
Intel® oneAPI Analyzers
Code that Outperforms

Intel VTune Profiler and Intel Advisor

2

Agenda

1 Introduction to the Intel oneAPI Base and HPC Toolkits

Intel® oneAPI Overview

2 Overview of the oneAPI analyzers

Intel VTune Profiler and Intel Advisor Overview

3 Configure the sample used in the exercises

MandelbrotOMP Sample Configuration

4 Running the sample on midway3 with Intel Advisor and Intel VTune
Profiler.

CPU Profiling Exercises

5 Demo profiling the iso3dfd sample on Intel DevCloud with Intel
Advisor and Intel VTune Profiler

GPU Profiling Demo

3

Growth in specialized workloads

Variety of data-centric hardware required

Separate programming models and toolchains for each
architecture are required today

Software development complexity limits freedom of
architectural choice

Programming Challenges

CPU
programming

model

GPU
programming

model

FPGA
programming

model

Other accel.
programming

models

4

▪ Choose the best accelerated technology the software doesn’t
decide for you

▪ Performance across CPU, GPUs, FPGAs, and other accelerators

▪ Open industry standards provide a safe, clear path to the future

▪ Compatible with existing languages and programming models
including C++, Python, SYCL, OpenMP, Fortran, and MPI

oneAPI

5

oneAPI Industry
Initiative

Open to promote community and
industry collaboration

Enables code reuse across
architectures and vendors

oneAPI Industry Specification

The productive, smart path to freedom for accelerated
computing from the economic and technical burdens
of proprietary programming models

Visit oneapi.com for more details

...

A cross-architecture
language based on C++

and SYCL standards

Powerful libraries designed
for acceleration of domain-

specific functions

Low-level hardware
abstraction layer

oneapi.com

6

▪ Allows code reuse across hardware targets

▪ Permits custom tuning for a specific accelerator

▪ Open, cross-industry alternative to proprietary language

▪ Delivers C++ productivity benefits, using common, familiar C and C++ constructs

▪ Adds SYCL from the Khronos Group for data parallelism and heterogeneous
programming

▪ Provides extensions to simplify data parallel programming

▪ Continues evolution through open and cooperative development

Data Parallel C++

The open source and Intel DPC++/C++ compiler supports Intel CPUs, GPUs, and FPGAs.
Codeplay announced a DPC++ compiler that targets Nvidia GPUs.

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

7

Powerful oneAPI Libraries

Realize all the Hardware Value

Designed for acceleration of key domain-specific functions

Freedom of Choice

Pre-optimized for each target platform for maximum
performance

8

A complete set of advanced compilers, libraries, and
porting, analysis and debugger tools

▪ Accelerates compute by exploiting cutting-edge
hardware features

▪ Interoperable with existing programming models
and code bases (C++, Fortran, Python, OpenMP,
etc.), developers can be confident that existing
applications work seamlessly with oneAPI

▪ Eases transitions to new systems and
accelerators⎯using a single code base frees
developers to invest more time on innovation

Intel® oneAPI
Product

Visit software.intel.com/oneapi for more details
Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

...

Available Now
Latest version is 2021.1

https://software.intel.com/oneapi
software.intel.com/oneapi

9

™

A core set of core tools and libraries for

developing high-performance applications on

Intel® CPUs, GPUs, and FPGAs.

▪ A broad range of developers across industries

▪ Add-on toolkit users since this is the base for all
toolkits

▪ Data Parallel C++ compiler, library and analysis tools

▪ DPC++ Compatibility tool helps migrate existing code
written in CUDA

▪ Python distribution includes accelerated scikit-learn,
NumPy, SciPy libraries

▪ Optimized performance libraries for threading, math,
data analytics, deep learning, and video/image/signal
processing

Intel® oneAPI
Base Toolkit

Learn More: intel.com/oneAPI-BaseKit

https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html

10

Intel® oneAPI
HPC Toolkit

Learn More: intel.com/oneAPI-HPCKit

Deliver Fast Applications that Scale

A toolkit that adds to the Intel® oneAPI Base Toolkit for
building high-performance, scalable parallel code on
C++, SYCL, Fortran, OpenMP & MPI from enterprise to
cloud, and HPC to AI applications.

