Deep Dive into OLCF Storage Systems

ATPESC 2022 - Track 3 - I/O
August 5, 2022

Michael J. Brim, R&D Staff
National Center for Computational Sciences (NCCS) / Oak Ridge Leadership Computing Facility (OLCF)
Oak Ridge National Laboratory
Overview and Goals for this Lecture

1. Quick background on NCCS and OLCF approach to HPC storage
2. High-level overview of Alpine - OLCF’s current center-wide shared storage system
3. Deep dive on Orion - OLCF’s next center-wide shared storage system
HPC Storage @ NCCS and OLCF

- NCCS organizational overview
- HPC Storage Strategy
- Scratch and Archive Systems
NCCS HPC Storage Strategy

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>OLCF</th>
<th>BER</th>
<th>AFW</th>
<th>NCRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faster - ></td>
<td>Summit</td>
<td>Frontier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job-term</td>
<td>Summit</td>
<td>Frontier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24 hours or less)</td>
<td>Summit</td>
<td>Frontier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term</td>
<td>Alpine</td>
<td>Arx</td>
<td>Wolf</td>
<td>Storm</td>
</tr>
<tr>
<td>(less than 90 days)</td>
<td>Arx</td>
<td>Wolf</td>
<td>Storm Cyclone</td>
<td>F2</td>
</tr>
<tr>
<td>Medium-Term</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(90 days to 1-3 years)</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Slow - <-</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Long-term</td>
<td>HPSS/Themis</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(90 days to 20 years)</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Forever-term</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(keep data forever)</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Production Scratch Filesystems

Arx
- OLCF Mod-enh/GPFS
- 3.3 PB
- 36 GB/s r/w

Storm/Cyclone
- AFW/Lustre-2.12
- 2x 7.5 PB
- 45 GB/s r/w
- High resiliency

Alpine
- Moderate/GPFS
- 250 PB
- 2.5 TB/s r/w

F2
- NCRC/Lustre-2.12
- 40 PB
- 45 GB/s r/w

Wolf
- OLCF Open/GPFS
- 7.7 PB
- 90 GB/s r/w
Production Archive/Nearline Filesystems

HPSS
- HPSS-7.2
- 160 PB of tape (RAIT3+1p)
- 22 PB of disk cache
- 12 GB/s performance

Themis
- IBM Spectrum Archive
- 60 PB of tape (2-way replication)
- 10.2 PB of disk
- 70 GB/s disk performance
The OLCF Alpine Center-wide Shared File System

- Why center-wide?
- OLCF Alpine Details
Why Center-wide Shared File Systems?

• Historically, supercomputers were deployed with a tightly-coupled HPC storage solution

• This approach has several drawbacks:
 1. Storage is expensive $$$$$$ (can be up to a 1/3 of HPC system cost)
 2. Many storage systems == more administrator work & user confusion
 3. Increases large-scale data movement
 • e.g., to move simulation results to a data analysis cluster
 4. Tight-coupling often meant system downtimes made storage unavailable
Spider - An Architecture for a Center-wide Shared FS
Spider Through the Years

<table>
<thead>
<tr>
<th>FS Type</th>
<th>Leadership System</th>
<th># of Clients (est.)</th>
<th>Capacity</th>
<th># Disks</th>
<th>Hero Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spider 1 (2008)</td>
<td>Lustre</td>
<td>Jaguar/Titan</td>
<td>26,000</td>
<td>10 PB</td>
<td>??</td>
</tr>
<tr>
<td>Spider 2 (2013)</td>
<td>Lustre</td>
<td>Titan</td>
<td>26,000</td>
<td>32 PB</td>
<td>~20K</td>
</tr>
<tr>
<td>Spider 3 (2018)</td>
<td>Spectrum Scale</td>
<td>Summit/Frontier</td>
<td>12,000</td>
<td>250 PB</td>
<td>~30K</td>
</tr>
</tbody>
</table>
Spider3 – Alpine

• 250 PB (¼ EB) usable capacity
 – 16 MiB block size
 – 16 KiB minimum fragment

• 2.5 TB/s sequential read/write
• 2.2 TB/s random read/write
• 2.6M IOPs at 32KiB file size

