Intel® oneAPI Analyzers

Intel VTune Profiler and Intel Advisor

Intel.

Agenda

Intel® oneAPI Overview

Introduction to the Intel oneAPI Base and HPC Toolkits

Intel VTune Profiler and Intel Advisor Overview

Overview of the oneAPl analyzers

MandelbrotOMP Sample Configuration

Configure the sample used in the exercises

CPU Profiling Exercises

Running the sample on midway3 with Intel Advisor and Intel VTune
Profiler.

GPU Profiling Demo

Demo profiling the iso3dfd sample on Intel DevCloud with Intel
Advisor and Intel VTune Profiler

intel.

2

Programming Challenges

for Multiple Architectures

Application Workloads Need Diverse Hardware

[[[[[
[o [
[o [
[o [
O0oo0od

Scalar Vector Spatial Matrix

Growth in specialized workloads
Middleware & Frameworks

Variety of data-centric hardware required

Separate programming models and toolchains for each

architecture are required today CPU ElL FPGA Other accel

programming programming programming programming
model model model models

Software development complexity limits freedom of
architectural choice

Other accel.

intel.

oneAP|

One Programming Model for Multiple
Architectures and Vendors

Freedom to Make Your Best Choice

» Choose the best accelerated technology the software doesn't
decide for you

Realize all the Hardware Value
= Performance across CPU, GPUs, FPGAs, and other accelerators

Develop & Deploy Software with Peace of Mind
» Open industry standards provide a safe, clear path to the future

= Compatible with existing languages and programming models
including C++, Python, SYCL, OpenMP, Fortran, and MP|

Application Workloads Need Diverse Hardware

A m e &8

Scalar Vector Spatial Matrix

Middleware & Frameworks

Industry Intel
Initiative Product

oneAPI

Other accel.

intel.

4

oneAPI Industry
Initiative

Break the Chains of Proprietary
Lock-in

Open to promote community and
industry collaboration

Enables code reuse across
architectures and vendors

A cross-architecture
language based on C++
and SYCL standards

Powerful libraries designed
for acceleration of domain-
specific functions

Low-level hardware
abstraction layer

Application Workloads Need Diverse Hardware

Middleware & Frameworks

F TensorFlow PyTOf'Ch @xnet @ ﬁ:ﬁ NumPy X.. ©penVIN®

oneAPI Industry Specification

oneAPI

Direct Programming API-Based Programming

Libraries

: DPC++
Math Threading Library
Data Parallel C++ Analytics/

ML DNN ML Comm

Video Processing

Low-Level Hardware Interface

Other accel.

The productive, smart path to freedom for accelerated
£ computing from the economic and technical burdens
oneAPI Of proprietary programming models

sisfs.

Visit oneapi.com for more details intel

oneapi.com

Data Parallel C++

Standards-based, Cross-architecture Language

DPC++ =1SO C++ and Khronos SYCL and community extensions

Freedom of Choice: Future-Ready Programming Model
= Allows code reuse across hardware targets
» Permits custom tuning for a specific accelerator

= Open, cross-industry alternative to proprietary language

DPC++=1S0 C++and Khronos SYCL and community
extensions

= Delivers C++ productivity benefits, using common, familiar C and C++ constructs

= Adds SYCL from the Khronos Group for data parallelism and heterogeneous
programming

Community Project Drives Language Enhancements
= Provides extensions to simplify data parallel programming

= Continues evolution through open and cooperative development

The open source and Intel DPC++/C++ compiler supports Intel CPUs, GPUs, and FPGAs.
Codeplay announced a DPC++ compiler that targets Nvidia GPUs.

Direct Programming:
Data Parallel C++

Community Extensions

Khronos SYCL

intel.

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

Powerful oneAPI Libraries

Realize all the Hardware Value

Designed for acceleration of key domain-specific functions

Freedom of Choice

Pre-optimized for each target platform for maximum
performance

oneAPI| Math Kernel Library
oneMKL

oneAPI Video Processing

Library
oneVPL

oneAPI| Threading Building

Blocks
oneTBB

oneAPIDPC++ Library
oneDPL

oneAPI| Deep Neural

Network Library
oneDNN

oneAPI| Data Analytics

Library
oneDAL

oneAPI Collective

Communications Library
oneCCL

intel. -

Intel” oneAPI
P r. O d u Ct Application Workloads Need Diverse Hardware

Built on Intel’s Rich Heritage of CPU Middleware & Erameworks
Tools Expanded to XPUs

F TensorFlow PyTorch @Xnet feats X... ©penVIN®

A complete set of advanced compilers, libraries, and

porting, analysis and debugger tools 1 Intel® oneAPI Prod
ntel® one roduct

||
= Accelerates compute by exploiting cutting-edge oneAPI

hardware features
Analysis & Debug

Compatibility Tool Languages Libraries Tools

* Interoperable with existing programming models
and code bases (C++, Fortran, Python, OpenMP,
etc.), developers can be confident that existing Low-Level Hardware Interface
applications work seamlessly with oneAPI

= Eases transitions to new systems and
accelerators—using a single code base frees
developers to invest more time on innovation

Available Now

Latest version is 2021.1

Visit software.intel.com/oneapi for more details
Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future. intel

https://software.intel.com/oneapi
software.intel.com/oneapi

®
Intel” oneAP|
] Intel® one API Base Toolkit
B a S e T O O l k I t Direct Programming API-Based Programming Analysis & debug Tools

Accelerate Data-centric Workloads Intel® oneAP| DPC++/C#+ Intel® oneAPI DPC++ Library

® ™]
Compiler oneDPL Intel® VTune™ Profiler

A core set of core tools and libraries for S

. . . . o ntel® one ath Kerne .
developing high-performance applications on Intel® DPC++ Compatibility Tool Library - oneMKL Intel® Advisor
Intel® CPUs, GPUs, and FPGAs.

Intel® one API Data Analytics

© it 4 © it o
Who US@S |t’) Intel® Distribution for Python Library - oneDAL Intel® Distribution for GDB
» A broad range of developers across industries _
Intel® FPGA Add-on Intel® oneAPI Threading
= Add-on toolkit users since this is the base for all for oneAP| Base Toolkit Building Blocks - oneTBB
toolkits
. Intel® oneAPI Video Processing

Top Features/Benefits Library -oneVPL
= Data Parallel C++ compiler, library and analysis tools Intel® oneAPI Collective

o . o Communications Library
» DPC++ Compatibility tool helps migrate existing code oneCCL

written in CUDA

L . . Intel® oneAPI Deep Neural
= Python distribution includes accelerated scikit-learn, Network Library - oneDNN 1

NumPy, SciPy libraries

» Optimized performance libraries for threading, math, Intel® Integrated Performance oneAPI
. imiti - ®
data analytics, deep learning, and video/image/signal Pilalies - lniet122
processing

BASE TOOLKIT

Learn More: intel.com/oneAPI-BaseKit inl:eL

https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html

®
Intel® oneAPI Tools for HPC Intel® one API Base & HPC Toolkits

Intel” AP
n t e O ﬂ e Direct Programming API-Based Programming Analysis & debug Tools
I_l P < | O O l |< I t Intel® C++ Compiler Classic

Intel® MPI Library Intel® Inspector

. . Intel® oneAPI DPC++ Library Intel® Trace Analyzer
. . . Intel® Fortran Compiler Classic
Deliver Fast Applications that Scale oneDPL & Collector
. . rP [C]
What IS lt : Intel® Fortran Compiler [pneAPI el Intel® Cluster Checker
Library - oneMKL
A toolkit that adds to the Intel® oneAPI Base Toolkit for
building high-performance, scalable parallel code on Intel® Oné‘API E_|>PC++/C++ Intel® E_rk‘)eAP' DataDTf'V“CS Intel® VTune™ Profiler
C++, SYCL, Fortran, OpenMP & MPI from enterprise to ompitier forary -one
cloud, and HPC to Al applications.) .
Intel® DPC++ Compatibility Tool Intel oneAP! Threading Intel® Advisor
. o Building Blocks - one TBB
Who needs this product”
T Intel® oneAPI Video Processing T
® ®

= OEMSs/ISVs Intel® Distribution for Python Library - oneVPL Intel® Distribution for GDB

= C++, Fortran, OpenMP, MPI Developers

Intel® oneAPI Collective

® -
IEHIRRE A AEE el Communications Library

for oneAP| Base Toolkit

Why is this important? eIEelels
Intel® oneAPI Deep Neural
= Accelerate performance on Intel® Xeon® and Core™ Network Library - oneDNN 1
Processors and Intel® Accelerators
» Deliver fast, scalable, reliable parallel code with less . Intel® oneAP| HPC Toolkit + '”te'i'r?r:?t?\zzefl';tegglrg;nce oneAPI
effort built on industry standards . Intel® one AP Base Toolkit HPC TOOLKIT

Learn More: intel.com/oneAPI-HPCKit inteL 10

https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html

Intel Analysis Tools for GPU Compute Analysis

Intel® Advisor Intel® VTune™ Profiler

Offload Advisor Offload Performance Tuning
* Identify high-impact opportunities to offload » Explore code execution on your platform’s various CPU
* Detect bottlenecks and key bounding factors and GPU cores
* Getyour code ready even before you have the hardware by * Correlate CPU and GPU activity
modeling performance, headroom, and bottlenecks * ldentify whether your application is GPU- or CPU-bound

Roofline Analysis GPU Compute/Media Hotspots
* Analyze the most time-consuming GPU kernels,

« Determine performance optimization strategy by identifying characterize GPU usage based on GPU hardware metrics
bottlenecks and which optimizations will pay off the most

* See performance headroom against hardware limitations

* GPU code performance at the source-line level and
* Visualize optimization progress kernel-assembly level

Flow Graph Analyzer

* Visualize your CPU/GPU code and get recommendations for
the CPU device

intel.