▪ OEMs/ISVs

▪ C++, Fortran, OpenMP, MPI Developers

▪ Accelerate performance on Intel® Xeon® and Core™
Processors and Intel® Accelerators

▪ Deliver fast, scalable, reliable parallel code with less
effort built on industry standards

™

https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html

11

Intel Analysis Tools for GPU Compute Analysis

Offload Advisor

• Identify high-impact opportunities to offload

• Detect bottlenecks and key bounding factors

• Get your code ready even before you have the hardware by
modeling performance, headroom, and bottlenecks

Roofline Analysis

• See performance headroom against hardware limitations

• Determine performance optimization strategy by identifying
bottlenecks and which optimizations will pay off the most

• Visualize optimization progress

Flow Graph Analyzer

• Visualize your CPU/GPU code and get recommendations for
the CPU device

Offload Performance Tuning

• Explore code execution on your platform’s various CPU
and GPU cores

• Correlate CPU and GPU activity

• Identify whether your application is GPU- or CPU-bound

GPU Compute/Media Hotspots

• Analyze the most time-consuming GPU kernels,
characterize GPU usage based on GPU hardware metrics

• GPU code performance at the source-line level and
kernel-assembly level

Intel® Advisor Intel® VTune™ Profiler

12

Intel® VTune™ Profiler Overview

13

Optimize Performance
Intel® VTune™ Profiler

Get the Right Data to Find Bottlenecks
▪ A suite of profiling for CPU, GPU, FPGA, threading,

memory, cache, storage, offload, power…
▪ Application or system-wide analysis
▪ DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
▪ Linux, Windows, FreeBSD, Android, Yocto and more
▪ Containers and VMs

Analyze Data Faster
▪ Collect data HW/SW sampling and tracing w/o re-

compilation
▪ See results on your source, in architecture diagrams,

as a histogram, on a timeline…
▪ Filter and organize data to find answers

Work Your Way
▪ User interface or command line
▪ Profile locally and remotely
▪ GUI (desktop or web) or command line

14

Rich Set of Profiling Capabilities
Intel® VTune™ Profiler

Algorithm Optimization

✓ Hotspots
✓ Anomaly Detection
✓ Memory Consumption

Microarch.&Memory Bottlenecks

✓ Microarchitecture Exploration
✓ Memory Access

Accelerators / xPU

✓ GPU Offload
✓ GPU Compute / Media Hotspots
✓ CPU/FPGA Interaction

Parallelism

✓ Threading
✓ HPC Performance Characterization

Platform & I/O

✓ Input and Output
✓ System Overview
✓ Platform Profiler

Multi-Node

✓ Application Performance Snapshot

15

Find Answers Fast
Intel® VTune™ Profiler

Double Click Function
to View Source

Adjust Data Grouping

… (Partial list shown)

Click [] for Call Stack

Filter by Timeline Selection
(or by Grid Selection)

Filter by Process
& Other Controls

Tuning Opportunities Shown in Pink.
Hover for Tips

16

Interactive Remote Data Collection
Performance analysis of remote systems just got a lot easier

Interactive analysis
1) Configure SSH to a remote Linux* target

2) Choose and run analysis with the UI

Command line analysis
1) Run command line remotely on Windows*

or Linux* target

2) Copy results back to host and open in UI

Conveniently use your local UI to analyze remote systems

17

Analysis Types
▪ Performance Snapshot:

• Used as a starting point to determine areas for deeper focus.
▪ Algorithm:

• Hotspots: investigate call paths and find where your code spends the most
time.

