Argonne Training Program on Extreme-Scale Computing (ATPESC)

Visualization & Data Analysis

Time	Title of presentation	Lecturer	
8:30 am	Data Analysis and Visualization Introduction	Mike Papka ANL, Joe Insley ANL/NIU, Silvio Rizzi ANL, Janet Knowles, ANL	
9:15 am	Scalable Molecular Visualization and Analysis Tools in VMD	Mariano Spivak <i>UIUC</i>	
10:00 am	Break		
10:30 am	Large Scale Visualization with ParaView	Dan Lipsa Kitware	
12:00 pm	Visualization and Analysis of HPC Simulation Data with VisIt	Cyrus Harrison LLNL	
12:30 pm	Lunch		
1:30 pm	Visualization and Analysis of HPC Simulation Data with Vislt (Cont.)	Cyrus Harrison <i>LLNL</i>	
2:30 pm	Vapor	Scott Pearse UCAR	
3:30 pm	Break		
4:00 pm	Exploring Visualization with Jupyter Notebooks	David Koop <i>NIU</i>Cyrus Harrison <i>LLNL</i>	
5:30 pm	Hands-on	All	
6:30 pm	Dinner		
7:30 pm	After-dinner talk: How learning about GPUs actually made me good at computational science	Max Katz NVIDIA	

Here's the plan...

- Examples of visualizations
- Visualization resources
- Visualization tools and formats
- Data representations
- Visualization for debugging
- In Situ Visualization and Analysis

Physics: Stellar Radiation

Data courtesy of: Lars Bildsten and Yan-Fei Jiang, University of California at Santa Barbara

ARTERIAL BLOOD FLOW

Data courtesy of: Amanda Randles, Duke University

Data courtesy of Sean Dettrick, TAE Technologies, Inc.

Engineering Technologies: Combustion

Data courtesy of: Saumil Patel, Muhsin Ameen, Sicong Wu, Argonne National Laboratory; Tanmoy Chatteriee, GE Global Research

9 Argonne Leadership Computing Facility

Materials Science / Molecular

Data courtesy of:
Subramanian
Sankaranarayanan,
Argonne National
Laboratory

Data courtesy of: Jeff Greeley, Nichols Romero, Argonne National Laboratory Data courtesy of: Paul Kent, Oak Ridge National Laboratory, Anouar Benali, Argonne National Laboratory

Cooley: Analytics/Visualization cluster

Peak 223 TF

126 nodes; each node has

- Two Intel Xeon E5-2620 Haswell 2.4 GHz 6-core processors
- NVIDIA Telsa K80 graphics processing unit (24GB)
- 384 GB of RAM

Aggregate RAM of 47 TB

Aggregate GPU memory of ~3TB

Cray CS System

216 port FDR IB switch with uplinks to our QDR infrastructure

Mounts the Theta, Eagle, and Grand file systems

All Sorts of Tools

Visualization Applications

- −Vislt ★
- -ParaView*
- -EnSight

Domain Specific

–VMD, PyMol, Ovito, Vapor

APIs

- –VTK★: visualization
- -ITK: segmentation & registration

GPU performance

–vI3: shader-based volume and particle rendering

Analysis Environments

- -Matlab
- -Parallel R

Utilities

- -GnuPlot
- -ImageMagick*
 - Available on Cooley
 - * Available on Theta

ParaView & Vislt vs. vtk

ParaView & VisIt

- -General purpose visualization applications
- -GUI-based
- -Client / Server model to support remote visualization
- -Scriptable / Extendable
- -Built on top of vtk (largely)
- -In situ capabilities

vtk

- –Programming environment / API
- Additional capabilities, finer control
- -Smaller memory footprint
- -Requires more expertise (build custom applications)

Data File Formats (ParaView & Vislt)

VTK PLOT3D Facet Tetrad Parallel (partitioned) VTK SpyPlot CTH **PNG** UNIC HDF5 raw image data SAF VTK MultiBlock VASP (MultiGroup, Hierarchical, DEM LS-Dyna ZeusMP Hierarchical Box) **VRML** Nek5000 ANALYZE Legacy VTK PLY **OVERFLOW** BOV Parallel (partitioned) Polygonal Protein Data paraDIS **GMV** legacy VTK Bank PATRAN Tecplot EnSight files XMol Molecule **PFLOTRAN** Vis5D EnSight Master Server Stereo Lithography Pixie Xmdv Exodus Gaussian Cube PuReMD XSF BYU Raw (binary) S₃D XDMF AVS SAS PLOT2D Meta Image

Data Representations: Cutting Planes

Data Representations: Volume Rendering

Data Representations: Contours (Isosurfaces)

A Line (2D) or Surface (3D), representing a constant value Vislt & ParaView:

– good at this

vtk:

same, but again requires more effort

Data Representations: Streamlines

From vector field on a mesh (needs connectivity)

Show the direction an element will travel in at any point in time.

VisIt & ParaView & vtk good at this

Data Representations: Pathlines

From vector field on a mesh (needs connectivity)

Trace the path an element will travel over time.