Intel® VTune™ Profiler Overview

intel

Optimize Performance

Intel® VTune™ Profiler

Get the Right Data to Find Bottlenecks

= A suite of profiling for CPU, GPU, FPGA, threading,
memory, cache, storage, offload, power...

Application or system-wide analysis

DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
Linux, Windows, FreeBSD, Android, Yocto and more
= Containers and VMs

Analyze Data Faster

= Collect data HW/SW sampling and tracing w/o re-
compilation

= See results on your source, in architecture diagrams,
as a histogram, on a timeline...

= Filter and organize data to find answers

Work Your Way

» User interface or command line
= Profile locally and remotely
= GUI (desktop or web) or command line

ALGORITHM @ MICROARCHITECTURE

Performance

o o = o

Hotspots Memory Anomaly Microarchitecture Memory
Consumption Detection Exploration Access

PARALLELISM e

© o

Threading HPC Input and Output
Performance
Characterization

ACCELERATORS PLATFORM ANALYSES

© O o @ @ O

GPU GPU CPU/FPGA System Throttling Platform
Offload Compute/Media Interaction Overview Profiler
Hotspots

m Assembly o W de | e D

& GPU Instructions Executed by Instruction T..*
@ Control Flow B Send & Wait
Int32 & SP Float @ Int64 & DP Float @ Other

U

75,002,500 @]
12,500,000
12,500,000

Sampler - 24378 10745 —
(B 05)

Untyped: 1574 Untyped: 24.084
<«— Typed: 0000 —— Total 30.961 —— Typed 0.714 —»
SLM: 0.000 SLM: 0.000

intel.

13

Rich Set of Profiling Capabilities

Intel® VTune™ Profiler

)
n=

v Hotspots
v" Anomaly Detection
v' Memory Consumption

Parallelism

v Threading
v HPC Performance Characterization

The metric value is high.

This can indicate that the

significant fraction of

execution pipeline slots

<could be stalled due to

demand memary load and
e Memory

This diagram represents inefficiencies in CPU usage. Treat it 2s a pipe with an output flow
equal to the “pipe efficiency” ratio: (Actual Instructions Retired)/{Maximum Possible
Instruction Retiresi). If there are pipeline stalls decreasing the pipe efficiency, the pipe

shape gets mare narrow,

GPU Offiosd aruoiicss « @
Anass Confquian Coleciknlon Summary Gladhics Tt
O: 4 - sy

v' Microarchitecture Exploration
v' Memory Access

PCle 40xa:
oMitas PS5

DRAM

v" Input and Output
v System Overview
v' Platform Profiler

3d bus 98 bus 9b. bus b1 bus ba
device 0 device 0 device 0 device 0 device 0
+ 4 eud |
PCle £0x8: PCle 40:8: PCle 4028:

t
PCle £0x8; PCle 4.0 x8:
353% 35.6%
+ +

busca || buscd
dovice 0 | | device 0

Platform & 1/O

&) = =]
sockeTo Socker1 oRAM
Average Physical Core Utilization: Average Physical Core Utilization:
31.2% (9.984 out of 32} 0.0% (0.000 out of 32)
wn
05w
1

Accelerators / xPU

v" GPU Offload
v" GPU Compute / Media Hotspots
v' CPU/FPGA Interaction

Rank-to-rank communication matr - EENANEEEEEN

v" Application Performance Snapshot

intel.

14

Find Answers Fast

Intel” VTune™ Profiler
Adjust Data Grouping

Function / Call Stack
Source Function / Function / Call Stack
Sync Qbject / Function / Call Stack

Sync Qbject / Thread / Function / Call Stack
... (Partial list shown)

Double Click Function
to View Source

Click [»] for Call Stack

Filter by Timeline Selection
(or by Grid Selection)

Z£oom In And Filter On Selection
Filter In by Selection h

Rermowe All Filters

Hotspots Hotspots by CPU Utilization + @ 1) INTEL VTUNE PROFILER

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

* Grouping:| Function / Call Stack T @

CPU Time
B Qverhzad Time

Function / Call Stack Effective Time by Utilization ¥
B idie @ Poor Ok B ldeal @ Over

| _grid intersect

Spin Time

Creation

sphere_intersect 3.748= D [] 0s 0s 0s 03 03
grid_intersect 3748 D [] 0s 0s 0s 0s 0s
intersect_objects || 3.580s (D [] 0s 0s 0s 0s 0s
= grid_intersect —|| 0.168s |l 20215 0s 0s 03 03
func@0x69e19df0 2. 467s 0s 0s 0s 0s 0s
p : + mm W W (335 345 B8s BEs Oz 92s 04 Bs B.Es 10s 10.2s 10.4s10.8s ¢ | Thread -
2| WinMainCRTStartup (TID: 2... «| [l Running
=z ¥ wa CPU Time
OMP Master Thread #0 (TI..
= faster Thres (#| gy Spin and Overhe. ..
OMP Worker Thread #2 (TI. . @ CPU Sample
CPU Utilization
CPU Utilization | gy CPU Time
#| g Spin and Overhe. ..
FILTER 100.0% % Any Proce hread * | | Any Modv AnyU User functi ¥ | | Function ¥ Show inli v

Filter by Process Tuning Opportunities Shown in Pink.
& Other Controls Hover for Tips

intel.

15

Interactive Remote Data Collection

Performance analysis of remote systems just got a lot easier

Interactive analysis Command line analysis

1) Configure SSH to a remote Linux* target 1) Run command line remotely on Windows*
2) Choose and run analysis with the Ul or Linux* target

2) Copy results back to host and open in Ul
&l Configure Analysis
 Configure Analysis @ Remote Linux (SSH)
e @ B ©
Local Host Android Device Remote Linux Arbitrary Host SSH destination

(ADB) (SSH) (not connected) |

VTune Amplifier installation directory on the remote system

ftmp/vtune_amplifier_2019.0.1.563689

Conveniently use your local Ul to analyze remote systems

intel. s

Analysis Types e

@ Performance Snapshot ~

= Performance Snapshot:
* Used as a starting point to determine areas for deeper focus. ,,egm
= Algorithm: i
* Hotspots: investigate call paths and find where your code spends the most LBl iR AR T
time. @ O @
« Anomaly Detection (preview): identify performance anomalies in frequently o E?tmt: M loration e
recurring intervals of code like loop iterations.

* Memory Consumption: analyze memory consumption by app [Linux* only]
» Microarchitecture:
» Microarchitecture Exploration: deep dive into the CPU pipeline stage and

Memory
Consumption

)] PARALLELISM /O
hardware units responsible for your hardware bottlenecks.
* Memory Access: analyze CPU cache and main memory usage T o input and
- Performance Output
L Parallellsm: Characterization :
* Threading: visualize thread parallelism on available cores.
- |/O ACCELERATORS PLATFORM ANALYSES
* |Input and Output: monitor utilization of the 10 subsystems, CPU, and buses. GPQ) S@ »a
o3l ystem endering
| Platform Analyses: Con;[:i:.lttsi;l\:sedia Qverview (preview)
+ System Overview: monitors general behavior of the target system and previen
identifies platform-level factors that limit performance St e
. CPU/FPGA (deprecated)
 Platform Profiler: provides insights into overall system configuration, interaction

performance, and behavior.

More details: https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-project/analysis-types.html

intel. 7

Optimize Memory Access

Memory Access Analysis - Intel® VTune™ Profiler

Tune data structures for performance

= Attribute cache misses to data structures
(not just the code causing the miss)

= Support for customm memory allocators

Optimize NUMA latency & scalability
* True & false sharing optimization
= Auto detect max system bandwidth
= Easier tuning of inter-socket bandwidth

Easier install, Latest processors

= No special drivers required on Linux*

= Intel® Xeon Phi™ processor MCDRAM (high
bandwidth memory) analysis

Top Memory Objects by Latency

This section lists memory objects that introduced the highest latency to the overall application execution.

Memory Object Total Latency Loads Stores LLC Miss Count'
alloc_test.cpp:157 (30 MB) 65.6% 4239327176 4475334256 0
alloc_test.cpp:135 (305 MB) 6.8% 411212336 441,613,248 0
alloc_test.cpp:109 (305 MB) 6.3% 439,213,176 449,613,488 0
alloc_test!l_data_init.436.0.6 (576 B) 5.2% 742422272 676,820,304 0
[vmlinus] 4.6% 173,605,208 116,003,480 0
Others 115 1,533,646,008 1674450232 C

“N/A is applied to non-summable metrics.

Grouping:| Function / Memory Object / Allocation Stack

3

Function / Memaory Object / Stores

LLC Miss Count v

Allocation Stack

ddlriad$omp%parallel_for@2| 40,307,609 ,1...

o triadic (152 MB) 19,200,576

b triad!b { 152 MB) 10,400,312
b [Unknown] 7,200,216
p triad!dolriad (2 MB) 15,200,454
b [Stack] 2,120,063,600
p triad!a (152 MB) 38,135,544 0...
» update blocked averages 6,400,192

Local DRAM Access Count | Remote DRAM Access Count

2439273176 2430472912
1,821,654,648 1,864,855,944
615218456 560,816,824
2,400,072 3,200,096

0 0

0 1,600,048

0 0

2,400,072 0

intel.