• Anomaly Detection (preview): identify performance anomalies in frequently
recurring intervals of code like loop iterations.

• Memory Consumption: analyze memory consumption by app [Linux* only]
▪ Microarchitecture:

• Microarchitecture Exploration: deep dive into the CPU pipeline stage and
hardware units responsible for your hardware bottlenecks.

• Memory Access: analyze CPU cache and main memory usage
▪ Parallelism:

• Threading: visualize thread parallelism on available cores.
▪ I/O:

• Input and Output: monitor utilization of the IO subsystems, CPU, and buses.
▪ Platform Analyses:

• System Overview: monitors general behavior of the target system and
identifies platform-level factors that limit performance

• Platform Profiler: provides insights into overall system configuration,
performance, and behavior.

More details: https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-project/analysis-types.html

18

Optimize Memory Access
Memory Access Analysis - Intel® VTune™ Profiler

Tune data structures for performance

▪ Attribute cache misses to data structures
(not just the code causing the miss)

▪ Support for custom memory allocators

Optimize NUMA latency & scalability
▪ True & false sharing optimization

▪ Auto detect max system bandwidth

▪ Easier tuning of inter-socket bandwidth

Easier install, Latest processors
▪ No special drivers required on Linux*

▪ Intel® Xeon Phi™ processor MCDRAM (high
bandwidth memory) analysis

19

Microarchitecture Exploration

Hierarchical view of the execution pipeline

▪ Pinpoint sections of the pipeline with
performance problems flagged by VTune

▪ Hover over metrics for a detailed description

Visualize the pipeline at the function level
in the bottom-up tab

20

▪ Provides uncore- and device-centric view
to locate performance bottlenecks
in I/O-intensive apps at both HW and SW levels

▪ Two types of metrics to analyze:

• Platform I/O: application- and device-
agnostic hardware event-based metrics
for DRAM, PMEM, Intel UPI, PCIe,
Intel DDIO, MMIO traffic consumption

• API and OS I/O: DPDK, SPDK, kernel I/O

▪ Linux and FreeBSD targets are supported

▪ The full set of I/O metrics is available on Intel® Xeon® processors,
including 3rd Generation Intel® Xeon® Scalable Processors

Intel® VTune™ Profiler

Input and Output Analysis

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-platform-performance.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/effective-utilization-of-intel-ddio-technology.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-dpdk-applications.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-spdk-applications.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis/analyze-linux-kernel-i-o.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis.html

21

Easily Identify Hot Code Paths
Flame Graphs* for Hotspots Analysis

Visualize Total Function CPU time spent

▪ Explore stacks and stack frames

• Aggregation

• Side-by-side visualization

• Function bar as fraction of CPU Time

• Different colors per function type

▪ Identify the time spent in each function and its callees

Rich Experience with Intel® VTune™ Profiler UI

▪ Select your visualization of choice

• Flame or Icicle Graph

▪ Filter data by process, thread, time region, and more

▪ Jump to the function source code via stack pane

*Adapted based on Brendan Gregg’s Flame Graphs

✓ Start from the functions at the bottom and work your way up
✓ Pay attention to wide rectangles for hot/sync functions

https://www.brendangregg.com/flamegraphs.html

22

Intel® VTune™ Profiler

Flame Graph

• Each rectangle
represents a stack frame
and function total CPU
time – Top-Down
(Aggregated data NOT
overtime)

• The horizontal-axis
shows the stack profile
population, sorted
alphabetically

• The vertical-axis shows
stack depth, counting
from zero at the bottom

• Click rectangle to zoom

User/System/
Threading runtime

overhead/Sync
coloring to

comprehend the App
structure

Search control to find
functions by name

• Find the Hottest code-path(s) and function(s)
• Start optimization from the bottom functions to top
• Pay attention to Hot/Wide Sync function(s) too

