
exascaleproject.org

Introduction to Darshan:
How to learn more about the I/O behavior of
your application

ATPESC 2022

Shane Snyder
ssnyder@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory

August 5, 2022

 2 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Understanding I/O problems in your application

Example questions:
– How much of your run time is spent reading and writing files?
– Does it get better, worse, or the same as you scale up?
– Does it get better, worse, or the same across platforms?
– How should you prioritize I/O tuning to get the most bang for

your buck?

We recommend using a tool called Darshan
as a starting point.

This presentation is an introduction; we’ll see more
detailed Darshan examples later today.

https://github.com/radix-io/hands-on

 3 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

What is Darshan?
Darshan is a scalable HPC I/O characterization tool. It captures a concise
picture of application I/O behavior with minimal overhead.

• Widely available
– Deployed at most large supercomputing sites
– Including ALCF, OLCF, and NERSC systems used for ATPESC training

• Easy to use
– No changes to code or development process
– Negligible performance impact: just “leave it on”

• Produces a summary of I/O activity for every job
– This is a great starting point for understanding your application’s data usage
– Includes histograms, timers, counters, etc.

https://github.com/radix-io/hands-on

 4 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

How does Darshan work?

Darshan is primarily intended for MPI applications.* It inserts lightweight
instrumentation when your program is compiled or executed.

• Intercepts I/O calls and records statistics about file accesses
– File records are stored in bounded, compact memory at each rank

• Aggregates statistics when the application exits
– Collect, filter, compress records and write a single summary file for the job

• Provides command line tools to inspect and interpret statistics
– Usually start by generating a summary PDF that plots metrics of interest

* You can also instrument non-MPI applications; we’ll cover this later in the afternoon.

https://github.com/radix-io/hands-on

 5 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Using Darshan

• We’ll use Theta as an example in the following slides.

• The hands on exercises also include examples that are set up for use on Theta.
– https://github.com/radix-io/hands-on

• Other systems are very similar, though. The most likely differences are:
– Location of log files (where to find data after your job completes)
– Analysis utility availability (usually easiest to just copy logs to your workstation to analyze)
– Loading the Darshan module (if it’s not already there by default)

• We’ll briefly cover differences on other DOE systems after the Theta example

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

 6 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Using Darshan on Theta: make sure the software is loaded
These steps are similar on other platforms; check your site documentation!

Use “module list” to see
a list of software loaded in
your environment.

Darshan is probably
already loaded by default.
Darshan 3.3.0 is the
current version on Theta

If not, just run
“module load darshan”
to get it.

https://github.com/radix-io/hands-on

 7 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Using Darshan on Theta: instrument your code

Compile and run
your application!

That’s all there is to it; Darshan does the rest.*

* Well, almost. There is one caveat: in the default
Darshan configuration, your application must call
MPI_Initialize() and MPI_Finalize() to generate a log.

https://github.com/radix-io/hands-on

 8 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Using Darshan on Theta: find your log file

All Darshan logs are placed in a central location. On newer
Darshan versions, ‘darshan-config --log-path’ command will
provide the log directory location. Otherwise, check your site
documentation!

Go to subdirectory
for the year / month /
day your job
executed.

Be aware of time
zone (or just check
adjacent days)!
Theta, for example,
uses the GMT time
zone and will roll
over to the next day
at 7pm local time.

File name includes your username,
app name, and job ID.

For convenience, copy your logs
somewhere to analyze.

https://github.com/radix-io/hands-on

 9 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Using Darshan on Theta: generate summary

The atpesc-io hands-on exercise
repository includes a script to
configure your environment with the
tools needed for Darshan analysis.

Process your log with
darshan-job-summary.pl.

It produces a PDF file that (by
default) has the same name as
your original log, plus a .pdf
extension.

At this point you could scp the log to another system to
analyze (the logs are portable). This example shows
how to generate a summary using tools on Theta.

https://github.com/radix-io/hands-on

 10 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

What about other systems?

• Cori:
– How to enable: automatic
– Log directory: /global/cscratch1/sd/darshanlogs/

• Summit:
– How to enable: automatic
– Log directory: /gpfs/alpine/darshan/summit

On each of these systems, you can use
darshan-parser to inspect logs in text format,
but you will need to copy the logs to another
system to generate the pdf summary. Install
the “darshan-util” package from Spack or the
darshan-util portion of the Darshan source
from:

https://www.mcs.anl.gov/research/projects/darshan

https://github.com/radix-io/hands-on
https://www.mcs.anl.gov/research/projects/darshan