18

Microarchitecture Exploration

Hierarchical view of the execution pipeline Elapsed Time ®: 4.000s 7/

. Clockticks: 9475,200,000
» Pinpoint sections of the pipeline with nstructions Retired: 10.939.200,000

performance problems flagged by VTune CPIRat~2- naes

MUK B This metric shows how often i
. . . . - .. hinewas =talled without .
) , mact
= Hover over metrics for a detailed description) Retiring @ iothel 1datacache The 2% Of Pibeline Slots
(») Front-E L1lcachetypically hasthe % of Pipeline Slots
. @ Bad Soe shortest latency. However, in 5o, ® of Pineline Slots
Visualize the pipeline at the function level O Bad St e ke loads locked ipel
EBra onolderstores, aload might 5% & of Pipeline Slots
in the bottom tab ek ipel
t — Maq SUITErahigh fatenty even 0% of Pipeline Slots
I n e O O u p a - though it is being satisfied by the o
(v} Back-EI L1 8% ® of Pipeline Slots
Analysis Configuration Collectionlog Summary | Gottom-up | EventCount Platform AV NS . . o
Grouping:| Function / Call Stack ~ iﬂﬁj Microarchitecture Usage: 27.0% & of Pipeline Slots) Melis oy —— Gy of Pipeline Slots
| Back-ErdBound 8 ® L1Bound [y 13.7% ® of Clockticks
Function / Call Stack Memory Bound 4
L1Bound "+ L28ound [L3Bound - | DRAM Bound * L2 Bound ~: 0.0% of Clockticks
» grid_intersect ‘1‘!4‘%‘ 0.0% 13.9% 6.3% o -':.'; i
________ 146% 15% (2) L3 Bound =: 8.4% ™ of Clockticks
» grid_bounds_intersect 00,0 L0 20.2% Cu - @ i
» func@Owdb2bedad | 0.0% 0.0% 00% Memary Bound: 34 8% - (*) DRAM Bound =: 5.8% of Clockticks
» pos2grid 0.0% 0.0% 0.0% 0.0% This partof uFipeis fraction of Memary - @ .
b tri_intersect : 0.0% 00% N —— (») Store Bound ~: 0.0% of Clockticks
¥ func@Oxn14016b34% 0.0% 0.0% .08 0.0% thatthe significant fraction of execution) . .
T T p— T o0% Bpsine ot coud be ol e (») CoreBound *: 14.4% ™ of Pipeline Slots
b func@0x10046130 | 0.0r% 0.0% « Access analysisto have the metric 5
- aceodcoreor2 | s0ss oox ook ook | | isemimecyie e Total Thread Count: 4
» libm_sse2_sqrt_precise 0,03 4. 7% 0.0% 0% Memary obiects. H L
» libm_sse2_pow_precise 100.0% 0.0% 0.0% 100.0% I 27.0% of Pipeline Slots Paused Time ~: 0Os
b func@Cn140168968 £} 0V, 0.0% 3.0% 00% Front-End Bound: L0% of Pipeline Slots
» [TBE Scheduler Imemi 0,05 0.0% 00 00% Bad Speculation: 14.4% R of Pipeline Slots
» shader 0.0% 0.0% 0.0% 0% Branch Mispredict: 00% of Pipeline Slots
b func@Oxsb102230 | 0.0% 0.0% 0.08% 0.0% Machine Clears: 14.4% ® of Pipeline Slots
» light_intersect | 100.0% 0.0% O Back-End Bound: 53.6% R of Pipeline Slots
» intersect obiects | 100.0% 0.0% 0.0% 0.0% ¥ Memory Bound: 35.0% & of Pipeline Slots
< Ll x: L1 Bound: 14.6% Pk of Clockticks

intel.

Intel® VTune™ Profiler

Input and Output Analysis

= Provides uncore- and device-centric view

to locate performance bottlenecks TR
in I/O-intensive apps at both HW and SW levels di’?i;éé’o di%}ido

= Two types of metrics to analyze: e e
 Platform I/O: application- and device- o o,

31.2% (9.984 out of 32)

agnostic hardware event-based metrics
for DRAM, PMEM, Intel UPI, PCle,
Intel DDIO, MMIQO traffic consumption

« APland OS I/O: DPDK, SPDK, kernel I/O

» Linux and FreeBSD targets are supported

54.7%

= The full set of I/O metrics is available on Intel® Xeon® processors,
including 3rd Generation Intel® Xeon® Scalable Processors

Average Physical Core Utilization:

= = = =

bus 98 bus 9b bus b1 bus b4
device 0 device 0 device O device 0
4 4 i 4
PCle 4.0 x8: PCle 4.0x8: PCle 4.0 x8: PCle 4.0 x8:
35.6% 35.6% 35.3% 35.5%
+ + ¥ +
EE|E o
SOCKET 1 DRAM

Average Physical Core Utilization:
0.0% (0.000 out of 32)

UPI

40.5% 1.1%
—p —
) t
PCle 4.0 x8: PCle 4.0 x8:
35.3% 35.6%
bus ca bus cd
device 0 device O

intel.

20

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-platform-performance.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/effective-utilization-of-intel-ddio-technology.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-dpdk-applications.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-spdk-applications.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-linux-kernel-i-o.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis.html

Fasily ldentity Hot Code Paths

Flame Graphs* for Hotspots Analysis

Visualize Total Function CPU time spent

» Explore stacks and stack frames
« Aggregation
» Side-by-side visualization
+ Function bar as fraction of CPU Time

» Different colors per function type
= |dentify the time spent in each function and its callees
Rich Experience with Intel® VTune™ Profiler Ul
» Select your visualization of choice
* Flame or Icicle Graph
» Filter data by process, thread, time region, and more

= Jump to the function source code via stack pane

Flame Graph
B synchronization [0 Overhead [Cther L A ||F| Search Q

v’ Start from the functions at the bottom and work your way up
v’ Pay attention to wide rectangles for hot/sync functions

start_thread
clone

*Adapted based on Brendan Gregg's Flame Graphs

intel.

21

https://www.brendangregg.com/flamegraphs.html

Intel® VTune™ Profiler

Flame Graph

Hotspots Hotspots by CPU Utilization ~ @&

Analysis Configuration

O User

A== 3 1 Sl e

Collection Log Summary

O system [Synchr... [0 Overhe... [Other

Bottom-up

Flame/Icicle Graph]

User/System/ \
Threading runtime
overhead/Sync
"“i‘-r-“ coloring to
[Open... comprehend the App
[Stitch. .. structure
_INTE... _ _ _44
_km... _INTERNAL_25
[Open... lkkmp_flag_64:wait
miniF... miniFE::matvec_std=miniFE::CSREMatrix=double, int, int=, miniFE:-. ..

miniFE::cg_solve=miniFE::CSEMatrix=double, int, int=, mpi=-

Find the Hottest code-path(s) and function(s)
Start optimization from the bottom functions to top
Pay attention to Hot/Wide Sync function(s) too

Thrd

OMP Worker Thread #60 (TI..

OMP Worker Thread #56 (T1...

OMP Worker Thread #62 (T1...

=double, int, inf=. .

Emalle B

functions by name

Call Stacks (

src_kmp...

_INTERMAL_25

Search control to find

INTEL VTUNE PROFILER

49

MIniFE.x ' m
libiomps5.s0
libiomps5.s0
MINiFE X | [S
libiomps.so |
! libiomp5.s0

| libiomp5.50

src_kmp...

CPU Time: 59.4115
Function: [OpenhP fork]
Madule: libiomp5.so

"l Source File: kmp_csupport.cpp
Functicn Type: Overhead

Filter by Process/Thread/Module/FunctionType/Time
via Filter bar or/and Timeline

libc.s0.6
miniFEX | _

Each rectangle \

represents a stack frame
and function total CPU
time — Top-Down
(Aggregated data NOT
overtime)

The horizontal-axis
shows the stack profile
population, sorted
alphabetically

The vertical-axis shows
stack depth, counting
from zero at the bottom

Click rectangle to zoom/

[Running

i CPU Time

s Spin and Overhead...
(] ® CPU Sample

CPU Utilization

intel.

22

Intel® VTune™ Profiler

Performance Snapshot Analysis
Choose your next analysis:

ALGORITHM
0 O
Hotspots Anomaly Memory
Detection Consumption
(preview)
PARALLELISM
Threading HPC
12.4% Performance

Characterization
0.0%

ACCELERATORS
GPU Offload GPU CPU/FPGA
Compute/Media Interaction
Hotspots
(preview)

MICROARCHITECTURE

Microarchitecture Memory Access
Exploration 35.2%
27.2%

/O

Input and Output

PLATFORM ANALYSES

@ O ©O

System GPU Rendering CPU/GPU
Overview (preview) Concurrency
(deprecated)

Platform Profiler

Characterize high-level aspects:

(>) Elapsed Time : 7.906s
(> Logical Core Utilization “: 12.4% (0.990 out of 8) K

() Microarchitecture Usage “: 27.2% & of Pipeline Slots

Retiring ©: 27.2% of Pipeline Slots
Front-End Bound @: 5.5% of Pipeline Slots
Bad Speculation @: 3.7% of Pipeline Slots

() Back-End Bound @: 63.6% M of Pipeline Slots
(2) Memory Bound @: 35.2% R of Pipeline Slots
Core Bound @: 28.4% R of Pipeline Slots

(>) Memory Bound”: 35.2% K of Pipeline Slots

() Vectorization“: 0.0% & of Packed FP Operations

intel. =

Intel® VTune™ Profiler

Roman

Application Performance Snapshot for MP|

= Qutlier analysis for MP|
applications at scale

* Explore on source of imbalance

* Choose nodes/ranks for detailed

profiling with VTune

103
58.4

Khatko

MPI Imbalance, % of Elapsed Time

225%
17.44% pmbommmy 33.63%

R The application workload is not well balanced
between MPI ranks.For more details about the MPI
communication scheme use Intel® Trace Analyzer

and Collector.