Flame/Icicle Graph

Filter by Process/Thread/Module/FunctionType/Time
via Filter bar or/and Timeline

23

Intel® VTune™ Profiler

Performance Snapshot Analysis
Choose your next analysis: Characterize high-level aspects:

24

Intel® VTune™ Profiler

Application Performance Snapshot for MPI

▪Outlier analysis for MPI
applications at scale

• Explore on source of imbalance

• Choose nodes/ranks for detailed
profiling with VTune

Roman Khatko

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/mpi-code-analysis.html

25

Intel® Advisor Overview

26

Intel® Advisor
Design code for modern hardware

Offload Modelling

• Efficiently offload your code to GPUs even before you have the
hardware

Automated Roofline Analysis

• Optimize your GPU/CPU code for memory and compute

Vectorization Optimization

• Enable more vector parallelism and improve its efficiency

Thread Prototyping

• Add effective threading to unthreaded applications

Flow Graph Analyzer

• Create, visualize and analyze task and dependency
computation graphs

27

▪

▪

▪

▪

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt

28

▪

▪

▪

▪

▪

▪

▪

▪

▪

29

▪

▪ •

•

•

•

30

▪

▪

-

-

▪

▪

31

▪

▪

-

-

▪

-

▪

32

CPU Performance Profiling Exercises
MandelbrotOMP Sample

33

Workflow

Log into an Intel®
DevCloud GPU
node and
configure the
MandelbrotOMP
sample

Run Intel Advisor:
Offload Advisor
to estimate
performance on
Gen9 GT2 GPU

Run Intel Advisor:
GPU Roofline on
offloaded
implementation
to visualize GPU
performance

Run Intel VTune
Profiler: GPU
Hotspots for
deeper insights
into GPU kernels
and device
metrics

34

Log into DevCloudvia ssh

Start interactive gpunode:

$ qsub -I -l

nodes=1:gpu:ppn=2

Create MandelbrotOMPsample:

https://github.com/oneapi-
src/oneAPI-samples

Intel DevCloud provides a free environment for testing the
latest Intel CPUs and GPUs. Intel oneAPI toolkits are
already installed and set up for use.

To create a DevCloud account, follow these steps:

https://www.intel.com/content/www/us
/en/forms/idz/devcloud-
enrollment/oneapi-request.html

Start Intel VTuneProfiler Server in
second sshterminal

https://www.intel.com/content/www/us/en/forms/idz/devcloud-enrollment/oneapi-request.html

35

Workflow – CPU Profiling

Configure the
MandelbrotOMP
sample

Run Intel Advisor:
CPU Roofline to
get a deeper
understanding of
vectorization
performance

Run Intel Advisor:
Offload Advisor
to estimate
performance on
Gen9 GT2 GPU

Run Intel VTune
Profiler: Hotspots
and HPC
Performance
Characterization
to get a high level
view of
performance

36

MandelbrotOMP

▪ This sample runs one or all of four algorithms for generating a Mandelbrot image. Each
algorithm has an increasing level of optimization, from a serial implementation to using
OpenMP for parallelization and simd vectorization.

▪ From oneapi-cli: oneAPI Direct Programming -> C++ -> Combinational Logic -> Mandelbrot
OMP

▪ Github link: https://github.com/oneapi-src/oneAPI-
samples/tree/master/DirectProgramming/C%2B%2B/CombinationalLogic/MandelbrotOMP

37

MandelbrotOMP Makefile

Change options to use LLVM-based Intel C++ compiler

▪ Change compiler from icpc to icpx

▪ Remove -ipo from CFLAGS and
LIBFLAGS and add: –g -
D__INTEL_COMPILER

▪ Comment out ifdef defining
PERFNUM

CXX := icpx

SRCDIR := src

BUILDDIR := release

CFLAGS := -O3 –ipo –qopenmp –std=c++11

–g -D__INTEL_COMPILER

EXTRA_CFLAGS :=

LIBFLAGS := -qopenmp

ifdef perf_num

EXTRA_CFLAGS += -D PERF_NUM

endif

TARGET := $(BUILDDIR)/Mandelbrot

icpx: $(TARGET)

