
LLNL-PRES-827383
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Ascent: Flyweight In Situ Visualization and
Analysis for HPC Simulations

ATPESC 2022

Monday August 8th, 2022

Cyrus Harrison (LLNL),
Nicole Marsaglia (LLNL)

2
LLNL-PRES-827383

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the
U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

3
LLNL-PRES-827383

Tutorial Plan

§ Short Ascent Overview (~10 min)

§ Follow along Ascent Jupyter Tutorial using cloud hosted Jupyter Notebooks (~30min)

ATPESC 2022: Exploring Visualization with Jupyter Notebooks

4
LLNL-PRES-827383

§ Ascent is an in situ visualization and analysis library for HPC Codes

§ Instead of a traditional UI, we use Jupyter Notebooks for some workflows and our
Ascent tutorials

§ Ascent’s tutorial materials provide examples of using Jupyter for scientific visualization

§ For those interested in more details about how we use Jupyter:
— Source for our Jupyter Widgets:
• https://github.com/Alpine-DAV/ascent/blob/develop/src/ascent/python/ascent_module/py_src/jupyter.py

— Dockerfile for the Jupyter Container we use for the tutorial:
• https://github.com/Alpine-DAV/ascent/blob/develop/src/examples/docker/ubuntu/Dockerfile

— Research about connecting simulation codes to Jupyter using Ascent (not demonstrated today)
• Interactive in situ visualization and analysis using Ascent and Jupyter
• https://dl.acm.org/doi/10.1145/3364228.3364232

ATPESC 2022: Exploring Visualization with Jupyter Notebooks

https://github.com/Alpine-DAV/ascent/blob/develop/src/ascent/python/ascent_module/py_src/jupyter.py
https://github.com/Alpine-DAV/ascent/blob/develop/src/examples/docker/ubuntu/Dockerfile
https://dl.acm.org/doi/10.1145/3364228.3364232

5
LLNL-PRES-827383

Important links and contact info:

Ascent Resources:

§ Github: https://github.com/alpine-dav/ascent

§ Docs: http://ascent-dav.org/

§ Tutorial Landing Page: https://www.ascent-dav.org/tutorial/

Contact Info:
Cyrus Harrison: cyrush@llnl.gov
Nicole Marsaglia: marsaglia1@llnl.gov

https://github.com/alpine-dav/ascent
http://ascent-dav.org/
https://www.ascent-dav.org/tutorial/
mailto:cyrush@llnl.gov
mailto:marsaglia1@llnl.gov

6
LLNL-PRES-827383

§ Easy to use in-memory visualization and analysis
— Use cases: Making Pictures, Transforming Data, and Capturing Data

— Young effort, yet already supports most common visualization operations

— Provides a simple infrastructure to integrate custom analysis

— Provides C++, C, Python, and Fortran APIs

§ Uses a flyweight design targeted at next-generation HPC platforms
— Efficient distributed-memory (MPI) and many-core (CUDA or OpenMP) execution

• Demonstrated scaling: In situ filtering and ray tracing across 16,384 GPUs on
LLNL's Sierra Cluster

— Has lower memory requirements than current tools

— Requires less dependencies than current tools (ex: no OpenGL)
• Builds with Spack https://spack.io/

Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations

Visualizations created using Ascent

Extracts supported by Ascent

http://ascent-dav.org
https://github.com/Alpine-DAV/ascent

Website and GitHub Repo

https://spack.io/
http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent

7
LLNL-PRES-827383

Ascent is ready for common visualization use cases

Clips

ContourThreshold SliceIso-Volume

Pseudocolor Volume Mesh

Rendering

Devil Raymfem

[powered by]

8
LLNL-PRES-827383

Ascent is ready for common analysis use cases

Extracts

Triggers

condition:
entropy - history(entropy,

relative_index = 1) > 0.5

Time Histories

expression: |
du = gradient(field('velocity','u'))
dv = gradient(field('velocity','v'))
dw = gradient(field('velocity','w'))
w_x = dw.y - dv.z
w_y = dw.z - dv.x
w_z = dw.x - dv.y
vector(w_x,w_y,w_z)

name: vorticity

Derived Fields Lineouts and Spatial Binning

HDF5 FilesScalar Images

9
LLNL-PRES-827383

Science Enabling Results: Shock Front Tracking (VISAR)