• GPFS-5.x based
• GPFS Native Raid (GNR): de-clustered RAID with dual parity
Alpine Layout

- 77+1x IBM Elastic Storage Server (ESS) GL4s
- Each ESS has:
 - 2x Power9 CPU
 - 4x EDR IB (total 100Gbps)
- 32,494 10TB NL-SAS drives
OLCF Computational Facilities
Spider3 Innovations/Improvements

• GPFS improvements due to OLCF contractual requirements:
 – Largest GPFS file system install (single namespace of 250PB)
 • GPFS tool improvements (fsck, etc…)
 – 10M files in a single directory
 – Max file size equivalent to Summit aggregate system memory
 – Metadata creates of 50k/sec in a single directory
 – RPC and GPFS daemon traffic performance improvements
 – Monitoring/metrics changes (big data store)
OLCF Orion Center-wide Shared FS

- Architecture and Features of Lustre
- OLCF Orion Details
Lustre File System Architecture

• Two Types of Servers
 – MDS: maintain file system hierarchy, serve file metadata
 – OSS: serve file data

• Clients
 – talk to MDS to navigate FS, retrieve stats, and locate file extents
 – talk directly to OSS to read/write extents
Lustre File Data Management

• Terminology
 – Lustre Stripe Size (SS): data object size used by OSS to spread data round-robin across selected OSTs
 – Lustre Stripe Width (SW): number of OSTs used for striping a given file

• Example: 1 GiB file, SS=1 MiB, SW=8
 – File divided into 1024 data objects, 128 objects assigned to each OST

• Both SS and SW are user-controllable
 – either at a directory level, or per-file

• Facilities do their best to set reasonable defaults, but use cases very dramatically, and can lead to decreased performance
New Features in Lustre

- **Data on MDT (DoM)**
 - for very small files, store the file data on MDT with its metadata

- **Distributed Namespace Extension (DNE)**
 - ability to employ more than one MDT to manage directories in a single file system (DNE1), or to stripe directory entries across MDTs (DNE2)

- **Progressive File Layouts (PFL)**
 - a composite layout that uses different stripe sizes (and possibly widths) for predefined regions of a file
 - e.g., 16 KiB for first [0, 1 MiB), 1 MiB for [1 MiB, 1 GiB), 64 MiB for [1 GiB, EOF)

- **Self-Extending Layouts**
 - extension to PFL that avoids OST out-of-space conditions for small stripe sizes
Orion - Next-gen scratch filesystem

- Installed and acceptance ongoing
- 3 tiers:
 - Capacity:
 - 679 PB dRAID2:11d:2s
 - 5.5/4.6 TB/s R/W
 - 47,700 18 TB PMR HDD
 - Performance:
 - 11.5 PB dRAID2:9d:1s
 - 10 TB/s R/W
 - 5400 3.2 TB 3DWPD NVMe
 - Metadata:
 - 10 PB dRAID2:9d:1s
 - .8/.4 TB/s R/W
 - 480 30.7 TB 1DWPD NVMe
Orion Physical Attributes

- 40 MDS nodes (single MDT per node)
- 450 OSS nodes (2x HDD OSTs, and 1x NVMe OST per node)
- 160 Router nodes
 - route between Frontier Slingshot network and center-wide IB network
- 5x 16-switch Slingshot dragonfly groups
Orion Makes Extensive Use of New Lustre Features

- Performance tier to be treated as writeback cache implemented via policy engine
 - HPE-developed policy engine is plan of record
 - OLCF is implementing and testing another engine as a fall-back
- PFL will set striping policy to write to performance tier by default
 - SEL will protect us from ENOSPC in case ingest is too fast.

- Expected Striping Policy:
 - Files 512 KB-1MB will stay on DoM
 - Keep the next 1-2 MB on perf tier and never migrate to capacity tier
 - All file data over 2 MB will be eventually migrated to capacity tier

- Users should expect read performance from capacity tier
Discussion/Questions

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725

brimmj@ornl.gov