
exascaleproject.org

Introduction to MPI-I/O

ATPESC 2022

Rob Latham
Math and Computer Science Division

Argonne National Laboratory

August 5, 2022

2

materials: https://github.com/radix-io/hands-on

Plan of attack

• Bottom-up tour of I/O interfaces

– POSIX routines called by MPI-IO implementations

– Parallel-NetCDF routines build on top of MPI-IO

• Simple toy programs

– Refining example several times throughout session

– You can apply these lessons to your own code

• Heads up: going to do things the "hard way",
then show "easier way"

• Demonstrating some tools for understanding
what’s going on

POSIX

MPI-IO

PNETCDF HDF5
D
A
R
S
H
A
N

https://github.com/radix-io/hands-on

3

materials: https://github.com/radix-io/hands-on

Hands on materials

• Code for this …

– Simple array I/O

• … and other sections available on our gitlab site:

– Game of Life I/O

– Sparse Matrix I/O

– Darshan

– HDF5

– IOR recipes

– https://github.com/radix-io/hands-on

• Work through examples when you can. We’re going to do this “cooking show”
style…

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

4

materials: https://github.com/radix-io/hands-on

Operating on Arrays

• Arrays show up in many scientific
applications

– Matrix operations

– Particle maps

– Regions of space

– Time series

– Images

• Probably your real application more
complicated but an array or two (or more) is
in there somewhere, I’d wager.

https://github.com/radix-io/hands-on

5

materials: https://github.com/radix-io/hands-on

Graphic from J. Tannahill, LLNL

Typical simulations divide
up the region being
simulated into chunks,
then group those chunks
into similar amounts of
work.

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) for
computation.

When speed of
writing is the
priority, blobs of
data are written
from each node
into individual
files that must
then be post-
processed for
analysis.

To prepare data
for analysis, a
code can write in
a canonical view
by processing
the data while it
is in memory,
resulting in a
better organized
dataset.

or

Decomposition

https://github.com/radix-io/hands-on

6

materials: https://github.com/radix-io/hands-on

Scientific I/O constraints

• Defensive I/O:

– Guard against node failures or program errors with checkpointing

– Application saves its own state

– With a bit of extra effort, can be a portable, canonical representation

– Ideally Independent of number of processes

• Restarting:

– Canonical representation aids restarting with a different number of processes

• Data analysis

– Who will consume this data?

• Machine Learning

– “why is my [random small read] workload so slow?”

https://github.com/radix-io/hands-on

7

materials: https://github.com/radix-io/hands-on

Defining a Checkpoint

• Need enough to restart

– Header information

• Size of problem (e.g. matrix dimensions)

• Description of environment (e.g. input parameters)

– Program state

• Should represent the global (canonical) view of the data

• Ideally stored in a convenient container

– Single “thing” (file, object, keyval store...)

• If all processes checkpoint at once, naturally a parallel, collective operation

https://github.com/radix-io/hands-on

8

materials: https://github.com/radix-io/hands-on

HANDS-ON 1: simple data descriptions (no I/O yet)

• Consider an application that operates on a 2-d array of integers.

1. Write code declaring a 2-d array of integers

• Probably want to allocate on heap, not stack

• Later steps will be easier if you make it a single allocation

2. Define a data structure describing the experiment

• E.g. C struct with row, column, iteration

• Use whatever language you like…

– … but we can be most helpful if you use C (c.f. RobL’s python “solutions”)

• Source “theta-setup-env.sh” to load necessary modules

• Could run this first example on laptop if you want: shouldn’t require any libraries

https://github.com/radix-io/hands-on

9

materials: https://github.com/radix-io/hands-on

HANDS-ON 1 solutions

typedef struct {

int row;

int col;

int iter;

} science;

int *array;

array = malloc(XDIM*YDIM*sizeof(*array));

C struct holding metadata

Do this: index into a single big allocation

Don’t do this: N allocations will be slower and harder to describe

/* not MPI-friendly: describing this memory region will require

* a more complicated data type description */

int **annoying;

annoying = malloc(YDIM*sizeof(*array));

for (int i=0; i<YDIM; i++)

annoying[i] = malloc(XDIM*sizeof(*array));

…

Good: X*Y elements in contiguous allocation

… …

Less good: multiple memory regions

https://github.com/radix-io/hands-on

10

materials: https://github.com/radix-io/hands-on

POSIX I/O

• POSIX is the IEEE Portable Operating System Interface for Computing

Environments

• “POSIX defines a standard way for an application program to obtain basic

services from the operating system”

