T. Tautges (ANL) (upper left), M. Smith

(ANL) (lower left), and K. Smith (MIT) (right).

Stay tuned for more information

in the following sessions:

2:00 Parallel-NetCDF

2:45 HDF5

https://github.com/radix-io/hands-on

20

Hands on exercises: https://github.com/radix-io/hands-on

And finally, even if you do everything right
… performance can still be surprising
• Why:

– Thousands of hard drives will never perform
perfectly at the same time.

– You are sharing storage with many other users
across multiple HPC systems.

– You are also sharing storage with remote
transfers, tape archives, and other data
management tasks.

• Compute nodes belong exclusively to you
during a job allocation, but the storage
system does not.

• Storage performance varies in ways
that are fundamentally different from
compute performance.

ALCF project file system

Theta (Cray XC)
Theta-
GPU

Cooley
(Linux)

Globus
transfer

https://github.com/radix-io/hands-on

21

Hands on exercises: https://github.com/radix-io/hands-on

How to account for variability

• Take multiple samples when measuring I/O
performance.

• This figure shows 15 samples of I/O time
from a 6,000 process benchmark on the
(now retired) Edison system.

• How do you assess if a change in your
application helped or hurt performance
under these conditions?

• We will have a hands-on exercise later in
the day that you can use to investigate this
phenomenon first hand.

https://github.com/radix-io/hands-on

22

Hands on exercises: https://github.com/radix-io/hands-on

Parting thoughts: I/O performance optimization is an
ongoing process

22

Figure by Patrick Edwin Moran

Performance characterization
tools (e.g., Darshan)

Background knowledge
about how storage
systems work (e.g., this
presentation)

Facility resources
(e.g., ALCF, OLCF,
and NERSC staff
and documentation)

Optimization techniques,
tools, and libraries (e.g.,
later presentations today)

Applications are updated,
systems change, and new
allocations are granted.

We wa t to “teach a a to
f sh” by equ you w th the
tools you need to monitor and
improve your I/O performance.

https://github.com/radix-io/hands-on

23

Hands on exercises: https://github.com/radix-io/hands-on

Thank you!

https://github.com/radix-io/hands-on