VisIt & ParaView & vtk good at this

Molecular Dynamics Visualization

VMD:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable

VisIt & ParaView:

 Limited support for these types of representations, but improving

VTK:

Anything's possible if you try hard enough

Visualization for Debugging

Visualization for Debugging

Visualization as Diagnostics: Color by Thread ID

Intel® oneAPI Rendering Toolkit ("Render Kit"/"Render Framework") **Open Source Software for Advanced Rendering and Visualization**

Intel® oneAPI Rendering Toolkit ("Render Kit") Open Source Software for Advanced Rendering and Visualization

Intel OSPRay Studio

Pro-vis frontend and scene graph https://github.com/ospray/ospray studio

Application

ParaView, Vislt, VMD, etc.

Intel OSPRay

Scalable rendering engine, API and SDK
Distributed MPI Rendering via OSPRay MPI
Intel o implementation of the Khronos ANARI specification (https://www.ospray.org

Intel Open VKL

API for volume sampling, traversal, interpolation and classification http://www.openvkl.org

Intel Embree

Optimized geometry ray tracing kernels
- BVH builders, traversal and intersection
http://www.embree.org

Intel Open Image Denoise

Al / DL – based denoising of sampling artifacts from path tracing http://www.openimagedenoise.org

In Situ Visualization and Analysis

Five orders of magnitude between compute and I/O capacity on Titan Cray system at ORNL

What are the problems?

- Not enough I/O capacity on current HPC systems, and the trend is getting worse.
- If there's not enough I/O, you can't write data to storage, so you can't analyze it: <u>lost science.</u>
- Energy consumption: it costs a lot of power to write data to disk.
- Opportunity for doing better science (analysis) when have access to full spatiotemporal resolution data.

Slide courtesy the SENSEI team www.sensei-insitu.org

In Situ Frameworks and Infrastructures at ALCF

Name	Description	Contact person at ATPESC
ALPINE	In Situ algorithms and infrastructure for the Exascale Computing Project	Silvio Rizzi, Cyrus Harrison
ASCENT	A flyweight in situ visualization and analysis runtime for multi-physics HPC simulations	Cyrus Harrison
SENSEI	Write once run anywhere. Multiple backends. MxN in transit communication patterns	Silvio Rizzi, Joe Insley
ParaView/Catalyst	In situ use case library, with an adaptable application programming interface (API), that orchestrates the delicate alliance between simulation and analysis and/or visualization tasks	Dan Lipsa
Libsim	Originally developed to facilitate interactive connections from VisIt to running simulations	Cyrus Harrison
SmartSim	SmartSim is a software framework that facilitates the convergence of numerical simulations and AI workloads on heterogeneous architectures	Silvio Rizzi

Exascale Computing Project Software Technology Data and Visualization

- Flyweight design, minimizes dependencies
- Data model based on Conduit from LLNL
- Vis and analysis algorithms implemented in VTK-m

```
//
// Run Ascent
//

Ascent ascent;
ascent.open();
ascent.publish(data);
ascent.execute(actions);
ascent.close();
```

SENSEI: Write once run everywhere

- "Write once, run everywhere" design
- Data model based on VTK from Kitware
- Supports a variety of backends, including ParaView/Catalyst, VisIt/LibSim, ADIOS, Python
- MxN in transit capabilities

SENSEI in transit demo

- Containerized workflow
- Producer:
 - LAMMPS molecular dynamics simulation.
 - 16 ranks on ThetaGPU
- Consumer:
 - SENSEI endpoint with Catalyst backend.
 - 4 ranks on Cooley.
- ADIOS2 used as transport
- Container recipes and config files available on Zenodo

SmartSim Overview

The SmartSim open-source library enables scientists, engineers, and researchers to embrace a "data-in-motion" philosophy to accelerate the convergence of Al/data science techniques and HPC simulations

SmartSim enables simulations to be used as engines within a system, producing data, consumed by other services enable new applications

- Embed **machine learning** training and inference with **existing** in Fortran/C/C++ **simulations**
- Communicate data between C, C++, Fortran, and Python applications
- Analyze and visualize data streamed from HPC applications while they are running
- Launch, configure, and coordinate complex simulation, analysis, and visualization workflows

All of these can be done without touching the filesystem, i.e. data-in-motion

VTK-m's main thrust: a write-once-run-everywhere framework

What is Cinema?

- Cinema is part of an integrated workflow, providing a method of extracting, saving, analyzing or modifying and viewing complex data artifacts from large scale simulations.
 - If you're having difficulty exploring the complex results from your simulation, Cinema can help.
- The Cinema 'Ecosystem' is an integrated set of writers, viewers, and algorithms that allow scientists to export, analyze/modify and view Cinema databases.
 - This ecosystem is embodied in widely used tools (ParaView, Vislt, Ascent) and the database specification.

Visualization Help

support@alcf.anl.gov

Publication Images & Covers

Animations

- SC Visualization Showcase [Best Vis Finalist 2014-2020]
- APS Division of Fluid Dynamics Gallery of Fluid Motion
- SC Gordon Bell Submissions
- Press Releases

InSitu Vis and Analysis

Additional information

ALPINE: https://alpine.dsscale.org/

Ascent: https://github.com/Alpine-DAV/ascent

SENSEI: https://sensei-insitu.org/

SmartSim: https://developer.hpe.com/platform/smartsim/home/

ParaView/Catalyst: https://www.paraview.org/in-situ/

Libsim: https://www.visitusers.org/index.php?title=VisIt-tutorial-in-situ

VTK-m: https://m.vtk.org/

Cinema: https://cinemascience.github.io/

OSPRay: https://github.com/ospray/ospray