– Mechanism almost all serial applications use to perform I/O

• POSIX was created when a single computer owned its own file system

https://github.com/radix-io/hands-on

11

materials: https://github.com/radix-io/hands-on

Deficiencies in serial interfaces

• Typical (serial) I/O calls seen in applications

• No notion of other processors

• Primitive (if any) data description methods

• Tuning limited to open flags

• No mechanism for data portability

– Fortran not even portable between compilers

POSIX:

fd = open(“some_file”, O_WRONLY|O_CREAT,
S_IRUSR|S_IWUSR);
ret = write(fd, w_data, nbytes);
ret = lseek(fd, 0, SEEK_SET);
ret = read(fd, r_data, nbytes);
ret = close(fd);

FORTRAN:

OPEN(10, FILE=‘some_file’, &
STATUS=“replace”, &
ACCESS=“direct”, RECL=16);

WRITE(10, REC=2) 15324
CLOSE(10);

https://github.com/radix-io/hands-on

12

materials: https://github.com/radix-io/hands-on

HANDS-ON 2: simple I/O

• We haven’t talked about MPI-IO or I/O libraries, but we can still checkpoint.

– Serial I/O, not parallel

• Implement “write_data”

– Will create file and fill in data

– Prototype:

• int write_data(char *filename)

– Use system calls (open(), write(), close()) , not “stdio” calls (fopen(), fwrite(),
fclose()): will map more closely to MPI-IO later

– How will you know it worked?

– We are going to repeatedly revise write_data() (and later read_data()) with each
exercise

https://github.com/radix-io/hands-on

13

materials: https://github.com/radix-io/hands-on

RUNNING

• Submit to the ‘ATPESC2022’ queue (theta) (no special queue on ascent)

• I’ve provided a ‘submit-theta.sh’ and 'submit-ascent.sh' shell script
– qsub –q ATPESC2022 submit-theta.sh <program> [filename]

• If you don’t give [filename], then ‘testfile’ used.

• Which file system to use?
– Tried to make scripts do right thing by default

– Please don’t use the NFS-mounted home directory

– Given scripts should already point you to the right parallel directory

• Theta: /grand/ATPESC2022/usr/$USER

• Make a directory for your data
– Theta: mkdir –p /grand/ATPESC2022/usr/$USER/

• Set sensible striping:
– lfs setstripe –stripe-count -1 /grand/ATPESC2022/usr/$USER/

https://github.com/radix-io/hands-on

14

materials: https://github.com/radix-io/hands-on

Solution fragments:

int write_data(char *filename)

{

science data = {

.row = YDIM,

.col = XDIM,

.iter = 1

};

int *array;

int fd;

int ret=0;

array = buffer_create(0, XDIM, YDIM);

fd = open(filename, O_CREAT|O_WRONLY,

S_IRUSR|S_IWUSR);

ret = write(fd, &data, sizeof(data));

ret = write(fd, array, XDIM*YDIM*sizeof(int));

ret = close(fd);

return ret;

}

% od -td testfile
0000000 1 5 1 0
0000020 1 2 3 4
0000040

Reading a binary file: “cat” won’t work.
Could write a c program to read. Several
utilities available. I like ‘od’: (historically it
only did an “octal dump”). The (t)ype
argument can select (d)ecimal

https://github.com/radix-io/hands-on

15

materials: https://github.com/radix-io/hands-on

HANDS-ON 3: send-to-master

• Parallel program, but serial I/O

1. Write_data() should take an MPI
Communicator

2. Call MPI_Init() and MPI_Finalize()

3. Use MPI_Gather to collect all data onto rank 0:

• Only rank 0 does I/O; writes header and all
array information

• What’s good about send-to-master? What’s
bad?

0 1 2 3 4

File

5

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

https://github.com/radix-io/hands-on

16

materials: https://github.com/radix-io/hands-on

Solution fragments: MPI_Gather: collect all data on rank 0

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &nprocs);

/* every process creates its own buffer */

array = buffer_create(rank, XDIM, YDIM);

/* and then sends it to rank 0 */

int *buffer =

malloc(XDIM*YDIM*nprocs*sizeof(int));

MPI_CHECK(MPI_Gather(

/* sender (buffer,count,type) tuple */

array, XDIM*YDIM, MPI_INT,

/* receiver tuple */

buffer, XDIM*YDIM, MPI_INT,

/* who gathers and across which context */

0, comm));

https://github.com/radix-io/hands-on

17

materials: https://github.com/radix-io/hands-on

Solution fragments: writing from rank 0

if (rank == 0) {

/* looks like serial with more data */

…

/* writing (logically) global array, not

just our local piece of it */

data.row = YDIM*nprocs;

data.col = XDIM;

data.iter = 1;

ret = write(fd, &data, sizeof(data));

ret = write(fd, buffer,

XDIM*YDIM*nprocs*sizeof(int));

ret = close(fd);

return ret;

}

https://github.com/radix-io/hands-on

18

materials: https://github.com/radix-io/hands-on

Other questions:

• Lots of machines (your laptop; Theta) represent integers as 32 bit little
endian. What if you went back in time and ran this code on BlueGene

– Summit and ascent are powerpc64le

• We wrote row-wise. What if you wanted to write a column of data?