38

MandelbrotOMP main.cpp

Increase workload size

▪ src/main.cpp

▪ Change the max_depth from
100 to 5000

//Modifiable parameters:

int height = 1024;

int width = 2048 //Width should be a multiple of 8

int max_depth = 5000;

39

All commands

▪ $ cd MandelbrotOMP

▪ $ vim Makefile

▪ Make the changes from slide 25

▪ $ vim src/main.cpp

▪ Make the change from slide 25

▪ $ make

▪ $ make run

40

Intel® VTune™ Profiler Exercise
MandelbrotOMP Sample

41

Collect CPU Hotspots

1. Open Intel VTune Profiler on local host

2. In “Where” select “Arbitrary Host”

▪ This is just for generating command lines

3. In “What”:

▪ Application:
~/MandelbrotOMP/release/Mandelbrot

▪ Application parameters: 3

4. In “How” select “Hotspots”

▪ Hardware event-based Sampling

▪ Show additional performance insights enabled

5. Press Command Line button

Generate VTune Command Line

$ vtune -collect hotspots -knob sampling-mode=hw --app-working-dir=~/MandelbrotOMP/release --

~/MandelbrotOMP/release/Mandelbrot 3

42

Collect CPU Hotspots

1. Run vtune-gui

2. In “Where” select “Local Host”

3. In “What”:

▪ Application:
~/MandelbrotOMP/release/Mandelbrot

▪ Application parameters: 3

4. In “How” select “Hotspots”

▪ Hardware event-based Sampling

▪ Show additional performance insights enabled

5. Press Start button

Run from GUI

$ vtune -collect hotspots -knob sampling-mode=hw --app-working-dir=~/MandelbrotOMP/release --

~/MandelbrotOMP/release/Mandelbrot 3

43

Collect CPU Hotspots

▪ Top hotspot is the parallel_mandelbrot function

▪ Effective CPU Utilization Histogram shows majority of
time running on 8 logical CPUs

▪ There are only 8 threads, so this is expected

▪ Insights highlights problems with the following:

▪ Parallelism – This number is low due to the number of
threads defined in the application code. Increasing the
number of threads should scale.

▪ Microarchitecture Usage – This number is low, indicating
poor use of hardware resources.

▪ Vectorization – This number is very low, meaning that
there are floating point operations in the code but none
are vectorized. This is a good place to start.

▪ Next Step: Run the recommended HPC Performance
Characterization Analysis for more vectorization insights

View Results – Summary Tab

44

Collect CPU Hotspots

▪ The thread timeline view at the bottom shows
that there are 8 OMP threads, and all of them
are primarily colored in brown

• Green indicates that the thread is running, but brown is
where the thread was actively using the CPU

• Red indicates spin and overhead time, and in this case
the threads are waiting for all of them to finish.

▪ Overall, thread performance has good
concurrency with no real problems. The only
issue is that the application limits itself to 8
threads instead of taking advantage of more
available CPUs.

▪ Next Step: Run the recommended HPC
Performance Characterization Analysis for more
vectorization insights

View Results – Bottom-up Tab

45

Collect HPC Performance Characterization

1. In “How” select “HPC
Performance
Characterization”

▪ Use default options

2. Press Command Line
button

Generate VTune Command Line

$ vtune -collect hpc-performance --app-working-dir=~/MandelbrotOMP/release --

~/MandelbrotOMP/release/Mandelbrot 3

46

Collect HPC Performance Characterization

▪ Platform Diagram shows majority of CPU utilization is
on Socket 1, with no UPI or memory traffic

▪ Effective Physical Core Utilization is low due to the
number of threads defined in the application

▪ There are no issues due to memory accesses

▪ Vectorization shows that 47% of uOps are floating
point, but none are vectorized (packed). Adding
vectorization could significantly improve
performance.