W Statistical Outliers (24, top 3 below):
Rank 132 :33.63%
Rank 204 :32.97%
Rank 228 : 32.87%

¥ To get more information about outliers please run:
aps --report --metrics="MPI Imbalance'

IO LSOOy

22.5%R+ of Elapsed Time

intel.

24

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/mpi-code-analysis.html

Intel® Advisor Overview

intel

Offload Modeling
* Accelerated Regions * Logs

NE DA < scoMain Offload Modeling View

Top Metrics

|ﬂtel® AdVISOr | 105.9x | 2.4x | 58% | 2

D e S i g n C O d e fo r m O d e r n h a rd Wa re Speed Up for Acceler Amdahl's Law Speed Up Fraction of Accelerate. .. Number of Offloads

Program Metrics

Offload Modelling Lo e ——————

Accelerated 6.25s]
» Efficiently offload your code to GPUs even before you have the
‘ Program Time on Host After ... 5.88s Target Platform Target
hard Wa re W Non Accelerated Time 0.11s Device
W Time in MPI calls 0s Number of Offloads 2
. - Time on Target 0.26s Speed Up for Accelerated Code 106.9x
Automated Roofline Analysis S
* Optimize your GPU/CPU code for memory and compute
Y L3: GTI (Memory) v || ;# Guidance v
Vectorization Optimization
* Enable more vector parallelism and improve its efficiency | ’B,;;j_"_’fj_______ﬂ,_./_':_"_’ _"_E_F;gggg._;f;g@_p_@@E;_ﬂ_.:_s_;;_@f}_qp_g_?

2
o 7 _~~ DP Vector Add Peak: 55.13 GFLOPS
e T T T S T

Thread Prototyping | da
« Add effective threading to unthreaded applications ' -

-

Y00 o =
; > . - ;
B+SLM SLM ® L3
87GB[[25701GB, '\”:_?3/-"' 9169

Flow Graph Analyzer el e
. e L3 Aot nr %;Lq? 5 FLOP/Byt
. . P\\:!\/_/" e riinme’ ICVH ens s e
* Create, visualize and analyze task and dependency o SefEipsed Tmo 0200 I

computation graphs 7 o1 07 1 i 7

[Learn more: Intel.com/advisor_} Part of the Intel® one API| Base Toolkit intel 26

~

“Automatic” Vectorization O

'en Not Enough

A good compiler can still benefit greatly from vectorization optimization

Compiler will not always vectorize

» Check for Loop Carried Dependencies
using Intel® Advisor

= All clear? Force vectorization.
C++ use: pragma simd, Fortran use: SIMD directive

Not all vectorization is efficient vectorization

» Stride of 1is more cache efficient than stride of 2
and greater. Analyze with Intel® Advisor.

» Consider data layout changes
Intel® SIMD Data Layout Templates can help

Arrays of structures are great for
intuitively organizing data, but are
much less efficient than structures of
arrays. Use the Intel® SIMD Data
Layout Templates (Intel® SDLT) to
map data into a more efficient layout
for vectorization.

intel.

27

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt

Get Breakthrough Vecto

Intel® Advisor—\Vectorization Advisor

Faster Vectorization Optimization

Vectorize where it will pay off most
Quickly ID what is blocking vectorization
Tips for effective vectorization

Safely force compiler vectorization
Optimize memory stride

rization Performance

Data & Guidance You Need

= Compiler diagnostics +
Performance Data + SIMD efficiency

= Detect problems & recommend fixes
» | oop-Carried Dependency Analysis
= Memory Access Patterns Analysis

& topsedime 00 [N BEEIEEEE] ¢ fre Alvoues - (T N e -
B Summary % Survey & Roofline ™1 Refinement Reports
[+] [=] Function Call Sites and Loops E]O b :’erformance = T"_“e T x & Type Why No Vectorization? bt VL??ps s T
SSues Total Time | Self Time » | Vector... Efficiency | GainE... |VL
« O [loop in serial_mandelbrot at mandelbrot.cpp:70] . f; - | 0.202s - 0.2025-— Scalar | @ loop control variable was not identified. Explicitly compute the it [' -
2O [loop in mainompparallel@164 at mandelbrotcpp:1811| [01528 0.152s@ Scalar @ loop control variable was not identified. Explicitly compute the it...
<1 [loop in mainompparallel@219 at mandelbrot.cpp:237] B 0.108s D 0.108s@8 Inside vectorized
-/ [loop in simd_mandelbrot at mandelbrot.cpp:126] | f— 0.088s @B 0.088s@8 Inside vectorized
- [loop in simd_mandelbrot at mandelbrot.cpp:114] [¢ 2 Possible ineffi... 0.100s@® 0.012s! Vectorized (Body) AVX2
-0 [loop in mainompparallel@164 at mandelbrot.cpp:169] [@1Data type conv... 0.1625- 0.010s! Scalar @ outer loop was not auto-vectorized: consider using SIMD directive
<O [loop in serial_mandelbrot at mandelbrot.cpp:58] [#1Data type conv... 0‘2025- 0.000s! Scalar @ outer loop was not auto-vectorized: consider using SIMD directive
-/ O [loop in serial_mandelbrot at mandelbrot.cpp:57] [7 ¥ 1 Data type conv... 0.2025- 0.000s! Scalar € outer loop was not auto-vectorized: consider using SIMD directive
«/ O [loop in simd_mandelbrot at mandelbrot.cpp:112] f_ ¥ 1 Data type conv... 0.100s B 0.000s! Scalar € inner loop was already vectorized
-3 [loop in mainompparallel@164 at mandelbrot.cpp:164] [_—— © 2 Assumed depe... 0.1625- 0.000s! Threaded (OpenMP) @ vector dependence prevents vectorization

Optimize for Intel® AV X-512 with or without access to AV X-512 hardware

Intel.com/advisor

intel. =z

Design your code for efficient offload
Intel® Advisor - Offload Modeling

= Will your code benefit from GPU porting? With Offload Modeling, you can:

= How much performance acceleration will your * Pinpoint offload opportunities where it pays
code get from moving to the next-generation off the most.
GPU? « Project the performance on GPU.

« |dentify bottlenecks and potential

22 oo || 2 mamn || 02| | B performance gains.

\\\\\\\\
eeeeeeeeeee

—~ i 8 * Get guidance for optimizing a data transfer
‘ ’ s “ between host and target devices.

No data available

Results can be reviewed in HTML reports.

intel.

29

—ind Effective Optimization Strategies

Intel® Advisor—Automated Roofline Analysis

Optimize for memory and compute

Elapsed time: 3279 [ERt] IR % Fiter AllModules v ANSources v LoopsAndFuncbions w ANl Thresds v ¥ Customize View
[Summary @ Survey & Roofine %] Refinement Reports
= O iy = | Cores 4 © + | [Defaut FLOAT ~ | [sl]

= Highlights poor performing loops

= Shows performance ‘headroom’ for
each loop

- — ==

3
18.71 GFLOPS

- Which can be improved
- Which are worth improving

= Shows likely causes of bottlenecks

" Suggests next optimization steps

“lam enthusiastic about the new "integrated roofline” in Intel®
Advisor. It is now possible to proceed with a step-by-step

approach with the difficult question of memory transfers

optimization & vectorization which is of major importance.”
Nicolas Alferez, Software Architect

Onera — The French Aerospace Lab

intel.

30

—ind Effective Optimization Strategies
ntel® Advisor - Roofline Analysis on GPU

GPU Roofline Performance Insights
= Highlights poor performing loops ", - E T e

GPU Roofline Insights
EIRSIE - oo ogons

GPU Rooflne Rogs

= Shows performance ‘headroom’

Elapsed Time
ssssssssssssssss 0.15s

for each loop

Work Size Local
1024 x 1024 266 x1

Copy To Clipzoar

- Which can be improved P gr-ri—
- Which are worth improving

0000000

= Shows likely causes of bottlenecks

mmmmmmmmmmm [=] ‘Work Size
ErE o PS GINTOPS GFLOI lobal Local Cﬂ'gmlﬂ L
[Outside any task] 3213 00 0.000 001 0000 0000 [Unknown] 0%
eeeeeeeeeeeeeeeeeeeeeeee ion 0.002s 100 0,000 100 0.000 Transter Out
zeCommandListippendBarrier 000s 00 0.000 00 000 QOO0 Synchroniz.. 0.000s
Memory bound vs. compute bound s S e — T R v
.

" Suggests next optimization steps

intel. =

CPU Performance
MandelbrotOMP Sample

Profiling

- Xercises

intel =2

Workflow

Log into an Intel®
DevCloud GPU
node and
configure the
MandelbrotOMP
sample

Run Intel Advisor:
Offload Advisor
to estimate

performance on
Gen9 GT2 GPU

Run Intel Advisor:
GPU Roofline on
offloaded
implementation
to visualize GPU
performance

Run Intel VTune
Profiler: GPU
Hotspots for
deeper insights
into GPU kernels
and device
metrics

intel.