• What impact would a header have on data layout? Are there other options?

https://github.com/radix-io/hands-on

19

materials: https://github.com/radix-io/hands-on

HANDS-ON 4: using Darshan

1. Find the darshan log for the last exercise

2. View the raw counters with “darshan-parser”

3. Generate a report

– You might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2

– Hint: you can’t! – why not?

– …or can you?

• Hint: https://www.alcf.anl.gov/support-center/theta/darshan

https://github.com/radix-io/hands-on
https://www.alcf.anl.gov/support-center/theta/darshan-theta

20

materials: https://github.com/radix-io/hands-on

Parallel I/O and MPI

• The stdio checkpoint routine works but is not parallel
– One process is responsible for all I/O

• No concurrency in I/O; single link to storage

• Memory pressure

– Wouldn’t want to use this approach for real

• How can we get the full benefit of a parallel file system?
– We first look at how parallel I/O works in MPI

– We then implement a fully parallel checkpoint routine

• MPI is a good setting for parallel I/O
– Writing is like sending and reading is like receiving

– Any parallel I/O system will need:

• collective operations

• user-defined datatypes to describe both memory and file layout

• communicators to separate application-level message passing from I/O-related message passing

• non-blocking operations

– i.e., lots of MPI-like machinery

https://github.com/radix-io/hands-on

21

materials: https://github.com/radix-io/hands-on

Simple MPI-IO

• Collective open: all processes in communicator

• File-side data layout with file views

• Memory-side data layout with MPI datatype passed to write
MPI_File_open(COMM, name, mode,

info, fh);
MPI_File_set_view(fh, disp, etype,

filetype, datarep, info);
MPI_File_write_all(fh, buf, count,

datatype, status);

MPI_File_open(COMM, name, mode,
info, fh);

MPI_File_set_view(fh, disp, etype,
filetype, datarep, info);

MPI_File_write_all(fh, buf, count,
datatype, status);

disp

https://github.com/radix-io/hands-on

22

materials: https://github.com/radix-io/hands-on

Collective I/O

• A critical optimization in parallel I/O

• All processes (in the communicator) must call the collective
I/O function

• Allows communication of “big picture” to file system

– Framework for I/O transformations/optimizations at the MPI-IO layer

– e.g., two-phase I/O

Small individual

requests
Large collective

access

https://github.com/radix-io/hands-on

23

materials: https://github.com/radix-io/hands-on

Collective MPI I/O Functions

• Not going to go through the MPI-IO API in excruciating detail

– Happy to discuss in slack, chat, email

• MPI_File_write_at_all, etc.

– _all indicates that all processes in the group specified by the communicator passed to
MPI_File_open will call this function

– _at indicates that the position in the file is specified as part of the call; this provides thread-
safety and clearer code than using a separate “seek” call

• Each process specifies only its own access information

– the argument list is the same as for the non-collective functions

– OK to participate with zero data

• All processes must call a collective

• Process providing zero data might participate behind the scenes anyway

https://github.com/radix-io/hands-on

24

materials: https://github.com/radix-io/hands-on

HANDS-ON 5: writing with MPI-IO

• Let’s take “I/O from master” example and make it parallel

• Use MPI_File_open instead of open

• Only one process needs to write header
– Independent MPI_File_write

– Could combine, but header I/O small and checkpoint (typically) vastly larger

• Every process sets a “file view”
– Need to skip over header – file view has an “offset” field just for this case

– The “file view” here is not complicated: we are operating on integers, not
bytes:

• MPI_File_set_view(fh, sizeof(header), MPI_INT, MPI_INT,
"native", info));

• Each process writes one slice/row of array
– MPI_File_write_at_all

– Offset: “rank*XDIM*YDIM” – no ‘sizeof’: specified ints in file view

– “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI_INT)

xdim

y
d
im

ra
n
k
 0

 1
 2

 3
 4

https://github.com/radix-io/hands-on

25

materials: https://github.com/radix-io/hands-on

Solution fragments for Hands-On 5

if (rank == 0) {

MPI_CHECK(MPI_File_write(fh,

&header, sizeof(header), MPI_BYTE,

MPI_STATUS_IGNORE));

}

MPI_File_write_at_all(fh, rank*XDIM*YDIM,

values, XDIM*YDIM, MPI_INT,

MPI_STATUS_IGNORE));

Header I/O from rank 0:

Collective I/O from all ranks

https://github.com/radix-io/hands-on

26

materials: https://github.com/radix-io/hands-on

Hands-on 5 continued: Darshan

• A lot like #4: let’s use Darshan

– Find Darshan log file, but don’t generate report right away

• What do you think the report will say?