▪ Next Step: Run CPU Roofline with Intel Advisor

View Results – Summary Tab

47

Intel® Advisor Exercise
MandelbrotOMP Sample

48

Collect CPU Roofline

1. Run advixe-gui

2. Create a new project

▪ Application:
~/MandelbrotOMP/release/Mandelbrot

▪ Application parameters: 3

3. Press OK

Run from GUI

49

Collect CPU Roofline

1. From the Perspective Selector,
select CPU/Memory Roofline
Insights

2. Press Choose button

3. From the new Analysis
Workflow panel, press the Run
button

Run from GUI - cont

50

Collect CPU Roofline

1. Run the roofline collection:

$ advisor --collect=roofline --project-dir=./cpu_roofline

-- ./release/Mandelbrot 3

2. Package results for viewing on the local host:

$ advisor --snapshot --project-dir=./cpu_roofline --pack -

-cache-sources --cache-binaries -- ./cpu_roofline_snapshot

Run Advisor in the remote CLI

51

Collect CPU Roofline

▪ There are a few loops shown
for INT data, but FLOAT is the
one doing the compute.

▪ The FLOAT loop points to line
168, which is the inner for loop.
It is compute bound.

View Results – Roofline

Note that there is no large loop dot for the main while

loop. This is likely due to the arithmetic intensity of the

while loop getting applied to the earlier for loop. There

are also issues with the compiler being unable to

determine the number of iterations in the while loop

due to the break statement.

52

Collect CPU Roofline

▪ The top loop uses the while command,
and the compiler won’t vectorize it due to
unknown iterations.

▪ The loop identified in the roofline view at
line 168 is an inner for loop, which wasn’t
vectorized because of the added
complexity of the while loop. The compiler
determined it would hurt performance.

View Results – Survey

Note that Advisor currently lacks support for the

vectorization report from icpx – the new LLVM-

based compiler - which is why some vectorization

details are missing. This is being worked on.

53

Collect Offload Advisor

1. Go back to the
Perspective Selector and
select Offload Modeling

2. Press Choose button

3. From the new Analysis
Workflow panel:

1. Select Low for Accuracy

2. Select Gen9 GT2 from the
Target Platform Model
drop-down

3. Press the Run button

Run from GUI - cont

54

Collect Offload Advisor

1. Run the offload collection:

$ advisor --collect=offload --accuracy=low --target-

device=gen9_gt2 --project-dir=./offload_advisor

./release/Mandelbrot 3

2. Package results for viewing on the local host:

$ advisor --snapshot --project-dir=./offload_advisor --

pack --cache-sources --cache-binaries --

./offload_advisor_snapshot

Run Advisor in the remote CLI

55

Collect Offload Advisor

▪ Top Metrics shows that the speed-up for accelerated code and
Amdahl’s Law are very close, indicating that the offloaded code
makes up most of the workload. If accelerated code speed up is
high but the Amdahl’s law speed up is close to 1.000x, then
offloading likely isn’t worth it.

▪ Program Metrics contains more details about the accelerated code
and how much program time will remain on the host.

▪ Offload Bounded By shows the items that may impact
performance of the code once it is offloaded. In this case the
offloaded code will be compute bound.

▪ Modeling Parameters are the hardware characteristics of the target
device. Advisor provides configurations for many Intel GPUs.

▪ Top Offloaded / Non-Offloaded – these are loops or functions that
have the potential to be offloaded. If the speed-up is significant
enough, Advisor will recommend offloading. Some loops or
functions will incur too much overhead to make offloading
profitable. In this case, the main OMP compute loop is
recommended for offloading.

View Results – Summary

Note that this report is from the non-vectorized implementation of the
Mandelbrot function. With vectorization and parallelism, Offload Advisor will
not recommend offloading as the overhead will be more than the performance
gain.

