Iterative Solvers & Algebraic Multigrid (with Trilinos, Belos & MueLu)

Christian Glusa and Graham Harper \{caglusa,gbharpe\}@sandia.gov

Presented to ATPESC 2022 Participants
August 9, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND NO SAND2022-10602 C

1 / 17
Discretization of partial differential equations gives rise to large linear systems of equations

\[A\vec{x} = \vec{b}, \]

where \(A \) is sparse, i.e. only a few non-zero entries per row.

Example

<table>
<thead>
<tr>
<th>2D Poisson equation:</th>
<th>Central finite differences on a uniform mesh ({x_{i,j}}):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\Delta u = f) in (\Omega = [0,1]^2), (u = 0) on (\partial \Omega).</td>
<td>(4u_{i,j} - u_{i,j+1} - u_{i,j-1} - u_{i+1,j} - u_{i-1,j} = f(x_{i,j})\Delta x^2) if (x_{i,j} \notin \partial \Omega), (u_{i,j} = 0) if (x_{i,j} \in \partial \Omega).</td>
</tr>
</tbody>
</table>

→ 5 entries or less per row of \(A \).

Instead of dense format, keep matrix \(A \) in a sparse format e.g. *compressed sparse row* (CSR):

\[
A = \begin{pmatrix}
1 & 2 & 0 \\
3 & 4 & 0 \\
0 & 0 & 5
\end{pmatrix}
\]

\[
\text{rowptr} = (0 \ 2 \ 4 \ 5)
\]

\[
\text{indices} = (0 \ 1 \ 0 \ 1 \ 2)
\]

\[
\text{values} = (1 \ 2 \ 3 \ 4 \ 5)
\]
Available solvers

Solve

\[\mathbf{A}\mathbf{x} = \mathbf{b}. \]

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels in the other room

- Factorisation scales as \(O(n^3) \).
- Factors are a lot denser than \(\mathbf{A} \rightarrow \) memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of \(\mathbf{A} \).

Observation

\(\mathbf{A} \) has \(O(n) \) non-zero entries. \(\rightarrow \) Optimal complexity for a solve is \(O(n) \) operations.

Option 2: Iterative solvers

- Exploit an operation that has \(O(n) \) complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of \(\mathbf{A} \).
Available solvers

Solve

\[\mathbf{A}\mathbf{x} = \mathbf{b}. \]

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels in the other room

- Factorisation scales as \(O(n^3) \).
- Factors are a lot denser than \(A \rightarrow \) memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of \(A \).

Observation

\(A \) has \(O(n) \) non-zero entries. \(\rightarrow \) Optimal complexity for a solve is \(O(n) \) operations.

Option 2: Iterative solvers

- Exploit an operation that has \(O(n) \) complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of \(A \).
Krylov methods

Based on mat-vecs, we can compute

\[\vec{y}^0 = \vec{x}^0 \]
\[\vec{y}^{k+1} = \vec{y}^k + (\vec{b} - A\vec{y}^k) \]

(“initial guess”’)

and recombine in some smart way to obtain an approximate solution

\[\vec{x}^K = \sum_{k=0}^{K} \alpha_k \vec{y}^k. \]

Expressions for \(\alpha_k \) typically involve inner products between vectors in the so-called Krylov space span \(\{\vec{y}^k\} = \{\vec{x}^0, A\vec{x}^0, A^2\vec{x}^0, A^3\vec{x}^0, \ldots\} \).

- Keeping the entire Krylov space can be quite expensive.
- Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:
- Conjugate gradient (CG)
 - Use a short recurrence, i.e. does not keep the whole Krylov space around.
 - Provably works for symmetric positive definite (spd) \(A \).
- Generalized Minimum Residual (GMRES, GMRES(\(K \))
 - Works for nonsymmetric systems.
 - GMRES keeps the whole Krylov space around.
 - GMRES(\(K \)) discards the Krylov space after \(K \) iterations.
Convergence of Krylov methods

CG convergence result:

\[
\left\| \bar{x}^K - \bar{x} \right\| \leq \left(1 - 1/\sqrt{\kappa(A)} \right)^K \left\| \bar{x}_0 - \bar{x} \right\|,
\]

where \(\kappa(A) \) is the condition number of \(A \):

\[
\kappa(A) = \left\| A \right\| \left\| A^{-1} \right\|.
\]

A common theme with Krylov methods:
\(\kappa \) measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea

Reduce the condition number ("Preconditioning").

Instead of solving

\[
A\bar{x} = \bar{b},
\]

solve

\[
PA\bar{x} = \bar{P}\bar{b}
\]

with preconditioner \(P \) so that \(\kappa(PA) \ll \kappa(A) \).