33

DevCloud Setup

©
©

©

Log into DevCloud via ssh

Start interactive gpu node:

S gsub -I -1
nodes=1 :gpu:ppn=2

Create MandelbrotOMP sample:

https.//github.com/oneapi-
src/oneAPl-samples

Start Intel VTune Profiler Server in
second ssh terminal

DevCloud Setup

Intel DevCloud provides a free environment for testing the
latest Intel CPUs and GPUs. Intel oneAPI toolkits are
already installed and set up for use.

To create a DevCloud account, follow these steps:
https://www.intel.com/content/www/us

/en/forms/idz/devcloud-
enrollment/oneapi-request.html

intel.

34

https://www.intel.com/content/www/us/en/forms/idz/devcloud-enrollment/oneapi-request.html

Workflow — CPU Profiling

Configure the
MandelbrotOMP
sample

goze @

Run Intel VTune
Profiler: Hotspots
and HPC
Performance
Characterization
to get a high level
view of
performance

Run Intel Advisor:

CPU Roofline to
get a deeper
understanding of
vectorization
performance

Run Intel Advisor:
Offload Advisor
to estimate
performance on
Gen9 GT2 GPU

intel. =

MandelbrotOMP

= This sample runs one or all of four algorithms for generating a Mandelbrot image. Each
algorithm has an increasing level of optimization, from a serial implementation to using
OpenMP for parallelization and simd vectorization.

= From oneapi-cli: oneAPI Direct Programming -> C++ -> Combinational Logic -> Mandelbrot
OMP

= Github link: https://github.com/oneapi-src/oneAPI-
samples/tree/master/DirectProgramming/C%2B%?2B/CombinationalLogic/MandelbrotOMP

intel. 3

MandelbrotOMP Makefile

Change options to use LLVM-based Intel C++ compiler

= Change compiler from icpc 10 icpx [EeOEENERsISs

SRCDIR := src
= Remove -ipo from CFLAGS and BUILDDIR := release
LIBFLAGS and add: —g - CFLAGS := -O3 —ipe —qopenmp -std=c++l11
-g -D__INTEL COMPILER
D__INTEL_COMPILER EXTRA CFLAGS :=
: o LIBFLAGS := —-gopenmp
= Comment out ifdef defining ifdef perf num

PEREFNUM

TARGET := S$(BUILDDIR) /Mandelbrot
icpx: $(TARGET)

intel. ¥

MandelbrotOMP main.cpp

Increase workload size

" src/main.cpp

= Change themax depth from
100 to 5000

//Modifiable parameters:
int height = 1024;

int width = 2048 //Width should be a multiple of 8
int max depth = 5000;

intel. s

All commands

* $ cd MandelbrotOMP
= S vim Makefile

= Make the changes from slide 25
" S vim src/main.cpp

= Make the change from slide 25
" S make

" S make run

intel. =

Intel® VTune™ Profiler Exercise
MandelbrotOMP Sample

intel «

Collect CPU Hotspots

Generate VTune Command Line

1. Open Intel VTune Profiler on local host
2. In*Where" select “Arbitrary Host”

. This is just for generating command lines
3. In*What”:

. Application:
~/MandelbrotOMP/release/Mandelbrot

. Application parameters: 3
4. In"How" select “Hotspots”
. Hardware event-based Sampling
. Show additional performance insights enabled

5. Press Command Line button

',‘ Arbitrary Host (not connected) ~

A This target system type is used to produce a command line

remote system with no connection to the host, copy the
generated command line and run it directly on the remote
system.

Hardware platform
Intel(R} Processor code named Skylake

Operating system
GMNU/Linux

=8 Launch Application ~

app for best analysis productivity.
Application:
~MandelbrotOMP/release/Mandelbrot

Application parameters:

3

Use application directory as working directory

Use MPI launcher

Advanced

analysis configuration for the selected microarchitecture. You
cannot start this analysis from the host. To collect data on the

Specify and configure your analysis target: an application or a script

o

2

& Hotspots ~ +

|dentify the most time consuming functions and drill down to see

time spent on each line of source code. Focus optimization efforts

on hot code for the greatest performance impact. Learnmors
User-Mode Sampling @ Overhead

(@) Hardware Event-Based Sampling ®

CPU sampling interval, ms H H |]
1
_-e(l

Collectstacks

Show additional performance insights

Details

$ vtune -collect hotspots -knob sampling-mode=hw --app-working-dir=~/MandelbrotOMP/release --

~/MandelbrotOMP/release/Mandelbrot 3

intel.

41

Collect CPU Hotspots
Run from GUI

7. Runvtune-gui

2. In*Where" select “Local Host”
3. In*What":

. Application:
~/MandelbrotOMP/release/Mandelbrot

. Application parameters: 3
4. In"How" select "Hotspots”

. Hardware event-based Sampling

. Show additional performance insights enabled
5. Press Start button

WHERE

B | ocalHost ~

WHAT

mm Launch Application =

Specify and configure your analysis target: an application or a script
to execute. Follow Precans. Aenlication fac Analsis to compile your
app for best analysis productivity

Application:

~MandelbrobOMPirelease/Mandelbrot b
Application parameters:

3 D

| Use application directory &s working directory

Usa MPI launcher

Advanced >

& Hotspots ~ ~

ldentify the most time consuming functions and drill down to see

time spent on each line of source code. Focus optimization efforts

on hot code for the greatest performance impact. Learn more
User-Maode Sampling @ Overhead

(® Hardware Event-Based Sampling (®

CPU sampling interval, ms H |]
1 1l
-8l

Collect stacks

Show additional performance insights

Details

$ vtune -collect hotspots -knob sampling-mode=hw --app-working-dir=~/MandelbrotOMP/release --

~/MandelbrotOMP/release/Mandelbrot 3

intel.

42

Collect CPU Hotspots

View Results — Summary Tab

» Top hotspot is the parallel_mandelbrot function

» Effective CPU Utilization Histogram shows majority of
time running on 8 logical CPUs

. There are only 8 threads, so this is expected

(¥) Top Hotspots

= |nsights highlights problems with the following:

. Parallelism — This number is low due to the number of
threads defined in the application code. Increasing the
number of threads should scale.

. Microarchitecture Usage — This number is low, indicating
poor use of hardware resources.

. Vectorization — This number is very low, meaning that
there are floating point operations in the code but none
are vectorized. This is a good place to start.

= Next Step: Run the recommended HPC Performance
Characterization Analysis for more vectorization insights

Hotspots @ 1
Analysis Configuration

() Elapsed Time :1.787s

INTELVTUNEP
A

ILER

Collectionlog Summary Bottom-up Caller/Callee Top-downTree Flame Graph Platform

Hotspots Insights
If you see significant hotspots in the Top Hotspots list, switch to the Bottom-
up view for in-depth analysis per function. Otherwise, use the Caller/Calles or

© CPUTime O: 96405 the Flame Graph view to track critical paths for these hotspat:
Total Thread Count: 8 e Flame Lraph view 1o track critical paths ror these hotspots.
Paused Time @: 0Os Explore Additional Insights

Parallelism : 55% N
Use < Threading to explore more opportunities to increase parallelism in
your application.

This section lists the most active functions in vour application. Optimizing these hotspot
functions typically results inimproving overall application performance.

Microarchitecture Usage : 32.8% K
Use iliMicroarchitecture Exploration to explore how efficiently your
application runs on the used hardware.

Function Module CPU Time % of CPU Time
S Vectorization @ : 0.0% Rk
-Z19parallel mandelbrotddddiiiextracted Mandelbrot #.350s 97.0% Use = HPC Performance Characterization to learn more on vectorization
__kmp_fork_barrier libiomp5.s0 0.240s 2.5% efficiency of your application. This code has floating point operations and
sthi_write_png_to_mem Mandelbrot 0.010s 0.1% is not vectorized. Consider either recompiling the code with optimization
_kr;lp_api:omg_sét_num_threads libiomp5.5s0 0.010s 0.1% gntions allow vectorization or using Intel Advisor to vectorize the loops.
sthiw__zlib_countm Mandelbrot 0.010s 0.1%

“N/A Is applied to non-summable metrics.

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultansously. Spin and Overhead time adds to the Idle CPU utilization value.

1200ms

1000ms -

Elapsed Time

800ms

Target Utilization

600ms -

400ms o

200ms

Average Effective CPU Utilization

oms -

Simultaneous’ 'y Utilized Logieal CPUs

intel. 4

Collect CPU Hotspots

View Results — Bottom-up Tab il s e e - S

Grouping:| Function / Call Stack ~|[%] calistacks h =
Function / Call Stack CPUTime ¥ [= Module Function (Fu| Mandelbrot ! _Z1%parallel_man...
T h e th re ad tl m e I' I n e VI eW at t h e b Ott O m S h OWS » _Z19parallel_mandelbrotddddiii.extracted 9.350s Mandelbrot _Z19parallel_mandelbrotddddiii.el libiomp5.so ! [OpenMP dispatc...
h h M P h d l l f h _ kmp_fork_barrier 0.240s | libiomp5.50 __kmp_fork_barrier(int, int) libi 5. kmp fork call+0...
t at t i e re are 8 O t read Sl an a O t e m sthi_write_png_to_mem 0.010s | Mandelbrot stbi_write_png_to_mem I:b:’Z:ES zz [O:;:M:T:O:Z]:O
l l d b __kmp_api_omp_set_num_threads 0.010s | libiomp5.s0 __kmp_api_omp_set_num_threads :
a re p rl m a rl y CO O re I n rOW n sthiw__zlib_countm 0.010s | Mandelbrot sthiw__zlib_countm{unsigned char Mandelbrat par.allel_rnandelbr...
sthi_zlib_compress 0.010< | Mandelbrot stbi_zlib_compress Mandelbrot | main+0x54d - ma...
H H H H H ioi 0.010s | libi ioi libc.so.6 | _libc_start_main+0xf2
* Green indicates that the thread is running, but brown is —kp o col 0010s | biompbizn |l e el oses e

where the thread was actively using the CPU

* Red indicates spin and overhead time, and in this case
the threads are waiting for all of them to finish.