Optimizing for CPU is still a good idea!

56

▪ To help demonstrate the capabilities of Intel Offload Advisor, we
added a fifth function to use OpenMP offload to a GPU target:

• src/mandelbrot.cpp

• Copy the omp_mandelbrot (..) function and rename to
offload_mandelbrot (..)

• Change #pragma omp parallel for schedule to:

• #pragma omp target teams distribute \

parallel for simd collapse(2) \
map(from:output[0:width*height])
map(to:height,width,xstep,ystep,max_depth)

• src/mandelbrot.hpp

• Copy the omp_mandelbrot (..) function and rename to
offload_Mandelbrot (..)

57

▪Add a fifth option to enable the new offload_mandelbrot function

• src/main.cpp

• Change the max_depth from 100 to 5000

• Add variable offload_time to

• double serial_time,
omp_simd_time,
omp_parallel_time,
omp_both_time;

• Add section for offload_mandelbrot under
printf(“\nRunning all tests\n”)

• Add case 5 with offload_Mandelbrot to switch
(option)

• Not using PERF_NUM

58

▪Change options to use OpenMP offload capability

• Change compiler from icpc to icpx

• Remove qopenmp from CFLAGS and
LIBFLAGS and add: -fiopenmp -

fopenmp-targets=spir64

• Add –g -D__INTEL_COMPILER to
CFLAGS

59

▪Use Intel® Advisor CLI to generate a GPU Roofline report on the
offload implementation (option 5):

• advisor --collect=survey --project-dir=./offload_mandel --profile-gpu

-- /home/uxxxxx/MandelbrotOMP/release/Mandelbrot 5

• advisor --collect=tripcounts --project-dir=./offload_mandel --flop --

profile-gpu -- /home/uxxxxx/MandelbrotOMP/release/Mandelbrot 5

• advisor -report=roofline -gpu -project-dir=./offload_mandel --report-

output=./gpu_roofline.html

▪Create a snapshot for download to the local GUI:

• advisor --snapshot --project-dir=./offload_mandel --pack --cache-

sources --cache-binaries -- ./offload_mandel_snapshot

60

▪ The overall elapsed time of 4.67s is much
higher in the offloaded version than the
parallel CPU implementation (1.49s). But
the compute task has a speed-up:

• From 1.03s in parallel_mandelbrot to
0.72s in offload_Mandelbrot. Not quite
hitting the estimate of 538.2ms.

• Nearly 4s is spent on the CPU

61

▪ The offload task appears to be
bounded by the DP Vector Add
Peak. Otherwise, it appears to
make good use of the GPU.

• EU Array is 99.2% active, and the threading
occupancy is almost 100%

• There is an unknown task consuming 3.951s of
CPU time with 100% idle GPU time.

62

▪ Running gpu-hotspots on the command-line

▪ vtune –collect gpu-hotspots ./Mandelbrot 5

▪ Generating a report Elapsed Time: 4.386s

▪ GPU Time: 0.682s

▪ EU Array Stalled/Idle: 0.8%

▪ GPU L3 Bandwidth Bound: 0.3%

▪ Hottest GPU Computing Tasks Bound by GPU L3 Bandwidth

▪ Computing Task Total Time

▪ -------------- ----------

▪ Sampler Busy: 0.0%

▪ Hottest GPU Computing Tasks with High Sampler Usage

▪ Computing Task Total Time

▪ -------------- ----------

▪ FPU Utilization: 96.3%

▪ Hottest GPU Computing Tasks with High FPU Utilization

Copy result directory to

local system

63

▪Once the Intel VTune Profiler is running with the vtune-backend
command, open the URL in the browser for the GUI.

• Set the application to
/home/uxxxxx/MandelbrotOMP/release/
Mandelbrot and set the application
parameter to 5.

