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Tutorial Plan

§ Short Ascent Overview (~10 min)

§ Follow along Ascent Jupyter Tutorial using cloud hosted Jupyter Notebooks (~30min)

ATPESC 2022: Exploring Visualization with Jupyter Notebooks
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§ Ascent is an in situ visualization and analysis library for HPC Codes

§ Instead of a traditional UI, we use Jupyter Notebooks for some workflows and our 
Ascent tutorials

§ Ascent’s tutorial materials provide examples of using Jupyter for scientific visualization 

§ For those interested in more details about how we use Jupyter:
— Source for our Jupyter Widgets:
• https://github.com/Alpine-DAV/ascent/blob/develop/src/ascent/python/ascent_module/py_src/jupyter.py

— Dockerfile for the Jupyter Container we use for the tutorial:
• https://github.com/Alpine-DAV/ascent/blob/develop/src/examples/docker/ubuntu/Dockerfile

— Research about connecting simulation codes to Jupyter using Ascent (not demonstrated today) 
• Interactive in situ visualization and analysis using Ascent and Jupyter
• https://dl.acm.org/doi/10.1145/3364228.3364232

ATPESC 2022: Exploring Visualization with Jupyter Notebooks

https://github.com/Alpine-DAV/ascent/blob/develop/src/ascent/python/ascent_module/py_src/jupyter.py
https://github.com/Alpine-DAV/ascent/blob/develop/src/examples/docker/ubuntu/Dockerfile
https://dl.acm.org/doi/10.1145/3364228.3364232
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Important links and contact info:

Ascent Resources:

§ Github: https://github.com/alpine-dav/ascent

§ Docs: http://ascent-dav.org/

§ Tutorial Landing Page: https://www.ascent-dav.org/tutorial/

Contact Info:
Cyrus Harrison: cyrush@llnl.gov
Nicole Marsaglia: marsaglia1@llnl.gov

https://github.com/alpine-dav/ascent
http://ascent-dav.org/
https://www.ascent-dav.org/tutorial/
mailto:cyrush@llnl.gov
mailto:marsaglia1@llnl.gov
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§ Easy to use in-memory visualization and analysis
— Use cases: Making Pictures, Transforming Data, and Capturing Data

— Young effort, yet already supports most common visualization operations

— Provides a simple infrastructure to integrate custom analysis

— Provides C++, C, Python, and Fortran APIs

§ Uses a flyweight design targeted at next-generation HPC platforms
— Efficient distributed-memory (MPI) and many-core (CUDA or OpenMP) execution 

• Demonstrated scaling:  In situ filtering and ray tracing across 16,384 GPUs on 
LLNL's Sierra Cluster

— Has lower memory requirements than current tools

— Requires less dependencies than current tools (ex: no OpenGL)
• Builds with         Spack https://spack.io/

Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations

Visualizations created using Ascent

Extracts supported by Ascent

http://ascent-dav.org
https://github.com/Alpine-DAV/ascent

Website and GitHub Repo

https://spack.io/
http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent
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Ascent is ready for common visualization use cases

Clips

ContourThreshold SliceIso-Volume

Pseudocolor Volume Mesh

Rendering

Devil Raymfem

[powered by]
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Ascent is ready for common analysis use cases

Extracts

Triggers

condition:
entropy - history(entropy,           

relative_index = 1) > 0.5

Time Histories

expression: |
du = gradient(field('velocity','u'))
dv = gradient(field('velocity','v'))
dw = gradient(field('velocity','w'))
w_x = dw.y - dv.z
w_y = dw.z - dv.x
w_z = dw.x - dv.y
vector(w_x,w_y,w_z)

name: vorticity

Derived Fields Lineouts and Spatial Binning

HDF5 FilesScalar Images
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Science Enabling Results: Shock Front Tracking (VISAR)

Shock position tracked 
in Ascent

Velocity interferometer system for any reflector (VISAR)
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Science Enabling Results: Simulation Validation

Experimental

Radiographs

Simulated
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Science Enabling Results: WarpX Workflow Tools (Jupyter Labs)

Jupyter Labs Interface Resulting Image
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Science Enabling Results: Rendering At Scale 
(2018)

Visualization of an idealized Inertial 
Confinement Fusion (ICF) simulation of 

Rayleigh-Taylor instability with two fluids 
mixing in a spherical geometry. 

• The 97.8 billion element simulation ran across 
16,384 GPUs on 4,096 Nodes

• The simulation application used CUDA via RAJA to 
run on the GPUs

• Time-varying evolution of the mixing was visualized 
in-situ using Ascent, also leveraging 16,384 GPUs

• Ascent leveraged VTK-m to run visualization 
algorithms on the GPUs
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You will learn:

§ How to use Conduit, the foundation of Ascent’s API

§ How to get your simulation data into Ascent

§ How to tell Ascent what pictures to render and what analysis to execute

Today we will teach you about Ascent’s API and capabilities
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Ascent tutorial examples are outlined in our documentation and 
included ready to run in Ascent installs

http://ascent-dav.org

http://ascent-dav.org/
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Ascent tutorial examples are outlined in our documentation and 
included ready to run in Ascent installs

§ http://ascent-dav.org

§ Click on “Tutorial”
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§ open() / close() 
— Initialize and finalize an Ascent instance

§ publish()
— Pass your simulation data to Ascent

§ execute()
— Tell Ascent what to do

§ info()
— Ask for details about Ascent’s last operation

Ascent’s interface provides five top-level functions

The publish(), execute(), and info() methods take a Conduit tree as an argument.
What is a Conduit tree?
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§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (e.g. Simulation Meshes) enable 

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing 
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data description 
and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

http://software.llnl.gov/conduit
http://github.com/llnl/conduit
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§ Conduit underpins Ascent’s support for C++, C, Python, and Fortran interfaces

§ Conduit also enables using YAML to specify Ascent actions

§ Conduit’s zero-copy features help couple existing simulation data structures

§ Conduit Blueprint provides a standard for how to present simulation meshes

Ascent uses Conduit to provide a flexible and extendable API   

Learning Ascent equates to learning how to construct and pass Conduit trees 
that encode your data and your expectations. 
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Ascent’s interface provides five composable building blocks

Scenes
(Render Pictures)

Pipelines
(Transform Data)

Extracts
(Capture Data)

Queries
(Ask Questions)

Triggers
(Adapt Actions)

The tutorial provides examples for all of these.
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For the reminder of the tutorial, we will run the Ascent Tutorial 
examples using Jupyter Notebooks
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Start here:

https://www.ascent-dav.org/tutorial/

You can run our tutorial examples using cloud hosted Jupyter
Lab servers

https://www.ascent-dav.org/tutorial/
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Thanks!

Ascent Resources:

§ Github: https://github.com/alpine-dav/ascent

§ Docs: http://ascent-dav.org/

§ Tutorial Landing Page: https://www.ascent-dav.org/tutorial/

Contact Info:
Cyrus Harrison: cyrush@llnl.gov
Nicole Marsaglia: marsaglia1@llnl.gov

https://github.com/alpine-dav/ascent
http://ascent-dav.org/
https://www.ascent-dav.org/tutorial/
mailto:cyrush@llnl.gov
mailto:marsaglia1@llnl.gov
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