• OK, now generate the report. Were you surprised?

– Counts of POSIX calls vs MPI-IO calls

– Sizes of POSIX calls vs sizes of MPI-IO calls

https://github.com/radix-io/hands-on

27

materials: https://github.com/radix-io/hands-on

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are used to
manage concurrent access:

• Files are broken up into lock units
– Unit boundaries are dictated by the storage system, regardless of access pattern

• Clients obtain locks on units that they will access before I/O occurs

• Enables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

• Locks are reclaimed from clients when others desire access

If an access touches any data in a

lock unit, the lock for that region

must be obtained before access

occurs.

https://github.com/radix-io/hands-on

28

materials: https://github.com/radix-io/hands-on

Implications of Locking in Concurrent Access

https://github.com/radix-io/hands-on

29

materials: https://github.com/radix-io/hands-on

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

▪ Goals of transformations:
– Reduce number of operations to PFS

(avoiding latency)

– Avoid lock contention

(increasing level of concurrency)

– Hide number of clients

(more on this later)

▪ With “transparent” transformations,

data ends up in the same locations

in the file as it would have been

normally
– i.e., the file system is still aware of the

actual data organization

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://github.com/radix-io/hands-on

30

materials: https://github.com/radix-io/hands-on

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

▪ We will tour through a few examples

of data transformations in the

following slides

▪ The important thing to remember is

that software already exists to do

these things for you in HDF5,

PnetCDF, ADIOS, and MPI-IO

▪ If you find yourself replicating these

optimizations by hand, look around

to see if you can find an off-the-shelf

solution

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://github.com/radix-io/hands-on

31

materials: https://github.com/radix-io/hands-on

Reducing Number of Operations

Because most operations go over multiple networks, I/O to a PFS incurs more
latency than with a local FS. Data sieving is a technique to address I/O latency by
combining operations:

• When reading, application process reads a large region holding all needed data and
pulls out what is needed

• When writing, three steps required (below)

• Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be modified

are read into intermediate buffer (1

read).

Step 2: Elements to be written to file

are replaced in intermediate buffer.

Step 3: Entire region is written back to

storage with a single write operation.

https://github.com/radix-io/hands-on

32

materials: https://github.com/radix-io/hands-on

Data Sieving in Practice

Naiive Data Sieving

MPI-IO writes 192 192

MPI-IO Reads 0 0

Posix Writes 192000 192000

Posix Reads 0 192015

MPI-IO bytes written 1920000000 1920000000

MPI-IO bytes read 0 0

Posix bytes read 0 100039006128

Posix bytes written 1920000000 100564552704

Not always a win, particularly for writing:
• Enabling data sieving actually made writes slower: why?

• Locking to prevent false sharing (not needed for reads)
• Multiple processes per node writing simultaneously
• Internal ROMIO buffer too small, resulting in write amplification

https://github.com/radix-io/hands-on

33

materials: https://github.com/radix-io/hands-on

Avoiding Lock Contention

We can reorder data among processes to avoid lock contention. Two-
phase I/O splits I/O into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

• Data exchanged between processes to match file layout

• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes based

on organization of data in file.

Phase 2: Data are written to file (storage servers) with

large writes, no contention.

https://github.com/radix-io/hands-on

34

materials: https://github.com/radix-io/hands-on

Two-Phase I/O Algorithms
(or, You don’t want to do this yourself…)

For more information, see W.K. Liao and A. Choudhary, “Dynamically

Adapting File Domain Partitioning Methods for Collective

I/O Based on Underlying Parallel File System Locking Protocols,” SC2008,

November, 2008.

Today’s systems also
choose aggregators
that are “best” for
storage

https://github.com/radix-io/hands-on

35

materials: https://github.com/radix-io/hands-on

Two-phase I/O in Practice

Naiive Data Sieving Two-phase

MPI-IO writes 192 192 192

MPI-IO Reads 0 0 0

Posix Writes 192000 192000 1832

Posix Reads 0 192015 0

MPI-IO bytes written 1920000000 1920000000 1920000000

MPI-IO bytes read 0 0 0

Posix bytes read 0 100039006128 0

Posix bytes written 1920000000 100564552704 1920000000

• Consistent performance independent of access pattern
• Initial performance might underwhelm you

• Lots of tuning knobs: getting lock contention right is subtle
• “Throw Machine Learning at it” still a good idea…
• … But folks like me aren’t losing jobs anytime soon.