 11 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

darshan-job-summary
tool generates a

multi-page PDF containing
graphs, tables, and

performance estimates
characterizing the I/O

workload of the application

We will summarize some
of the highlights in the

following slides

Job analysis example

https://github.com/radix-io/hands-on

 12 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Job analysis example

PDF header contains high-level job information

Executable name
and job date

Scheduler job ID, user ID,
number of processes, total app

runtime

I/O performance estimates for different interfaces:
● MPI-IO (more on this soon)
● POSIX (open/close/read/write)
● STDIO (fopen/fclose/fread/fwrite)

https://github.com/radix-io/hands-on

 13 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Job analysis example

PDF header contains high-level job information

Executable name
and job date

Scheduler job ID, user ID,
number of processes, total app

runtime

I/O performance estimates for different interfaces:
● MPI-IO (more on this soon)
● POSIX (open/close/read/write)
● STDIO (fopen/fclose/fread/fwrite)

Note performance
disparity between

MPI-IO/STDIO, with
the former used for

bulk app I/O and
latter used only for a

small config file

https://github.com/radix-io/hands-on

 14 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Job analysis example

Across main I/O interfaces, how much time
was spent reading, writing, doing

metadata, or computing?

If mostly compute, limited opportunities for
I/O tuning

What were the relative totals of different I/O
operations across key interfaces?

Lots of metadata operations (open, stat, seek,
etc.) could be a sign of poorly performing I/O

https://github.com/radix-io/hands-on

 15 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Histograms of POSIX and MPI-IO access
sizes are provided to better understand

general access patterns

In general, larger access sizes perform
better with most storage systems

Table indicating total number of files of
different types (opened, read-only,

read/write, etc.) recorded by Darshan

Job analysis example

https://github.com/radix-io/hands-on

 16 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Job analysis example

Darshan can also provide
basic timing bounds for

read/write activity, both for
independent file access

patterns (illustrated) or for
shared file access patterns

Remember to contact your site’s support team for help! The Darshan summary
can be a good discussion starter if you aren’t sure how to proceed with performance
tuning or problem solving.

There are additional graphs in the PDF file not shown here. You can also dump all
data from the log in human-readable text format using “darshan-parser”.

https://github.com/radix-io/hands-on

 17 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Obtaining finer-grained details
with Darshan

https://github.com/radix-io/hands-on

 18 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Shared file I/O details

First 2 panes indicate read (first)
and write (second) activity for

non-shared files

Last pane indicates both read and
write activity for shared files (i.e.

shared by all application
processes)

By default, Darshan condenses
information on shared files from each

rank into a single record to save space

This reduces the fidelity of Darshan’s
instrumentation a bit, masking

per-process details related to file access
timing (illustrated), read/write data

volumes, etc.

https://github.com/radix-io/hands-on

 19 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Shared file I/O details

Optionally set the
DARSHAN_DISABLE_SHARED_REDUCTION

environment variable to skip the shared file
reduction step, retaining per-process

instrumentation details

This results in larger log files, but may be
useful in better understanding underlying
access patterns in collective workloads

https://github.com/radix-io/hands-on

 20 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Detailed trace data using DXT (Darshan eXtended Tracing)
● What if that still isn’t enough detail? You can

also capture a full trace including the timestamp,
file offset, and size of every I/O operation on
every rank.

● Set the DXT_ENABLE_IO_TRACE environment
variable in your job to enable this feature.

● This causes additional overhead and larger
files, but captures precise access data.

A full text dump of DXT trace
data can be generated using

the darshan-dxt-parser
tool

https://github.com/radix-io/hands-on

 21 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Detailed trace data using DXT (Darshan eXtended Tracing)

● You can also plot DXT trace data using the
“dxt_analyzer.py” script distributed with
Darshan.

● Example on the left:
○ Looks similar to the timespan plots already

provided by the Darshan job summary tool.
○ But, it plots each individual operation

precisely, rather than just showing ranges of
times that each process was performing I/O.

○ Can help users identify exactly when and
where app I/O accesses were issued.

■ This example app clearly uses a
subset of processes for performing
read/write operations

https://github.com/radix-io/hands-on

 22 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Darshan: a recap

• These slides covered some basic usage and tips.

• Refer to facility documentation or these slides when you need to.

• Key takeaways:
– Tools are available to help you understand how your application accesses data.
– The simplest starting point is Darshan.
– It’s likely already instrumenting your application, or can quickly be made to do so.
– Refer to documentation and site support for help interpreting.
– You will probably start with a PDF generated by darshan-job-summary.pl.

• We’ll see additional Darshan use cases and features this afternoon.

https://github.com/radix-io/hands-on

 23 ATPESC 2022, August 5

Hands on exercises: https://github.com/radix-io/hands-on

Darshan hands on exercises

• The hands on exercises include 3 Darshan examples that you can try tonight or
as time permits during the day:
– helloworld: a simple application that you can run to test out the Darshan toolchain.
– warpdrive and fidgetspinner: applications with A and B versions that you can compare to

spot the performance differences (and their cause).

The warpdrive and fidgetspinner examples will be easier to understand after seeing the
MPI-IO presentation later this morning.

Check with the instructors to share what you find!

https://github.com/radix-io/hands-on

exascaleproject.org

Thank you!