= Overall, thread performance has good
concurrency with no real problems. The only
issue is that the application limits itself to 8
threads instead of taking advantage of more o: +
available CPUs. B o

OMP Worker Thread #6 (TID...
= Next Step: Run the recommended HPC OVP Worker Threzd 2210

[Running
s CPU Time

Thread

#a Spin and Overhead Ti...
] ® CPUSample

CPU Utilization
s CPU Time
i Spin and Overhead Ti...

OMP Worker Thread #7 (TID...
. . . OMP Weorker Thread #4(TID...
Performance Characterization Analysis for more oV o Thes#1T0..
Ve Cto rl Zat | O n I n S Ig hts OMP Worker Thread #5 (TID...

OMP Worker Thread #3(TID...

CPU Utilization

FILTER 1000% g0 | [Any Proc | | Any Thread | [Any Mocv | |Any Utiv | | | User function v | | Functions ~ | | Show inline v |

intel.

Collect HPC Performance Characterization

Generate VTune Command Line

1 n 1]
1. In *How" select "HPC
_',r Arbitrary Host (not connected) ~
P e rfo r m a n C e A This target system type is used to produce a command line analysis configuration for

the selected microarchitecture. You cannot start this analysis from the host. To
collect data on the remote system with no connection to the host, copy the

(h t . t - n generated command line and run it directly on the remote system.
a ra C e r I Z a I O n Hardware platform

Intel(R) Processor code named Skylake -

i} HPC Performance Characterization ~ +

Analyze performance aspects of compute-intensive applications, including CPU and
GPU utilization. Get information on OpenMP efficiency, memory access, and
vectorization. Learn more

CPU sampling interval, ms

5

Collect stacks
Operating system

= Use default options .

Analyze memory bandwidth
Evaluate max DRAM bandwidth
Analyze OpenMP regions

Collect affinity data

2. Press Command Line | s cuchasiction -

Details

Specify and configure your analysis target: an application or a script to execute. Follow
b u t t O n Prepare Application for Analysis to compile your app for best analysis productivity.
Application:
~/MandelbrotOMP/release/Mandelbrot El

Application parameters:
3)

Use application directory as working directory

Use MPI launcher

Advanced >

$ vtune -collect hpc-performance --app-working-dir=~/MandelbrotOMP/release --
~/MandelbrotOMP/release/Mandelbrot 3

intel. 4

Collect HPC Performance Characterization

View Results — Summary Tab

= Platform Diagram shows majority of CPU utilization is
on Socket 1, with no UPI or memory traffic

» Effective Physical Core Utilization is low due to the
number of threads defined in the application

* There are no issues due to memory accesses

= Vectorization shows that 47% of uOps are floating
point, but none are vectorized (packed). Adding
vectorization could significantly improve
performance.

= Next Step: Run CPU Roofline with Intel Advisor

HPC Performance Characterization @)
Analysis Configuration Collectionlog Summary Bottom-up A

() Elapsed Time :1.336s

() Platform Diagram

i[m]: i[m]:
SOCKET 0 SOCKET 1

Average Physical Core Utilization Dy
27.6% (6,620 cut of 24)

Awverage Physical Core Utilization D:2.2%
(0.533 out of 24)

UPI

() Effective Physical Core Utilization ’: 14.9% (7.158 out of 48) &
() Memory Bound "1 0.0% of Pipeline Slots

(%) Vectorization :0.0% R of Packed FP Operations
&) Instruction Mix:

) SPFLOPs™: 0.0% of uOps

DP FLOPs ©: 47.0% ofuOps
() Packed ™: 0.0% from DP FP
Scalar s 100.0% % from DPFP

%87 FLOPs " 0.0% of uOps

Non-FP 2 53.0% of uOps
FP Arith/Mem Rd Instr. Ratio ©: 128.548
FP Arith/Mem Wr Instr. Ratio : 2,699.923
() Top Loops/Functions with FPU Usage by CPU Time
This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU % of FP FP Ops: 3 FP Ops: Vector Instruction ¢ Loop
Time Ops Packed Scalar Set Type
[Loop at line 180in _Z19parallel_mandelbro 93125 48.0% 00% 100.0% &

tddddiii.extracted]

“M/A is applied to non-summable metrics.

intel.

NTEL VTUNE PROFILER

46

Intel® Advisor Exercise
MandelbrotOMP Sample

intel #

Collect CPU Roofline

Run from GUI

1. Run advixe-gui

2. Create a new project

= Application:

~/MandelbrotOMP/release/Mandelbrot

= Application parameters: 3

3. Press OK

uc_demo - Project Properties

Analysis Target Binary/Symbol Search
= Survey Analysis Types

L - Survey Hotspots Analysis

- Trip Counts and FLOP Ana

& Suitability Analysis

E|{j Refinerment Analysis Types

D Memory Access Patterns £

-} Dependencies Analysis
Performance Modeling

X
Source Search
Launch Application -~

Specify and configure the application executable (target) to analyze. Press F1 for more details,

@ Cannot find application file "~/MandelbrotOMP/release/Mandelbrot”.
Application: | ~(MandelbroetOMP/release/Mandelbrot v| Browse... »
Application parameters: | 3 v| Meodify...
Use application directory as working directory
Working directory: Browse...
User-defined environment variables:
| | Modify...

. () Include only the following medule(s)
Meodules: ®) Exclude the following module(s)
| | Modify..
Managed code prefiling mode: | Auto ~
Child application: I:l

v
oK Cancel

intel.

48

Collect CPU Roofline

Run from GUI - cont

1.

From the Perspective Selector,
select CPU/Memory Roofline
Insights

Press Choose button

From the new Analysis
Workflow panel, press the Run
putton

> kX

Accuracy
Medium High Custom

Overhead

-

Perspective Selector
Perzpective iz a predefined analysis worlkflow that consists of multiple profiling (collection) steps helping you understand certain aspects of your application
performance. In the user interface, each perspective has its own set of panes and grids providing insights on application performance.

GPU Modeling GPU Analysis

. >
:@::@: E
Offload Modeling GPU Roofline Insights

CPU Analysis and Modeling

V

oo = <

Vectorization and Code Insights CPU | Memory Roofline Insights Threading

CPU / Memory Roofline Insights Perspective

- * Measure and visualize performance of loop/functions against CPU-imposed performance ceilings.
S * Determine the main limiting factor (memory bandwidth or compute capacity).
S R) . + Get code-specific optimization recommendations.

v = Leamn more o

intel.

49

Collect CPU Roofline

Run Advisor in the remote CLI
1. Run the roofline collection:

$ advisor --collect=roofline —--project-dir=./cpu roofline
-— ./release/Mandelbrot 3

2. Package results for viewing on the local host:

$ advisor --snapshot --project-dir=./cpu roofline --pack -
—cache-sources --cache-binaries —-- ./cpu roofline snapshot

intel. o

Collect CPU Roofline

View Results — Roofline

* There are a few loops shown
for INT data, but FLOAT is the
one doing the compute.

= The FLOAT loop points to line
168, which is the inner for loop.
It is compute bound.

Note that there is no large loop dot for the main while
loop. This is likely due to the arithmetic intensity of the
while loop getting applied to the earlier for loop. There
are also issues with the compiler being unable to
determine the number of iterations in the while loop
due to the break statement.

Summary F‘a Survey & Roofline !:El Refinement Reports

% [Higher instruction set architecture (1SA) available ® X
Consider recompiling your application using a higher [5A,

k [Q Iy » | Cores: 8 on 1socket(s) @ ~ |Y INT+FLOAT: No Callstacks » | |31¢ Compare v | | # Guidance « =

o

g - 1309.97 GFLOPS.

=] S (RN Y. WP SP Vector FM# Peak: 1303.97 E3_F':QF_’=_7_

1000 - e @ = o . Es

700 B-.El".'.'.'.'.'.,'E,'.*E.’f'.'.'.'.'.'.'.'.'.'.'.'.'.'.é?:'.'.'.'.;E;."‘.—‘E'.'.'.'.'.'.'.'.'.'.'.'.::'?'%g.gqf{o:rf"%?‘E.a'fit.%?%:c"{rﬁqis?:

Gl : o SR

400 Y L — CR AN ntG4 Vector Add Peak: 392.01 GINTOP: |

- it A = A A Rty s S ey S o oi o 2

B o - OP Vector Add Peak: 329 74 GFLOP3

?
Integer Scalar Add Peak: 70.28 GINTOPS

bolind?®

Bound by compute and memary roofs’

il
Scalar Add Peak: 56.19 GFLOPS

|

Compute bound®
QOP/Byte (Artnmetic Int2nsity)
T

T T T
001 01 1
Physical Cores: 48 & App Threads: 8 @

10 100

intel.