• After tuning (two hints), performs so well I had to re-scale the y axis

https://github.com/radix-io/hands-on

36

materials: https://github.com/radix-io/hands-on

HANDS-ON 6: reading with MPI-IO

• Slightly different: all processes read one column
– For simplicity, same row

• File view will be more complicated, use MPI “Subarray”
datatype

• In C, array access is described in “row-major”
– array_size[0] = 5; array_size[1] = 4;

• File view uses derived ‘subarray’, not built-in MPI_INT

• Location in file given with subarray type; no offset in
MPI_File_read_all
– Still provide a “buffer, count, datatype” tuple for memory layout

4

N
p
ro

c
s

https://github.com/radix-io/hands-on

37

materials: https://github.com/radix-io/hands-on

Solution fragments

/* In C-order the arrays are row-major:

*

* |-----|

* |-----|

* |-----|

*

* The 'sizes' of the above array would be 3,5

* The last column would be a "subsize" of 3,1

* And a "start" of 0,5 */

sizes[0] = nprocs; sizes[1] = XDIM;

sub[0] = nprocs; sub[1] = 1;

starts[0] = 0; starts[1] = XDIM/2;

MPI_Type_create_subarray(NDIMS,

sizes, sub, starts,

MPI_ORDER_C, MPI_INT, &subarray);

MPI_Type_commit(&subarray);

MPI_CHECK(MPI_File_set_view(fh, sizeof(header),

MPI_INT, subarray, "native", info));

MPI_Type_free(&subarray);

MPI_CHECK(MPI_File_read_all(fh,

read_buf, nprocs, MPI_INT, MPI_STATUS_IGNORE);

Type creation File view and read

https://github.com/radix-io/hands-on

38

materials: https://github.com/radix-io/hands-on

Hands on 6 continued: Darshan

• How does this workload differ from the write?

• Change the ‘read_all’ to an independent ‘read’

– What do you think the Darshan output will say? Find out.

https://github.com/radix-io/hands-on

39

materials: https://github.com/radix-io/hands-on

GPFS Access three ways

• POSIX shared vs MPI-IO collective

– Locking overhead for unaligned writes hits POSIX hard

• Default MPI-IO parameters not ideal

– Reported to IBM; simple tuning brings MPI-IO back to parity

– “Vendor Defaults” might give you bad first impression

• File per process (fpp) extremely seductive, but entirely untenable on current generation.

https://github.com/radix-io/hands-on

40

materials: https://github.com/radix-io/hands-on

Performance portability in I/O:

• Let's look more closely at file-system
specific optmizations

• Simple ior benchmark on theta vs
ascent (baby summit)

– 1 000 000 bytes per process, 48
processes

– Collective I/O forced on ascent

• Darshan confirms identical MPI-IO
workload

• Different tranformations for different
file systems

– OST-oriented vs file block

Darshan Counter Theta

(Lustre)

Ascent

(GPFS)

MPIIO_ACCESS1_ACCESS 1 000 000 1 000 000

POSIX_WRITES 46 3

POSIX_BYTES_WRITTEN 48000000 48000000

POSIX_SIZE_WRITE_100K_1M 46 0

POSIX_SIZE_WRITE_10M_100M 0 3

POSIX_FILE_ALIGNMENT 1048576 -1(*)

POSIX_SLOWEST_RANK_BYTES 2097152 96000000

https://github.com/radix-io/hands-on

41

materials: https://github.com/radix-io/hands-on

MPI-IO Takeaway

• Sometimes it makes sense to build a custom library that uses MPI-IO (or maybe
even MPI + POSIX) to write a custom format
– e.g., a data format for your domain already exists, need parallel API

• We’ve only touched on the API here
– There is support for data that is noncontiguous in file and memory

– There are independent calls that allow processes to operate without coordination

• In general we suggest using data model libraries
– They do more for you

– Performance can be competitive

https://github.com/radix-io/hands-on

42

materials: https://github.com/radix-io/hands-on

Additional Resources

• On Cray systems, “man intro_mpi” for 3,000 lines of
tuning parameters, debug configuration

• Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

– Chapter on MPI I/O routines covers entire API as well as
consistency semantics

• Mpi4py: Python bindings to MPI

– https://mpi4py.readthedocs.io/en/stable/index.html

https://github.com/radix-io/hands-on