Two requirements that must be balanced:

- Multiplication with \(P \) should be comparable in cost to \(A \).
- \(P \approx A^{-1} \).
Some simple preconditioners

- Jacobi: \(\mathbf{P} = \mathbf{D}^{-1} \), where \(\mathbf{D} \) is the diagonal of \(\mathbf{A} \).
- Gauss-Seidel: \(\mathbf{P} = (\mathbf{D} + \mathbf{L})^{-1} \), where \(\mathbf{L} \) is the lower or upper triangular part of \(\mathbf{A} \).
- Polynomial preconditioners: \(\mathbf{P} = p(\mathbf{A}) \), where \(p \) is some carefully chosen polynomial.
- Incomplete factorizations such as ILU or Incomplete Cholesky.
Krylov methods and preconditioners: Packages in the Trilinos project

- Support for hybrid (MPI+X) parallelism, \(X \in \{\text{OpenMP, CUDA, HIP, \ldots}\} \)
- C++, open source, primarily developed at Sandia National Labs

Belos - iterative linear solvers

- Standard methods:
 - Conjugate Gradients (CG), Generalized Minimal Residual (GMRES)
 - TFQMR, BiCGStab, MINRES, Richardson / fixed-point
- Advanced methods:
 - Block GMRES, block CG/BiCG
 - Hybrid GMRES, CGRODR (block recycling GMRES)
 - TSQR (tall skinny QR), LSQR
- Ongoing research:
 - Communication avoiding methods
 - Pipelined and s-step methods
 - Mixed precision methods

Ifpack2 - single-level solvers and preconditioners

- Incomplete factorisations
 - ILUT
 - RILU(k)
- Relaxation preconditioners
 - Jacobi
 - Gauss-Seidel (and a multithreaded variant)
 - Successive Over-Relaxation (SOR)
 - Symmetric versions of Gauss-Seidel and SOR
 - Chebyshev
- Additive Schwarz domain decomposition
Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2022/lessons/krylov_amg_muelu/
Sets 1 and 2
20 mins
Slack channel: #track5-numerical
The motivation for Multigrid methods

Convergence of Jacobi: \(\vec{y}^{k+1} = \vec{y}^k + D^{-1}\vec{r}^k, \quad \vec{r}^k = \vec{b} - A\vec{y}^k \)

High frequency error is damped quickly, low frequency error slowly
The motivation for Multigrid methods

Convergence of Jacobi:
Local transmission of information cannot result in a scalable method
Multigrid

- Main idea: accelerate solution of \(A\vec{x} = \vec{b} \) by using "hierarchy" of coarser problems
- Remove high-frequency error on fine mesh, where application matrix lives (using Jacobi or another cheap preconditioner),
- Move to coarser mesh
- Remove high-frequency error on coarser mesh by solving residual equation
- Move to coarser mesh
- ...
- Solve a small problem on a very coarse mesh.
- Move back up.
- Repeat.

- **Geometric multigrid** requires coarse mesh information.
- **Algebraic multigrid** constructs coarser matrices on the fly based on fine-level matrix entries.
Software packages for Algebraic Multigrid

- Classical AMG (hypre)
 Developed at Lawrence Livermore National Lab, presentation by Sarah Osborn & Ulrike Yang, 3:15 PM.

[Image: hypre]

- Smoothed Aggregation Multigrid (PETSc)
 Developed by Mark Adams and the PETSc team.

- Smoothed Aggregation Multigrid (Trilinos)
 Two multigrid packages in Trilinos:
 - ML
 C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)
 - MueLu
 Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)

[Image: MueLu]
The MueLu package

- Algebraic Multigrid package in Trilinos
 Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)

- Robust, scalable, portable AMG preconditioning is critical for many large-scale simulations
 - Multifluid plasma simulations
 - Shock physics
 - Magneto-hydrodynamics (MHD)
 - Low Mach computational fluid dynamics (CFD)

- Capabilities
 - Aggregation-based and structured coarsening
 - Smoothers: Jacobi, Gauss-Seidel, ℓ_1 Gauss-Seidel, multithreaded Gauss-Seidel, polynomial, ILU
 - Load balancing for good parallel performance

- Ongoing research
 - performance on next-generation architectures
 - AMG for multiphysics
 - Multigrid for coupled structured/unstructured problems
 - Algorithm selection via machine learning
Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining2022/lessons/krylov_amg_muelu/
Set 3 & 4
20 mins
Slack channel: #track5-numerical
Strong & weak scaling results for EMPIRE (Maxwell + PIC)

- Specialized multigrid for curl-curl problem
- Largest problem to date: 34B unknowns
Ongoing work

- Multiprecision (Krylov methods with mixed precision; lower precision preconditioning)
- Multigrid approaches for higher order discretizations
- Matrix-free multigrid
- Multigrid on semi-structured meshes
- Machine learning for AMG coarsening
- Preconditioning for multiphysics systems
- Multigrid for hierarchical matrices (boundary integral and nonlocal equations)
Take away messages

- CG works for spd matrix and preconditioner.
- GMRES works for unsymmetric systems, but requires more memory.
- Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solver.
- Multigrid (when applicable) has constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated

- summer students (LINK),
- postdocs (LINK).

Please contact us!