Shock position tracked
in Ascent

Velocity interferometer system for any reflector (VISAR)

10
LLNL-PRES-827383

Science Enabling Results: Simulation Validation

Experimental

Radiographs

Simulated

11
LLNL-PRES-827383

Science Enabling Results: WarpX Workflow Tools (Jupyter Labs)

Jupyter Labs Interface Resulting Image

12
LLNL-PRES-827383

Science Enabling Results: Rendering At Scale
(2018)

Visualization of an idealized Inertial
Confinement Fusion (ICF) simulation of

Rayleigh-Taylor instability with two fluids
mixing in a spherical geometry.

• The 97.8 billion element simulation ran across
16,384 GPUs on 4,096 Nodes

• The simulation application used CUDA via RAJA to
run on the GPUs

• Time-varying evolution of the mixing was visualized
in-situ using Ascent, also leveraging 16,384 GPUs

• Ascent leveraged VTK-m to run visualization
algorithms on the GPUs

13
LLNL-PRES-827383

You will learn:

§ How to use Conduit, the foundation of Ascent’s API

§ How to get your simulation data into Ascent

§ How to tell Ascent what pictures to render and what analysis to execute

Today we will teach you about Ascent’s API and capabilities

14
LLNL-PRES-827383

Ascent tutorial examples are outlined in our documentation and
included ready to run in Ascent installs

http://ascent-dav.org

http://ascent-dav.org/

15
LLNL-PRES-827383

Ascent tutorial examples are outlined in our documentation and
included ready to run in Ascent installs

§ http://ascent-dav.org

§ Click on “Tutorial”

16
LLNL-PRES-827383

§ open() / close()
— Initialize and finalize an Ascent instance

§ publish()
— Pass your simulation data to Ascent

§ execute()
— Tell Ascent what to do

§ info()
— Ask for details about Ascent’s last operation

Ascent’s interface provides five top-level functions

The publish(), execute(), and info() methods take a Conduit tree as an argument.
What is a Conduit tree?

17
LLNL-PRES-827383

§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (e.g. Simulation Meshes) enable

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data description
and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

18
LLNL-PRES-827383

§ Conduit underpins Ascent’s support for C++, C, Python, and Fortran interfaces

§ Conduit also enables using YAML to specify Ascent actions

§ Conduit’s zero-copy features help couple existing simulation data structures

§ Conduit Blueprint provides a standard for how to present simulation meshes

Ascent uses Conduit to provide a flexible and extendable API

Learning Ascent equates to learning how to construct and pass Conduit trees
that encode your data and your expectations.

19
LLNL-PRES-827383

Ascent’s interface provides five composable building blocks

Scenes
(Render Pictures)

Pipelines
(Transform Data)

Extracts
(Capture Data)

Queries
(Ask Questions)

Triggers
(Adapt Actions)

The tutorial provides examples for all of these.

20
LLNL-PRES-827383

For the reminder of the tutorial, we will run the Ascent Tutorial
examples using Jupyter Notebooks

21
LLNL-PRES-827383

Start here:

https://www.ascent-dav.org/tutorial/

You can run our tutorial examples using cloud hosted Jupyter
Lab servers

https://www.ascent-dav.org/tutorial/

22
LLNL-PRES-827383

Thanks!

Ascent Resources:

§ Github: https://github.com/alpine-dav/ascent

§ Docs: http://ascent-dav.org/

§ Tutorial Landing Page: https://www.ascent-dav.org/tutorial/

Contact Info:
Cyrus Harrison: cyrush@llnl.gov
Nicole Marsaglia: marsaglia1@llnl.gov

https://github.com/alpine-dav/ascent
http://ascent-dav.org/
https://www.ascent-dav.org/tutorial/
mailto:cyrush@llnl.gov
mailto:marsaglia1@llnl.gov

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software, applications, and hardware technology,
to support the nation’s exascale computing imperative.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