51

Collect CPU Roofline

View Results — Survey

* The top loop uses the while command,
and the compiler won't vectorize it due to
unknown iterations.

* The loop identified in the roofline view at
line 168 is an inner for loop, which wasn't
vectorized because of the added
complexity of the while loop. The compiler
determined it would hurt performance.

Summary 7‘9 Survey & Roofline !.'ﬂ Refinement Reports

Note that Advisor currently lacks support for the
vectorization report from icpx — the new LLVM-
based compiler - which is why some vectorization
details are missing. This is being worked on.

¥ /& Higher instruction set architecture (ISA) available ® X
Consider recompiling your application using a higher 154,
. . Performance | CPU Time - ~
[=] Function Call Sites and Loops ¥ Jssues r— o —— Type Why Mo Vectorization? [
410 [loop in _Z19parallel_mandelbrotddddiii.extracted at mandelbrot.cpp:180] | & 1 Potential ... 9.340s I 9.340s @ Scalar
=/ f sthiw_paeth 0.010s1 0.010s1 Inlined Function
=0 [loop in sthiw__zlib_countm at stb_image_write.h:825] 0.010s1 0.010s1 Scalar
vl [loop in sthi_zlib_compress at sth_image_write.h:258] 0.020s1 0.010s1 Scalar
= f _start 9.4005 (JOENE 0.000s1 Function
. [f main 9.4005 (JOENE 0.000s1 Function
“[u f parallel_mandelbrot 9.3'.-"05- 0.000s1 Function
5 f _Z19parallel_mandelbrotddddiii.extracted 93405 (J96I8E 0.000s Function
4|0 [loop in _Z19parallel_mandelbrotddddiii.extracted at mandelbrot.cpp:168] @ 1Datatypec. 9.3405- 0.000s1 Scalar
4|0 [loop in _Z19parallel_mandelbrotddddiii.extracted at mandelbrot.cpp:163] @ 1Datatypec. 9.3405- 0.000s1 Scalar
4|0 [loop in _Z19parallel_mandelbrotddddiii.extracted at mandelbrot.cpp:163] 9.3405- 0.000s1 Scalar
=) f sthi_write_png 0.030s1 0.000s1 Inlined Function
=) f write_image 0.030s1 0.000s1 Inlined Function
ST Mannm in cthi srite nna tn e 3t otk imnane write ke 10071 LG LG Cralar v
< >
Source TopDown CodeAnalytics Assembly & Recommendations & Why No Vectorization?
Line Source TotalTlme| % |LoopfFunctionT|me| % | Traits &
174 // depth should ke an int, but the wectorizer will not wvectorize,
175 // complaining about mixed data types switching it to double is worth the
176 // small cost in performance to let the vectorizer work
177 double depth = 0;
178 // Figures ocut how many recurrences are required before divergence, up to
179 //f max_depth
180 B while (depth < max depth) { 0.640s | 09,3405 mm
[0} [loop in _Zl9parallel mandelbrotddddiii.extracted at mandelbrot.cpp:180]
Scalar loop
No loop transformations applied
181 if (z_real * z_real + z_imaginary * z_imaginary > 4.0) { 6.210s R
182 break; // Escape from a circle of radius 2
Selected (Total Time): 0.640s v

intel.

52

Collect Offload Advisor

Run from GUI - cont

1. Go back to the
Perspective Selector and
select Offload Modeling

GPU Modeling

2. Press Choose button 4

Offload Modeling

From the new Analysis

Workflow panel:

1. Select Low for Accuracy

2. Select Gen9 GT2 from the
Target Platform Model
drop-down

3. Press the Run button

*88e
+
*8e
Vectorization and Code Insights

Cffload Modeling Perspective

Target Platform Model

Geng GT2 ~

CPU Analysis and Modeling

=y

CPU / Memory Roofline Insights

» dentify high-impact epportunities to ofilead you code to a
= Determine potential benefit and key bottlenecks even before
» Get reasons why certain regions are n

Perspective Selector
Perspective is a predefined analysis workflow that consists of multiple profiling {collection) steps helping you understand certain aspects of your application
perform

ance. In the user interface, each perspective has its own set of panes and grids providing insights on 2

pplication performance.

GPU Analysis

GPU Roofline Insights

aa-

Threading

n accelerator.
unning the code on the accelerator.
ot recommended for offloading.

intel.

53

Collect Offload Advisor

Run Advisor in the remote CLI
1. Run the offload collection:

$ advisor --collect=offload --accuracy=low —--target-
device=gen9 gt2 --project-dir=./offload advisor
./release/Mandelbrot 3

2. Package results for viewing on the local host:

$ advisor --snapshot --project-dir=./offload advisor --
pack —--cache-sources --cache-binaries -—-
./offload advisor snapshot

intel. s

Collect Offload Advisor

Ferspective: Offload Modeling -

Top Metrics

View Results — Summary

= Top Metrics shows that the speed-up for accelerated code and
Amdahl’s Law are very close, indicating that the offloaded code
makes up most of the workload. If accelerated code speed up is
high but the Amdahl’s law speed up is close to 1.000x, then
offloading likely isn't worth it.

| 2.450x

Speed-up for Accelerated Code

Program Metrics

| Criginal

* Program Metrics contains more details about the accelerated code
and how much program time will remain on the host.

= Accelerated Regions « Source View
2.446x 96%

Amdahl's Law Speed Up

s Offload Bounded By

1285
Accelerated 585.8ms [

FProgram Time on Host... 110.0ms

Time on Target 475.8ms
» Offload Bounded By shows the items that may impact m Time in WP) calls 0s
performance of the code once it is offloaded. In this case the Lo Peeerne e o m Compute
offloaded code will be compute bound. Kemel Launch Tax sous o % L CEnEEW
u
* Modeling Parameters are the hardware characteristics of the target spesdup for accsieratea cose 2.450x oo
device. Advisor provides configurations for many Intel GPUs. Amdahl's Law Speed Up 2,446 Lotencies
Fraction of Accelerated Code 96% Data Transfer
= Top Offloaded / Non-Offloaded — these are loops or functions that = 7o oreac : Launch Tax
have the potential to be offloaded. If the speed-up is significant Target Piatorm Gons GT2 :fj;f:”o"jn”l“
enough, Advisor will recommend ofﬂoadmg. Some lOOpS or Baseline Platiorm Intel(R) Xeon(R) Gold 6248R CPU Atomics
functions will incur too much overhead to make offloading Unknown
profitable. In this case, the main OMP compute loop is Non Offoaded
recommended for offloading.
Top Offloaded
Note that this report is from the non-vectorized implementation of the LoopFunction ecution Time Speec s Bounded By
Mandelbrot function. With vectorization and parallelism, Offload Advisor will oo n
not recommend offloading as the overhead will be more than the performance _Z1oarallel mandebrotdd . cto TS 2 4s0x e COMULE

. at mandelbrot cpp163]
gain. =

Optimizing for CPU is still a good ideal

Fraction of Accelerated Code

Data Transfer

96%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
4%

0B

1

Number of Offloads

Modeling Parameters)

<, Save to Remodel

Target Device

Geng GT2 -

Hardware Parameters

EU Cogst 24

Iy

Freq usgcy

Iy

1.15 GHz

GTI Bandwidth 73.6 GB/s

L3 Bandwidth %0.8 GE/s
L3 SiZE

LLC Bandwidth

512 kB
73.6 GB/s

LLC Size 2 MB

Top Non-Offloaded)

No Data Available

intel.

55

MandelbrotOMP with GPU Offload

* To help demonstrate the capabilities of Intel Offload Advisor, we
added a fifth function to use OpenMP offload to a GPU target:

» src/mandelbrot.cpp

« Copythe omp mandelbrot (..) functionandrename to
offload mandelbrot (..)

* Change #pragma omp parallel for schedule to:
e #pragma omp target teams distribute \

parallel for simd collapse(2) \
map (from:output [0O:width*height])
map (to:height,width, xstep, ystep, max depth)

* src/mandelbrot.hpp

 Copythe omp mandelbrot (..) functionandrename to
offload Mandelbrot (..)

intel. s

MandelbrotOMP with GPU Offload

* Add a fifth option to enable the new offload mandelbrot function

src/main.cpp

Change the max depth from 100 to 5000
Add variable offload time to

* double serial time,
omp simd time,
omp parallel time,
omp both time;

Add section for offload_mandelbrot under
printf ("\nRunning all tests\n”)

Add case 5 with offload_Mandelbrot to switch
(option)

Not using PERF_NUM

intel.

57

MandelbrotOMP Maketfile

» Change options to use OpenMP offload capability

* Change compiler from icpc to icpx

 Remove qopenmp from CFLAGS and
LIBFLAGS and add: -fiopenmp -

fopenmp-targets=spiro64

* Add-g -D INTEL COMPILER to
CFLAGS

intel.