• Run the GPU Compute/Media Hotspots
analysis type

64

▪ The Summary tab shows that although
only a small percentage of the overall
elapsed time is spent on the GPU, the
offload task performs well on the GPU.

▪ The Graphics tab doesn’t indicate any
major problems. Under the Platform sub-
tab, there is an OpenMP task called
zeModuleCreate that runs for about 3.5s.
That explains the high CPU utilization
time.

65

Related Content
GPU Offloading and Profiling Webinars

▪ Offload Excellence – Designing for GPU Performance

▪ Is your code GPU offload ready?

▪ Presentation slides

▪ Design and tune your applications for GPUs

▪ Presentation slides – this continues the MandelbrotOMP sample and adds GPU offloading

▪ High performance GPU acceleration

▪ This uses the iso3dfd sample in a similar workflow to today’s training

Additional Advisor Content
▪ Roofline: Optimize for Compute, Memory, or Both?

▪ Remove Memory Bottlenecks

▪ Older, but includes Memory Access Pattern analysis

▪ Vectorization Advisor

▪ Also older, but includes AoS->SoA

Additional VTune Content

▪ Pump up your scaling

https://www.intel.com/content/www/us/en/developer/videos/offload-excellence-designing-for-gpu-performance.html#gs.7lvool
https://www.intel.com/content/www/us/en/developer/videos/is-your-code-gpu-offload-ready.html#gs.7lvvsv
https://www.intel.com/content/dam/develop/external/us/en/documents/optimization-and-prototyping-of-code-with-intel-advisor-cory.pdf
https://www.intel.com/content/www/us/en/developer/videos/design-and-tune-your-applications-for-gpus.html#gs.7lvwlw
https://www.intel.com/content/dam/develop/external/us/en/documents/design-and-tune-applications-for-gpu-workshop-cory-jennifer.pdf
https://www.intel.com/content/www/us/en/developer/videos/high-performance-gpu-acceleration-part-1.html#gs.7lvser
https://www.intel.com/content/www/us/en/developer/videos/hitting-the-roofline-optimize-compute-memory-both.html#gs.7lwl82
https://www.intel.com/content/www/us/en/developer/articles/technical/remove-memory-bottlenecks-using-advisor.html#gs.7lw9sa
https://www.intel.com/content/www/us/en/developer/articles/technical/get-a-helping-hand-from-the-vectorization-advisor.html
https://www.intel.com/content/www/us/en/developer/videos/pump-up-your-scaling.html#gs.7lwodp

66

More Resources
Intel® VTune™ Profiler – Performance Profiler

▪ Product page – overview, features, FAQs…

▪ Training materials – Cookbooks, User Guide, Processor Tuning Guides

▪ Support Forum

▪ Online Service Center - Secure Priority Support

▪ What’s New?

Additional Analysis Tools

▪ Intel® Advisor – Design and optimize for efficient vectorization,
threading, memory usage, and accelerator offload. Roofline and flow
graph analysis.

▪ Intel® Inspector – memory and thread checker/ debugger

▪ Intel® Trace Analyzer and Collector - MPI Analyzer and Profiler

Additional Development Products

▪ Intel® oneAPI Toolkits

▪ Intel® Software Development Products

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://software.intel.com/content/www/us/en/develop/articles/processor-specific-performance-analysis-papers.html
https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://software.intel.com/content/www/us/en/develop/support/priority-support.html
https://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-release-notes
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
http://software.intel.com/en-us/intel-sdp-home/

67

How to get
• As part of the oneAPI Base Toolkit:

• https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-
toolkit/download.html

• Standalone component:
• https://software.intel.com/content/www/us/en/develop/articles/oneapi-

standalone-components.html#vtune

• Linux:

• Package managers:

• https://software.intel.com/content/www/us/en/develop/articles/oneapi-
repo-instructions.html

• Containers:

• https://github.com/intel/oneapi-containers

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#vtune
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://github.com/intel/oneapi-containers

68