58

View how we are running compared to system max

» Use Intel® Advisor CLI to generate a GPU Roofline report on the
offload implementation (option 5):

* advisor --collect=survey --project-dir=./offload mandel --profile-gpu
-— /home/uxxxxx/MandelbrotOMP/release/Mandelbrot 5

* advisor --collect=tripcounts --project-dir=./offload mandel --flop --
profile-gpu —-- /home/uxxxxx/MandelbrotOMP/release/Mandelbrot 5
* advisor -report=roofline -gpu -project-dir=./offload mandel --report-

output=./gpu roofline.html

* Create a snapshot for download to the local GUI:

* advisor —--snapshot --project-dir=./offload mandel --pack —--cache-
sources —--cache-binaries -- ./offload mandel snapshot

intel. s

GPU Roofline

* The overall elapsed time of 4.67s is much
higher in the offloaded version than the
parallel CPU implementation (1.49s). But
the compute task has a speed-up:

 From 1.03s in parallel_mandelbrot to
0.72s in offload _Mandelbrot. Not quite
hitting the estimate of 538.2ms.

* Nearly 4sis spent on the CPU

Top Hotspots

B cru
Compute Ta... Elapsed Tim... GFLOPS GINTOPS Work Sizell... Activel/Stall...
offload man. .. 0.72s 32573 0.027 2048 = 1024/ .. 89 2/0.7/=0.1

GPU Roofline Insights
EEER] > cFURodfineRegions = Logs ~

| 0.723s

| 99.9%

OP/S and Bandwidth
2 cru

| roorume

GFLOPS: 32.57 out of 54.85 DP GFLOPS

..

| 0.000s | 3.955
O o
| 1.979 | 1
=
N | ROOFLINE T
5]
10000
GINTOPS: 0.03 out of 11.21 Integer GINTOPS
O o
Work Size/l... Active/Stall Func Self Self Sel
2048 % 1024/, 99.2/0.7/=0.1 0.01 0 4.3
0.01 0 0.1
0.0 0 727
0s 0 0
0 0

intel. ¢

GPU

Roofline continued

* The offload task appears to be
bounded by the DP Vector Add
Peak. Otherwise, it appears to
make good use of the GPU.

 EU Array is 99.2% active, and the threading
occupancy is almost 100%

* Thereis an unknown task consuming 3.957s of

CPU time with 100% idle GPU time.

GPU

Compute Task

[Outside any task]
zeCommandListAppendMemaoryCopy
zeCommandListAppendBarrier
offload_mandelbrotzompZofiloading: 266

Elapsed
Time
3.951=
0.000s
0.000s
0.723s

GPU Compute

Performance

0.000
0.000
0.000
32.573

Active
0.0%
0.0%
0.0%
99.2%

EU Array

Stalled
0.0%
0.0%
0.0%
0.7%

«

Idle
100.0%
100.0%
100.0%
0.0%

GPU Roofline
k Q ¢l; * | ¥ Default: FLOAT GTI (Memory) ~ || £ Compare ~ || ;* Guidance v =
0o
o
2 o
008 [St memeoo oo oo oo SPVeclorFMA Beak 434,45 GFLOPS
o ﬂﬁ--ncc_eal _____ LOPS _
S N R N DP Veotor FMA Peak: 107.96 GFLOPS
9
- DP Vector Add Peak: 5485 GFLOPS
. r
FLOP[Byte (Arithmetic Intensity)
W T
1 10 100 1000 10000
Compute Task EU Threading
Purpose Occupancy
[Unknown] 0.0%
Transfer In 0.0%
Synchroniz. .. 0.0%
Compute 99 9%

intel.

Intel V Tune Profiler: GPU Hotspots

command-line

* Running gpu-hotspots on the command-line

» vtune —collect gpu-hotspots ./Mandelbrot 5

B Generating a report Elapsed Time: 4.386s

GPU Time: 0.682s
= EU Array Stalled/Idle: 0.8%
GPU L3 Bandwidth Bound: 0.3%

Hottest GPU Computing Tasks Bound by GPU L3 Bandwidth Copy resu It d | recto ry to

Computing Task Total Time

local system

Sampler Busy: 0.0%
Hottest GPU Computing Tasks with High Sampler Usage

Computing Task Total Time

= FPU Utilization: 96.3%

intel.
Hottest GPU Computine Tasks with Hish FPU Utilization

Intel V Tune Profiler: GPU Hotspots

* Once the Intel VTune Profiler is running with the vtune-backend
command, open the URL in the browser for the GUI.

» Set the application to

[/home/uxxxxx/MandelbrotOMP/release/
Mandelbrot and set the application
parameter to 5.

 Runthe GPU Compute/Media Hotspots
analysis type

Configure Analysis 1171

VTune Profiler Server
(127.0.0.1)

e Launch Application ~

Specify and configure your analysis target: an application or a script to
execut

Application:

/home/u74346/MandelbrotOMP/release/Mandelbrot
Appl

5
v Use d kingd

Advar

€]

€]

INTEL VTUNE PROFILER

GPU Compute/Media
Hotspots (preview)

Analyze the most time-consuming GPU kernels, characterize GPU
utilization based on GPU hardware metrics, identify performance issues
caused by m ry lat ineff

GPU instr
A Measu
A Access oroc/k
Characterization &
Ovel
GPU samplin, g interval, ms
1
W | ry bandwidth

| Trace GPU programming APls

GPU Hotspots

* The Summary tab shows that although

only a small percentage of the overall Analysis Configuration Collectionlog ~ Summary ~ Graphics
elapsed time is spent on the GPU, the © Elapsed Time ": 4.903s
offload task performs well on the GPU. er Time 06w
= The Graphics tab doesn't indicate any © EUArray Stalled/Idle - 0.6%
major problems. Under the Platform sub- © FPU Utilization : 97.6%

h] O MP t k “ d |dentify computing tasks with high utilization of the floating point execution units.
tab’ t ere IS an pen aS Ca e %) Hottest GPU Computing Tasks with High FPU Utilization
ZeMOduleCreate that ru nS for about 355 This section lists the most active computing tasks that ran on the GPU heavily

. . o . Computing Task Total Time ©
That explalns the hlgh CPU Utlllzatlon offload_mandelbrot$ompfoffloading: 266 & 0.693s
time.

Analysis Configuration Collection Log Summary Graphics
Flatform

D:+—x’.f = .55 E ! Iz 53 5 5= =

OMP Primary Thread #0(TID... |

Thread

Related Content

GPU Offloading and Profiling Webinars

= Offload Excellence — Designing for GPU Performance
= |s vour code GPU offload ready?

= Presentation slides

= Design and tune your applications for GPUs
= Presentation slides — this continues the MandelbrotOMP sample and adds GPU offloading

= High performance GPU acceleration

* This uses the iso3dfd sample in a similar workflow to today’s training

Additional Advisor Content
= Roofline: Optimize for Compute, Memory, or Both?

= Remove Memory Bottlenecks
= QOlder, but includes Memory Access Pattern analysis

= \ectorization Advisor
= Also older, but includes AoS->SoA

Additional VTune Content
= Pump up your scaling

intel. &

https://www.intel.com/content/www/us/en/developer/videos/offload-excellence-designing-for-gpu-performance.html#gs.7lvool
https://www.intel.com/content/www/us/en/developer/videos/is-your-code-gpu-offload-ready.html#gs.7lvvsv
https://www.intel.com/content/dam/develop/external/us/en/documents/optimization-and-prototyping-of-code-with-intel-advisor-cory.pdf
https://www.intel.com/content/www/us/en/developer/videos/design-and-tune-your-applications-for-gpus.html#gs.7lvwlw
https://www.intel.com/content/dam/develop/external/us/en/documents/design-and-tune-applications-for-gpu-workshop-cory-jennifer.pdf
https://www.intel.com/content/www/us/en/developer/videos/high-performance-gpu-acceleration-part-1.html#gs.7lvser
https://www.intel.com/content/www/us/en/developer/videos/hitting-the-roofline-optimize-compute-memory-both.html#gs.7lwl82
https://www.intel.com/content/www/us/en/developer/articles/technical/remove-memory-bottlenecks-using-advisor.html#gs.7lw9sa
https://www.intel.com/content/www/us/en/developer/articles/technical/get-a-helping-hand-from-the-vectorization-advisor.html
https://www.intel.com/content/www/us/en/developer/videos/pump-up-your-scaling.html#gs.7lwodp

More Resources

Intel® VTune™ Profiler — Performance Profiler
= Product page — overview, features, FAQs...
= Training materials — Cookbooks, User Guide, Processor Tuning Guides

= Support Forum
= Online Service Center - Secure Priority Support
= What's New?

Additional Analysis Tools

= |ntel® Advisor — Design and optimize for efficient vectorization,
threading, memory usage, and accelerator offload. Roofline and flow
graph analysis.

= |ntel® Inspector — memory and thread checker/ debugger
= |Intel® Trace Analyzer and Collector - MPI Analyzer and Profiler

Additional Development Products
= |ntel® oneAP| Toolkits
= |ntel® Software Development Products

T

intel.

66

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://software.intel.com/content/www/us/en/develop/articles/processor-specific-performance-analysis-papers.html
https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://software.intel.com/content/www/us/en/develop/support/priority-support.html
https://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-release-notes
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
http://software.intel.com/en-us/intel-sdp-home/

How to get

* As part of the oneAPI Base Toolkit:

» https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-
toolkit/download.html

« Standalone component:

* https://software.intel.com/content/www/us/en/develop/articles/oneapi-
standalone-components.html#vtune

e Linux:

« Package managers:

» https://software.intel.com/content/www/us/en/develop/articles/oneapi-
repo-instructions.html

 Containers:
« https://github.com/intel/oneapi-containers

intel. ¢

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#vtune
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://github.com/intel/oneapi-containers

